CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 5 October 2016
Accepted 10 October 2016

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; benzothiazine; allyl; C-H. $\cdots \pi$ interactions.

CCDC reference: 1508990

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of methyl 1-allyl-4-methyl-1H-benzo[c][1,2]thiazine-3-carboxylate 2,2-dioxide

Liliana Azotla-Cruz, ${ }^{\text {a }}$ Svitlana Shishkina, ${ }^{\text {b }}{ }^{\text {* }}$ Igor Ukrainets, ${ }^{\text {c }}$ Irina Lijanova ${ }^{\text {a }}$ and Natalya Likhanova ${ }^{\text {d }}$

${ }^{\mathrm{a}}$ National Polytechnic Institute, CIITEC, Cerrada Cecati S/N, Colonia Santa Catarina de Azcapotzalco, CP 02250, Mexico, DF, Mexico, ${ }^{\mathbf{b}}$ SSI 'Institute for Single Crystals', National Academy of Sciences of Ukraine, 60 Lenina Avenue, Kharkiv 61001, Ukraine, ${ }^{\text {c }}$ National University of Pharmacy, 4 Blyukhera St., Kharkiv 61168 , Ukraine, and ${ }^{\mathbf{d}}$ Mexican Institute of Petroleum, Eje Central Lazaro Cardenas Norte 152, Col. San Bartolo Atepehuacan, 07730 Mexico, DF, Mexico. ${ }^{*}$ Correspondence e-mail: sveta@xray.isc.kharkov.com

In the title compound, $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{~S}$, the dihydrothiazine ring adopts a distorted sofa conformation with the S atom displaced from the mean plane through the N and C ring atoms by 0.767 (1) \AA. The allyl substituent $(\mathrm{C}-\mathrm{C}=\mathrm{C})$ is inclined to this mean plane by $78.5(7)^{\circ}$ and the acetate group $[\mathrm{C}(=\mathrm{O})-\mathrm{O}-\mathrm{C}]$ by 66.5 (3) ${ }^{\circ}$. In the crystal, molecules are linked by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions forming chains propagating along the a-axis direction.

1. Chemical context

Alkylation of nitrogen heterocycles, particularly those containing reactive exocyclic groups, always attracts attention with its ambiguity and dependence on a variety of factors. For example, esters of 4-hydroxy-2-oxo-1,2-dihydroquinoline-3carboxylic acids are primarily alkylated exclusively at the 4 OH group (Ukrainets et al., 1996). However, methyl 4-hy-droxy-2,2-dioxo-1 H-2 λ^{6},1-benzothiazine-3-carboxylates that are structurally close to them easily form mixtures of isomeric $3-C$ - and 4-O-alkylation products under the same conditions (Ukrainets et al., 2015). Consequently, it is quite difficult to predict their behaviour in the alkylation reactions of the esters of 4-methyl-2,2-dioxo-1 H - $2 \lambda^{6}$, 1-benzothiazine-3-carboxylic acids, and the determination of the true structure is essential. It has been found that methyl 4-methyl-2,2-dioxo- $1 H-2 \lambda^{6}, 1$ -benzothiazine-3-carboxylate $\mathbf{1}$ in the $\mathrm{K}_{2} \mathrm{CO}_{3}$ /DMSO system is rapidly alkylated with allyl bromide 2 by the cyclic nitrogen atom, with formation of the main product of the reaction studied viz. compound 3 (see Fig. 1).

2. Structural commentary

The molecular structure of the title compound, $\mathbf{3}$, is illustrated in Fig. 2. The dihydrothiazine ring adopts a distorted sofa conformation: the puckering parameters (Zefirov et al., 1990)

Figure 1
The synthesis of the title compound, $\mathbf{3}$.
are: $S=0.67, \Theta=57.1^{\circ}, \Psi=19.0^{\circ}$. Atom S1 deviates from the mean plane of the remaining atoms ($\mathrm{N} 1 / \mathrm{C} 1 / \mathrm{C} 6-\mathrm{C} 8$) by 0.767 (1) \AA. The allyl substituent $(\mathrm{C}-\mathrm{C}=\mathrm{C})$ is inclined to this mean plane by $78.5(7)^{\circ}$ and the acetate group $(\mathrm{O}=\mathrm{C}-\mathrm{O}-\mathrm{C})$ by $66.5(3)^{\circ}$. Atom N1 has a planar configuration, the sum of the bond angles being 359.1°.

