

Received 7 September 2016 Accepted 4 October 2016

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy

Keywords: crystal structure; copper(I) complexes; diphosphines; diimine; π - π interactions.

CCDC reference: 1507981

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN O ACCESS

Crystal structure of bis[μ -1,4-bis(diphenylphosphanyl)butane- $\kappa^2 P:P'$]bis[(3,4,7,8-tetramethyl-1,10phenanthroline- $\kappa^2 N,N'$)copper(I)] bis(hexafluoridophosphate) dichloromethane disolvate

Michihiro Nishikawa, Kotaro Mutsuura and Taro Tsubomura*

Department of Materials and Life Science, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo, Japan. *Correspondence e-mail: tsubomura@st.seikei.ac.jp

The dication of the title compound, $[Cu_2(C_{28}H_{28}P_2)_2(C_{16}H_{16}N_2)_2](PF_6)_2$ ·-2CH₂Cl₂, has crystallographically imposed inversion symmetry. The copper(I) cation is coordinated in a distorted tetrahedral geometry by two N atoms of a chelating 3,4,7,8-tetramethyl-1,10-phenanthroline ligand and two P atoms of two bridging 1,4-bis(diphenylphosphanyl)butane ligands, forming a 14-membered ring. An intramolecular π - π interaction stabilizes the conformation of the dication. In the crystal, dications are linked by π - π interactions involving adjacent phenanthroline rings, forming chains running parallel to [111]. Weak C-H···F hydrogen interactions are also observed.

1. Chemical context

Copper(I) complexes bearing diimine ligands are important candidates for photofunctional materials due to the possible generation of long-lived charge-transfer excited states (Barbieri et al., 2008; Nishikawa et al., 2015). We have previously reported the crystal structures as well as the longlived emission properties of the dicopper(I) complexes $[Cu_2(dmp)_2(dppb)_2](PF_6)_2$ (dppb = 1,4-bis(diphenylphosphanyl)butane, dmp = 2,9-dimethyl-1,10-phenanthroline) (Saito et al., 2006) and $[Cu_2(dmpp)_2(dppb)_2](PF_6)_2$ (dmpp = 4,7-diphenyl-1,10-phenanthroline) (Tsubomura et al., 2015). In addition, the synthesis and NMR studies of dicopper(I) complexes bearing 1,1-bis(diphenylphosphanyl)methane and 3,4,7,8-tetramethyl-1,10-phenanthroline (tmp) ligands (Kitagawa et al., 1991), and the crystal structures of bis(diimine)copper(I) complexes, [Cu(tmp)₂]BPh₄ and [Cu(phen)₂]BPh₄ (Cunningham et al., 2000), have been reported. It is known that methyl substitution on the phenanthroline ligand often gives the essential effect on the photophysical properties of the copper complexes. Herein we describe the synthesis and crystal structure of a novel dinuclear copper(I) complex bearing tmp and dppb ligands. The title complex, $[Cu_2(tmp)_2(dppb)_2](PF_6)_2 \cdot 2CH_2Cl_2$, was newly synthesized by the reaction of tmp, dppb, and tetrakis(acetonitrile)copper(I) hexafluoridophosphate in dichloromethane at room temperature.

2. Structural commentary

The asymmetric unit of the title compound consists of half of the dicopper(I) complex cation, one hexafluoridophosphate

counter-anion, and one dichloromethane molecule. The complex has crystallographically imposed inversion symmetry. Each copper(I) atom is coordinated in a distorted tetrahedral geometry by two nitrogen atoms of a chelating tmp molecule and two phosphorus atoms of two centrosymmetric bridging dppb ligands, forming a 14-membered ring (Fig. 1).