The strong steric repulsion between methyl group at the C7 atom and the aromatic ring \{there are short intramolecular contacts $\mathrm{H} 5 \cdots \mathrm{C} 11=2.63$ and $\mathrm{H} 11 A \cdots \mathrm{C} 5=2.47 \AA$ in this fragment [the sum of the van der Waals radii (Zefirov, 1997) is $2.87 \AA]\}$ causes a disturbance of the conjugation between the π-systems of the aromatic ring and the $\mathrm{C} 7=\mathrm{C} 8$ double bond; the C5-C6-C7-C8 torsion angle is -164.7 (4) ${ }^{\circ}$. The ester substituent is twisted relatively to the $\mathrm{C} 7=\mathrm{C} 8$ endocyclic double bond [the $\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 1$ torsion angle is $46.0(7)^{\circ}$], leading to its elongation: the $\mathrm{C} 7=\mathrm{C} 8$ bond length is 1.348 (6) \AA as compared to the mean value of $1.326 \AA$ (Bürgi \& Dunitz, 1994). The methyl group of the ester substituent is

Figure 2
The molecular structure of compound $\mathbf{3}$, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).
$C g$ is the centroid of the C1-C6 ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 12-\mathrm{H} 12 A \cdots C g^{\mathrm{i}}$	0.97	2.95	$3.576(5)$	123

Symmetry code: (i) $-x-\frac{1}{2}, y+\frac{3}{2}, z+\frac{1}{2}$.
located in the ap-position to the $\mathrm{C} 8-\mathrm{C} 9$ bond [C8-C9$\left.\mathrm{O} 2-\mathrm{C} 10=-171.5(5)^{\circ}\right]$. The allyl group is orthogonal to the benzothiazine fragment plane while the terminal double bond is synperiplanar to the $\mathrm{N} 1-\mathrm{C} 12$ bond [torsion angles $\mathrm{C} 1-$ $\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 13$ and $\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$ are 97.2 (5) and $3.5(8)^{\circ}$, respectively]. The steric repulsion between the allyl substituent and the aromatic cycle (short intramolecular contacts $\mathrm{H} 2 \cdots \mathrm{C} 12=2.77 \AA$ and $\mathrm{H} 12 A \cdots \mathrm{C} 2=2.83 \AA$) results in the elongation of the $\mathrm{C} 1-\mathrm{N} 1$ bond $[1.411$ (5) \AA A , compared with the mean value of $1.371 \AA$ (Bürgi \& Dunitz, 1994).

3. Supramolecular features

In the crystal, molecules are linked by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, forming chains propagating along the a-axis direction. (Table 1 and Fig. 3). There are no other significant intermolecular interactions in the crystal structure, despite the presence of a number of potential donor and acceptor atoms.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, update May 2016; Groom et al., 2016) for $1 H$-benzo[c][1,2]thiazine 2,2-dioxide yielded 15 hits. These include the 4-hydroxy analogue of the title compound, viz. methyl 1-allyl-4-hydroxy-1 H-benzo $[c][1,2]$ thiazine-3-carboxylate 2,2-dioxide (MINJAW; Shishkina et al., 2013). This compound crystallized with two molecules in the asymmetric unit. The conformation

Figure 3
A view along the c axis of the crystal packing of compound 3 . The $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ interactions are represented by dashed lines (see Table 1) and, for clarity, only H atom H12A (grey ball) is included.

Figure 4
The structural overlap of the two independent molecules of the 4-hydroxy analogue (MINJAW; Shishkina et al., 2013), and the title compound 3, shown in blue.
of the dihydrothiazine ring in both molecules resembles that in the title compound, which has a distorted sofa conformation. A view of the structural overlap of the three molecules is shown in Fig. 4.