The distorted tetrahedral geometry around the copper(I) cation is characteristic of copper(I) complexes bearing diimine and diphosphine ligands. The Cu-N bond lengths [2.063 (4) and 2.091 (4) Å] are shorter than those observed in the related complexes $[Cu_2(dmpp)_2(dppb)_2](PF_6)_2$ [2.080(4)]and 2.130 (4) Å] and $[Cu_2(dmp)_2(dppb)_2](PF_6)_2$ [2.105 (4) and 2.117 (4) Å]. The Cu–P bonds [2.212 (2) and 2.276 (2) Å] are also shorter than those of [Cu₂(dmpp)₂(dppb)₂](PF₆)₂ $[2.2669 (15) \text{ and } 2.2915 (16) \text{ Å}] \text{ and } [Cu_2(dmp)_2(dppb)_2]$ [2.256 (1) and 2.3002 (14) Å]. The N-Cu-N bond angle of 80.10 (13)° is not significantly different from those of $[Cu_2(dmpp)_2(dppb)_2](PF_6)_2$ [80.03 (14)°] and $[Cu_2(dmp)_2 (dppb)_2](PF_6)_2$ [80.1 (2)°], whereas the P-Cu-P bond angle falls range $[122.83 (8)^{\circ}]$ in the observed for $[Cu_2(dmpp)_2(dppb)_2](PF_6)_2$ [119.57 (5)°] and $[Cu_2(dmp)_2 (dppb)_2](PF_6)_2$ [126.38 (5)°]. The conformation of the dinuclear complex is stabilized by the presence of two relatively

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$C32-H32\cdots F10^{i}$	0.95	2.51	3.382 (6)	152
$C100-H10A\cdots F11^{ii}$	0.99	2.39	3.360 (8)	165
$C100-H10A\cdots F13^{ii}$	0.99	2.55	3.373 (9)	141

Symmetry codes: (i) -x, -y, -z + 1; (ii) x + 1, y, z.

short intramolecular π - π interactions involving the N12/C17/C30/C54/C36/C37 pyridine ring and the C29/C26/C46/C47/C57/C32 phenyl ring of the dppb ligand [centroid-to-centroid distance = 3.577 (5) Å].

3. Supramolecular features

In the crystal, π - π interactions between the phenanthroline rings of adjacent complex dications are observed [centroid-tocentroid distance = 3.644(4)Å], forming chains running parallel to [111]. As shown in Fig. 2, the dichloromethane solvent molecules and counter-ions are sandwiched by the chains of the complex cations. There are weak intermolecular C-H···F hydrogen-bonding interactions between the fluorine atoms of the counter-ion and the methylene group of the dichloromethane molecule. An intermolecular $C-H\cdots F$ hydrogen bond involving an aromatic C-H group of a phenyl ring is also observed (Table 1). Intermolecular π - π interactions between phenanthroline rings are not observed in the crystal structure of $[Cu_2(dmp)_2(dppb)_2](PF_6)_2$, where only weak intramolecular interactions are present between the phenanthroline ring and the phenyl rings of the diphosphine moieties.

Figure 1

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Unlabelled atoms are related to the labelled atoms by (-x, -y, -z). H atoms have been omitted for clarity.

Figure 2 The packing of the title compound, viewed along the *a* axis.

research communications

4. Synthesis and crystallization

Under an argon atmosphere, $[Cu(MeCN)_4]PF_6$ (75 mg, 0.20 mmol) was added to a CH_2Cl_2 solution of dppb (85 mg, 0.20 mmol). Then, tmp (45 mg, 0.20 mmol) was added and the reaction mixture was stirred for 100 min at room temperature. After addition of *n*-hexane to the solution, the formed solid was filtered, washed with diethyl ether, and dried *in vacuo* (yield; 139 mg, 80%). Single crystals of the title compound suitable for X-ray analysis were obtained by slow diffusion of diethyl ether into the dichloromethane solution.

5. Refinement

Data collection details and refinement results are summarized in Table 2. All H atoms were positioned geometrically and refined using a riding model with C-H = 0.99 Å and $U_{iso}(H) =$ $1.2U_{eq}(C)$ for methylene groups, C-H = 0.98 Å and $U_{iso}(H) =$ $1.2U_{eq}(C)$ for the methyl groups and C-H = 0.95 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for the aromatic groups. A rotation model was used for the methyl groups.