5. Synthesis and crystallization

The synthesis of the title compound, $\mathbf{3}$, is illustrated in Fig. 1. To a solution of $2.53 \mathrm{~g}(0.01 \mathrm{~mol})$ of methyl 4-methyl-2,2-dioxo- $1 H-2 \lambda^{6}, 1$-benzothiazine-3-carboxylate, $\mathbf{1}$, in 20 ml DMSO were added $2.07 \mathrm{~g}(0.015 \mathrm{~mol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and the mixture was stirred for 30 min . Allyl bromide $(1.81 \mathrm{~g}$, 0.015 mol) was then added and the mixture was stirred for a further 30 min at 298 K . It was then diluted with cold water and acidified with dilute HCl to pH 4 . It was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{ml})$. The organic extracts were combined and the solvent removed by distillation (at reduced pressure at the end). The residue was dissolved in 20 ml of hot methanol and filtered over charcoal. The resulting solution was then placed in a freezer $(253 \mathrm{~K})$ for 24 h , after which crystals of the title compound were harvested (yield $2.55 \mathrm{~g}, 87 \%$; m.p. 360362 K).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms could all be located in difference Fourier maps. During refinement they were included in calculated positions and treated as riding: $\mathrm{C}-\mathrm{H}=$ $0.93-0.97 \AA$ with $U_{\text {iso }}=1.5 U_{\text {eq }}(\mathrm{C}-$ methyl $)$ and $1.2 U_{\text {eq }}(\mathrm{C})$ for other H atoms.

Table 2
Experimental details.
Crystal data Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
No. of restraints
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
Absolute structure

Absolute structure parameter
$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{~S}$
293.33

Orthorhombic, Pna2 ${ }_{1}$
293
10.1970 (7), 18.6174 (12), 7.5136 (5)
1426.39 (16)

4
Mo $K \alpha$
0.24
$0.20 \times 0.10 \times 0.02$
Agilent Xcalibur Sapphire3
Multi-scan (CrysAlis RED;
Agilent, 2012)
$0.706,1.000$
$9346,2425,2111$

0.056
0.595

$0.044,0.120,1.05$
2425
181
1
H-atom parameters constrained
$0.19,-0.20$
Flack x determined using 785
\quad quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$
(Parsons et al., 2013)
0.09 (8)

Computer programs: CrysAlis CCD and CrysAlis RED (Agilent, 2012), SHELXS2014 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

References

Agilent (2012). CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.
Bürgi, H.-B. \& Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767-784. Weinheim: VCH.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Parsons, S., Flack, H. D. \& Wagner, T. (2013). Acta Cryst. B69, 249259.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Shishkina, S. V., Ukrainets, I. V. \& Petrushova, L. A. (2013). Acta Cryst. E69, o1698.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Ukrainets, I. V., Petrushova, L. A., Shishkina, S. V. \& Sim, G. (2015). Chem. Heterocycl. Compds, 50, 1741-1747.
Ukrainets, I. V., Taran, S. G., Gorokhova, O. V., Gorlacheva, I. V., Bezuglyi, P. A. \& Turov, A. V. (1996). Chem. Heterocycl. Compd. 32, 952-959.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Zefirov, Yu. V. (1997). Kristallografiya, 42, 936-958.
Zefirov, N. S., Palyulin, V. A. \& Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147-158.

supporting information

Acta Cryst. (2016). E72, 1574-1576 [https://doi.org/10.1107/S2056989016015978]

Crystal structure of methyl 1-allyl-4-methyl-1H-benzo[c][1,2]thiazine-3carboxylate 2,2-dioxide

Liliana Azotla-Cruz, Svitlana Shishkina, Igor Ukrainets, Irina Lijanova and Natalya Likhanova

Computing details

Data collection: CrysAlis CCD (Agilent, 2012); cell refinement: CrysAlis CCD (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Methyl 1-allyl-4-methyl-1H-benzo[c][1,2]thiazine-3-carboxylate 2,2-dioxide

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{~S}$
$M_{r}=293.33$
Orthorhombic, Pna_{1}
$a=10.1970$ (7) \AA
$b=18.6174(12) \AA$
$c=7.5136$ (5) \AA
$V=1426.39(16) \AA^{3}$
$Z=4$
$F(000)=616$

Data collection

Agilent Xcalibur Sapphire3
diffractometer
Radiation source: Enhance (Mo) X-ray Source
Detector resolution: 16.1827 pixels mm^{-1}
ω-scans
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
$T_{\text {min }}=0.706, T_{\text {max }}=1.000$
$D_{\mathrm{x}}=1.366 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2163 reflections
$\theta=3.8-25.1^{\circ}$
$\mu=0.24 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Plate, colourless
$0.20 \times 0.10 \times 0.02 \mathrm{~mm}$

9346 measured reflections
2425 independent reflections
2111 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.056$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=3.0^{\circ}$
$h=-12 \rightarrow 10$
$k=-22 \rightarrow 22$
$l=-7 \rightarrow 8$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0618 P)^{2}+0.1291 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.19 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.20$ e \AA^{-3}

Absolute structure: Flack x determined using 785 quotients $\left[\left(I^{+}\right)-\left(I^{\prime}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$(Parsons et al., 2013)

Absolute structure parameter: 0.09 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
S1	0.88243 (9)	0.65549 (5)	0.26457 (17)	0.0457 (3)
O1	0.6502 (4)	0.5240 (2)	0.4865 (7)	0.0975 (14)
O2	0.7649 (4)	0.51032 (18)	0.2347 (6)	0.0801 (11)
O3	0.7789 (3)	0.66144 (16)	0.1376 (5)	0.0645 (9)
O4	1.0109 (3)	0.63899 (17)	0.2033 (4)	0.0590 (9)
N1	0.8881 (3)	0.73110 (17)	0.3775 (5)	0.0457 (8)
C1	0.9692 (4)	0.7307 (2)	0.5295 (6)	0.0443 (9)
C2	1.0333 (4)	0.7933 (3)	0.5818 (7)	0.0559 (11)
H2	1.0205	0.8355	0.5180	0.067*
C3	1.1146 (4)	0.7932 (3)	0.7260 (7)	0.0652 (14)
H3	1.1557	0.8355	0.7611	0.078*
C4	1.1362 (5)	0.7308 (3)	0.8195 (7)	0.0722 (15)
H4	1.1956	0.7305	0.9135	0.087*
C5	1.0705 (5)	0.6690 (3)	0.7747 (8)	0.0605 (11)
H5	1.0837	0.6277	0.8419	0.073*
C6	0.9842 (4)	0.6670 (2)	0.6302 (6)	0.0461 (10)
C7	0.9017 (4)	0.6034 (2)	0.5943 (6)	0.0490 (10)
C8	0.8424 (4)	0.5951 (2)	0.4353 (6)	0.0497 (11)
C9	0.7425 (5)	0.5388 (2)	0.3921 (8)	0.0623 (13)
C10	0.6651 (7)	0.4617 (4)	0.1624 (12)	0.110 (3)
H10A	0.6927	0.4446	0.0478	0.165*
H10B	0.6537	0.4217	0.2415	0.165*
H10C	0.5835	0.4870	0.1506	0.165*
C11	0.8826 (5)	0.5494 (3)	0.7415 (9)	0.0715 (15)
H11A	0.9319	0.5640	0.8442	0.107*
H11B	0.7913	0.5467	0.7717	0.107*
H11C	0.9126	0.5031	0.7025	0.107*
C12	0.7970 (4)	0.7897 (2)	0.3411 (7)	0.0547 (11)
H12A	0.7753	0.8127	0.4530	0.066*
H12B	0.7168	0.7693	0.2936	0.066*
C13	0.8440 (5)	0.8458 (2)	0.2154 (8)	0.0661 (15)
H13	0.7888	0.8848	0.1961	0.079*
C14	0.9528 (6)	0.8455 (3)	0.1316 (9)	0.0829 (18)
H14A	1.0112	0.8076	0.1466	0.099*
H14B	0.9737	0.8832	0.0555	0.099*