Acknowledgements

This work was partially supported by Grants-in-Aid from MEXT of Japan (26410077) and a grant from Seikei University.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Barbieri, A., Accorsi, G. & Armaroli, N. (2008). *Chem. Commun.* pp. 2185–2193.
- Cunningham, C. T., Moore, J. J., Cunningham, K. L., Fanwick, P. E. & McMillin, D. R. (2000). *Inorg. Chem.* 39, 3638–3644.
- Kitagawa, S., Maruyama, H., Wada, S., Munakata, M., Nakamura, M. & Masuda, H. (1991). *Bull. Chem. Soc. Jpn*, **64**, 2809–2813.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Table 2	
Experimental details.	
Crystal data	
Chemical formula	$[Cu_2(C_{28}H_{28}P_2)_2(C_{16}H_{16}N_2)_2]$ - (PF ₆) ₂ ·2CH ₂ Cl ₂
M_r	1912.38
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	123
a, b, c (Å)	11.723 (15), 12.967 (16), 16.06 (2)
α, β, γ (°)	108.302 (13), 98.665 (12),
$V(Å^3)$	2100 (5)
V (A)	2190 (3)
Z Padiation type	
$\mu (\text{mm}^{-1})$	0.79
μ (mm) Crystal size (mm)	$0.75 \times 0.5 \times 0.2$
Crystal size (lilli)	0.5 × 0.5 × 0.2
Data collection	
Diffractometer	Rigaku Saturn70 CCD
Absorption correction	Multi-scan (<i>REQAB</i> ; Rigaku, 1998)
T_{\min}, T_{\max}	0.892, 1
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	20388, 9329, 6951
R _{int}	0.044
$(\sin \theta / \lambda)_{\rm max} ({ m \AA}^{-1})$	0.649
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.072, 0.169, 1.09
No. of reflections	9329
No. of parameters	536
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max} \Delta \rho_{\rm min} (e {\rm \AA}^{-3})$	0.62, -0.52

Computer programs: CrystalClear (Rigaku, 2000), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010).

Nishikawa, M., Sawamura, S., Haraguchi, A., Morikubo, J., Takao, K. & Tsubomura, T. (2015). *Dalton Trans.* **44**, 411–418.

- Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Saito, K., Arai, T., Takahashi, N., Tsukuda, T. & Tsubomura, T. (2006). Dalton Trans. pp. 4444–4448.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tsubomura, T., Kimura, K., Nishikawa, M. & Tsukuda, T. (2015). Dalton Trans. 44, 7554–7562.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2016). E72, 1554-1556 [https://doi.org/10.1107/S2056989016015553]

Crystal structure of bis[μ -1,4-bis(diphenylphosphanyl)butane- $\kappa^2 P:P'$]bis-[(3,4,7,8-tetramethyl-1,10-phenanthroline- $\kappa^2 N,N'$)copper(I)] bis-(hexafluoridophosphate) dichloromethane disolvate

Michihiro Nishikawa, Kotaro Mutsuura and Taro Tsubomura

Computing details

Data collection: *CrystalClear* (Rigaku, 2000); cell refinement: *CrystalClear* (Rigaku, 2000); data reduction: *CrystalClear* (Rigaku, 2000); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Bis[μ -1,4-bis(diphenylphosphanyl)butane- $\kappa^2 P:P'$]bis[(3,4,7,8-tetramethyl-1,10-phenanthroline- $\kappa^2 N,N'$)copper(I)] bis(hexafluoridophosphate) dichloromethane disolvate