Atomic displacement parameters (\hat{A}^{2})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0486(5)$	$0.0440(5)$	$0.0446(5)$	$-0.0024(4)$	$-0.0040(5)$	$-0.0029(5)$
O1	$0.087(3)$	$0.089(3)$	$0.116(4)$	$-0.038(2)$	$0.020(3)$	$-0.007(3)$
O2	$0.084(2)$	$0.063(2)$	$0.094(3)$	$-0.0162(18)$	$-0.005(2)$	$-0.028(2)$
O3	$0.070(2)$	$0.062(2)$	$0.062(2)$	$-0.0037(16)$	$-0.0255(17)$	$-0.0033(16)$
O4	$0.0587(18)$	$0.0636(19)$	$0.0546(19)$	$-0.0032(15)$	$0.0108(14)$	$-0.0081(14)$
N1	$0.0528(19)$	$0.0364(17)$	$0.048(2)$	$-0.0005(14)$	$-0.0052(15)$	$-0.0030(17)$
C1	$0.044(2)$	$0.046(2)$	$0.043(2)$	$-0.0011(18)$	$0.0033(18)$	$-0.0031(18)$
C2	$0.061(3)$	$0.053(3)$	$0.053(3)$	$-0.008(2)$	$0.004(2)$	$-0.005(2)$
C3	$0.070(3)$	$0.075(3)$	$0.051(3)$	$-0.020(3)$	$0.005(2)$	$-0.015(2)$
C4	$0.075(3)$	$0.096(4)$	$0.046(3)$	$-0.009(3)$	$-0.013(2)$	$-0.008(3)$
C5	$0.070(3)$	$0.067(3)$	$0.045(2)$	$0.005(2)$	$-0.009(3)$	$0.001(3)$
C6	$0.049(2)$	$0.047(2)$	$0.042(2)$	$0.0024(18)$	$0.0034(18)$	$-0.0002(18)$
C7	$0.055(2)$	$0.042(2)$	$0.050(3)$	$0.0070(18)$	$0.003(2)$	$0.0025(19)$
C8	$0.051(2)$	$0.038(2)$	$0.060(3)$	$-0.0031(18)$	$0.003(2)$	$-0.0031(19)$
C9	$0.062(3)$	$0.046(2)$	$0.079(4)$	$-0.009(2)$	$0.000(3)$	$0.000(2)$
C10	$0.112(5)$	$0.070(4)$	$0.149(7)$	$-0.028(4)$	$-0.040(5)$	$-0.028(4)$
C11	$0.093(4)$	$0.053(3)$	$0.068(4)$	$-0.001(2)$	$-0.002(3)$	$0.014(3)$
C12	$0.054(2)$	$0.046(2)$	$0.064(3)$	$0.0025(19)$	$-0.001(2)$	$0.001(2)$
C13	$0.067(3)$	$0.051(3)$	$0.081(4)$	$0.003(2)$	$0.000(3)$	$0.011(2)$
C14	$0.076(4)$	$0.090(4)$	$0.082(4)$	$-0.001(3)$	$-0.001(3)$	$0.026(3)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

S1-O4	1.422 (3)	C5-H5	0.9300
S1-O3	1.427 (3)	C6-C7	1.477 (6)
S1-N1	1.645 (3)	C7-C8	1.348 (6)
S1-C8	1.754 (4)	C7-C11	1.508 (7)
O1-C9	1.210 (6)	C8-C9	1.497 (6)
O2-C9	1.316 (6)	C10-H10A	0.9600
O2-C10	1.466 (6)	C10-H10B	0.9600
N1-C1	1.411 (5)	C10-H10C	0.9600
N1-C12	1.458 (5)	C11-H11A	0.9600
C1-C2	1.392 (6)	C11-H11B	0.9600
C1-C6	1.415 (6)	C11-H11C	0.9600
C2-C3	1.364 (7)	C12-C13	1.487 (7)
C2-H2	0.9300	C12-H12A	0.9700
C3-C4	1.376 (8)	C12-H12B	0.9700
C3-H3	0.9300	C13-C14	1.276 (8)
C4-C5	1.373 (7)	C13-H13	0.9300
C4-H4	0.9300	C14-H14A	0.9300
C5-C6	1.398 (6)	C14-H14B	0.9300
$\mathrm{O} 4-\mathrm{S} 1-\mathrm{O} 3$	118.8 (2)	C7-C8-C9	125.3 (4)
$\mathrm{O} 4-\mathrm{S} 1-\mathrm{N} 1$	108.66 (18)	C7-C8-S1	118.0 (3)
O3-S1-N1	107.72 (19)	C9-C8-S1	116.6 (4)