H-atom parameters constrained

Crystal data	
$[Cu_2(C_{28}H_{28}P_2)_2(C_{16}H_{16}N_2)_2](PF_6)_2 \cdot 2CH_2Cl_2$	Z = 1
$M_r = 1912.38$	F(000) = 984
Triclinic, P1	$D_{\rm x} = 1.45 {\rm Mg} {\rm m}^{-3}$
a = 11.723 (15) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 12.967 (16) Å	Cell parameters from 5584 reflections
c = 16.06 (2) Å	$\theta = 3.2 - 27.5^{\circ}$
$\alpha = 108.302 \ (13)^{\circ}$	$\mu = 0.79 \text{ mm}^{-1}$
$\beta = 98.665 \ (12)^{\circ}$	T = 123 K
$\gamma = 103.284 \ (13)^{\circ}$	Block, yellow
$V = 2190 (5) Å^3$	$0.5 \times 0.5 \times 0.2 \text{ mm}$
Data collection	
Rigaku Saturn70 CCD	9329 independent reflections
diffractometer	6951 reflections with $I > 2\sigma(I)$
dtprofit.ref scans	$R_{\rm int} = 0.044$
Absorption correction: multi-scan	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$
(<i>REQAB</i> ; Rigaku, 1998)	$h = -13 \rightarrow 15$
$T_{\min} = 0.892, T_{\max} = 1$	$k = -16 \rightarrow 16$
20388 measured reflections	$l = -20 \rightarrow 20$
Refinement	
Refinement on F^2	9329 reflections
Least-squares matrix: full	536 parameters
$R[F^2 > 2\sigma(F^2)] = 0.072$	0 restraints

 $wR(F^2) = 0.169$

S = 1.09

 $w = 1/[\sigma^2(F_o^2) + (0.0723P)^2 + 2.0278P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.013$ $\Delta \rho_{\text{max}} = 0.62 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.52 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cul	0.26867 (4)	0.23663 (4)	0.22973 (3)	0.02662 (15)
P2	0.36165 (9)	0.12357 (9)	0.15197 (7)	0.0275 (2)
P3	0.09667 (9)	0.26348 (8)	0.16520 (7)	0.0265 (2)
P4	0.12149 (11)	0.18077 (11)	0.81650 (8)	0.0395 (3)
F7	0.0743 (3)	0.2452 (3)	0.8990 (2)	0.0573 (8)
F8	0.2540 (3)	0.2682 (3)	0.8601 (2)	0.0655 (9)
F9	0.1681 (3)	0.1150 (3)	0.7334 (2)	0.0746 (10)
F10	0.1578 (3)	0.1026 (2)	0.8698 (2)	0.0572 (8)
F11	0.0859 (3)	0.2600 (3)	0.7650 (2)	0.0701 (10)
N12	0.2443 (3)	0.2589 (3)	0.3581 (2)	0.0292 (7)
F13	-0.0099 (3)	0.0909 (3)	0.7726 (2)	0.0702 (9)
C14	0.4484 (4)	0.0520 (3)	0.2078 (3)	0.0310 (9)
C15	0.4132 (3)	0.5631 (3)	0.4366 (3)	0.0296 (9)
C16	-0.1100 (4)	0.1833 (3)	0.0189 (3)	0.0312 (9)
H16A	-0.0815	0.252	0.0042	0.037*
H16B	-0.1577	0.2015	0.0646	0.037*
C17	0.2907 (3)	0.3699 (3)	0.4152 (3)	0.0281 (8)
C18	-0.0006 (3)	0.1546 (3)	0.0598 (3)	0.0284 (8)
H18A	0.0486	0.1401	0.0148	0.034*
H18B	-0.0297	0.0833	0.0708	0.034*
N19	0.3846 (3)	0.4014 (3)	0.2999 (2)	0.0293 (7)
C20	0.4835 (4)	0.6354 (3)	0.4000 (3)	0.0314 (9)
C21	0.0450 (4)	0.4616 (4)	0.1457 (3)	0.0414 (11)
H21	-0.0273	0.4413	0.1645	0.05*
C22	0.5032 (4)	0.5885 (4)	0.3153 (3)	0.0335 (9)
C23	0.5963 (4)	0.2594 (4)	0.1741 (3)	0.0387 (10)
H23	0.6189	0.236	0.223	0.046*
C24	0.0731 (6)	0.5596 (4)	0.1243 (3)	0.0556 (15)
H24	0.0205	0.6059	0.1287	0.067*
C25	0.3660 (3)	0.4468 (3)	0.3833 (3)	0.0254 (8)
C26	0.0186 (5)	0.3783 (4)	0.3143 (3)	0.0446 (12)
H26	0.0771	0.445	0.3182	0.053*
C27	0.5335 (4)	0.7615 (3)	0.4518 (3)	0.0395 (10)
H27A	0.6038	0.7766	0.5003	0.059*
H27B	0.4714	0.79	0.4779	0.059*
H27C	0.558	0.8	0.4109	0.059*