O4-S1-C8	108.2 (2)
O3-S1-C8	111.5 (2)
N1-S1-C8	100.3 (2)
C9-O2-C10	117.4 (5)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 12$	122.0 (3)
C1-N1-S1	115.7 (3)
C12-N1-S1	121.4 (3)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	120.0 (4)
C2-C1-C6	120.0 (4)
N1-C1-C6	120.0 (3)
C3-C2-C1	120.5 (5)
C3-C2-H2	119.7
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.7
C2-C3-C4	120.3 (5)
C2-C3-H3	119.9
C4-C3-H3	119.9
C5-C4-C3	120.3 (5)
C5-C4-H4	119.9
C3-C4-H4	119.9
C4-C5-C6	121.4 (5)
C4-C5-H5	119.3
C6-C5-H5	119.3
C5-C6-C1	117.4 (4)
C5-C6-C7	121.5 (4)
C1-C6-C7	120.8 (4)
C8-C7-C6	120.7 (4)
C8-C7-C11	121.0 (4)
C6-C7-C11	118.3 (4)
$\mathrm{O} 4-\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 1$	-60.7 (3)
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 1$	169.5 (3)
C8-S1-N1-C1	52.7 (3)
$\mathrm{O} 4-\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 12$	130.1 (3)
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 12$	0.2 (4)
C8-S1-N1-C12	-116.5 (3)
$\mathrm{C} 12-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	-42.8 (5)
S1-N1-C1-C2	147.9 (3)
C12-N1-C1-C6	136.3 (4)
S1-N1-C1-C6	-32.9 (5)
N1-C1-C2-C3	-178.4 (4)
C6-C1-C2-C3	2.5 (6)
C1-C2-C3-C4	1.2 (7)
C2-C3-C4-C5	-3.6 (8)
C3-C4-C5-C6	2.4 (8)
C4-C5-C6-C1	1.2 (7)
C4-C5-C6-C7	-172.6 (5)
C2- $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	-3.6 (6)
N1-C1-C6-C5	177.2 (4)

108.2 (2)
111.5 (2)
100.3 (2)
117.4 (5)
122.0 (3)
115.7 (3)
121.4 (3)
120.0 (4)
120.0 (4)
120.0 (3)
120.5 (5)
119.7
119.7
120.3 (5)
119.9
119.9
120.3 (5)
119.9
119.9
121.4 (5)
119.3
119.3
117.4 (4)
121.5 (4)
120.8 (4)
120.7 (4)
121.0 (4)
118.3 (4)
-60.7 (3)
169.5 (3)
52.7 (3)
130.1 (3)
0.2 (4)
-116.5 (3)
-42.8 (5)
147.9 (3)
136.3 (4)
-32.9 (5)
-178.4 (4)
2.5 (6)
1.2 (7)
-3.6 (8)
2.4 (8)
1.2 (7)
-172.6 (5)
-3.6(6)
177.2 (4)

$\mathrm{O} 1-\mathrm{C} 9-\mathrm{O} 2$	$124.8(5)$
$\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 8$	$124.1(5)$
$\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 8$	$111.0(4)$
$\mathrm{O} 2-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	109.5
$\mathrm{O} 2-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	109.5
$\mathrm{H} 10 \mathrm{~A}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	109.5
$\mathrm{O} 2-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	109.5
$\mathrm{H} 10 \mathrm{~A}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	109.5
$\mathrm{H} 10 \mathrm{~B}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	109.5
$\mathrm{C} 7-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	109.5
$\mathrm{C} 7-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	109.5
$\mathrm{H} 11 \mathrm{~A}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	109.5
$\mathrm{C} 7-\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}$	109.5
$\mathrm{H} 11 \mathrm{~A}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}$	109.5
$\mathrm{H} 11 \mathrm{~B}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}$	109.5
N1-C12-C13	$116.1(4)$
N1-C12-H12A	108.3
C13-C12-H12A	108.3
N1-C12-H12B	108.3
C13-C12-H12B	108.3
H12A-C12-H12B	107.4
C14-C13-C12	$126.2(5)$
C14-C13-H13	116.9
C12-C13-H13	116.9
C13-C14-H14A	120.0
C13-C14-H14B	120.0
H14A-C14-H14B	120.0

21.7 (6)
17.0 (6)
-156.7 (4)
-171.1 (4)
7.3 (7)
7.8 (6)
-173.9 (4)
72.8 (4)
-154.8 (3)
-40.9 (4)
-108.2 (4)
24.2 (4)
138.1 (3)
5.4 (8)
-171.5 (5)
46.0 (7)
-132.9 (5)
-137.1 (5)
44.0 (5)

supporting information

$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	$170.3(4)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 13$	$97.2(5)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	$-8.9(6)$	$\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 13$	$-94.2(4)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-164.7(4)$	$\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$3.5(8)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)
Cg is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ ring.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 12 — \mathrm{H} 12 A \cdots C g^{\mathrm{i}}$	0.97	2.95	$3.576(5)$	123

Symmetry code: (i) $-x-1 / 2, y+3 / 2, z+1 / 2$.