C28	0.3189 (4)	0.5288 (4)	0.5536(3)	0.0356 (10)
H28	0.3056	0.5576	0.6123	0.043*
C29	-0.0020(4)	0.2758 (3)	0.2432 (3)	0.0298 (9)
C30	0.2647 (4)	0.4102 (4)	0.5002 (3)	0.0317 (9)
C31	0.6490 (5)	0.3739 (5)	0.0858 (4)	0.0545 (14)
H31	0.7068	0.4299	0.0752	0.065*
C32	-0.0873(4)	0.1812 (4)	0.2409(3)	0.0420 (11)
H32	-0.1021	0.1107	0.1931	0.05*
C33	0.4536(4)	0.0697(4)	0.2980(3)	0.0388 (10)
H33	0.4097	0.1155	0.3294	0.047*
C34	0 5091 (4)	-0.0187(4)	0.1620(3)	0.0409(11)
H34	0.5048	-0.0327	0.0998	0.049*
C35	0.3884(4)	0.6012(4)	0.5232(3)	0.0338(9)
H35	0.4213	0.6792	0.5607	0.0338 (5)
C36	0.1367(4)	0.2711(4)	0.4677(3)	0.0357(10)
C37	0.1507(1) 0.1683(4)	0.2211(1) 0.1886(4)	0.3844(3)	0.0320(9)
H37	0.1335	0.1119	0.3443	0.0320 ())
C38	0.1335 0.2725(4)	0.0082(3)	0.0463 (3)	0.0290 (9)
H38A	0.2725 (4)	0.0002 (3)	0.0403 (5)	0.0250 (5)
H38R	0.3273	-0.022	0.0107	0.035*
C30	0.3273 0.1022 (4)	-0.022	0.0107	0.033
U30A	0.1922 (4)	-0.0548	0.0005 (5)	0.0312(9) 0.037*
H39A	0.1413	-0.1182	0.1030	0.037*
C40	0.2438	0.1102	0.1004 0.2687 (4)	0.037°
	0.5725 (5)	0.0303 (4)	0.2087 (4)	0.0494(12)
H40A	0.5255	0.699	0.2472	0.074*
	0.3919	0.003	0.2172	0.074*
H40C	0.6474	0.7098	0.3113	0.074*
C41	0.4780 (4)	0.2122 (3)	0.1195 (3)	0.0313(9)
C42	0.1216 (4)	0.3938 (3)	0.1397 (3)	0.0345 (10)
C43	0.1520 (5)	0.3689 (4)	0.6160 (3)	0.0496 (12)
H43A	0.0786	0.3925	0.6088	0.074*
H43B	0.2182	0.4327	0.6601	0.074*
H43C	0.1376	0.3051	0.6372	0.074*
C44	0.5851 (4)	-0.0473 (4)	0.2978 (3)	0.0454 (12)
H44	0.6341	-0.0789	0.3292	0.054*
C45	0.4481 (4)	0.2465 (4)	0.0471 (3)	0.0404 (10)
H45	0.3687	0.2151	0.0091	0.048*
C46	-0.0477 (6)	0.3818 (6)	0.3797 (3)	0.0634 (17)
H46	-0.0342	0.4516	0.4279	0.076*
C47	-0.1324 (5)	0.2861 (7)	0.3756 (4)	0.0668 (18)
H47	-0.1767	0.2899	0.4208	0.08*
C48	0.6798 (4)	0.3394 (4)	0.1573 (3)	0.0478 (12)
H48	0.7593	0.3712	0.1951	0.057*
C49	0.4531 (4)	0.4712 (4)	0.2693 (3)	0.0334 (9)
H49	0.4692	0.439	0.2121	0.04*
C50	0.2252 (4)	0.4237 (5)	0.1098 (4)	0.0496 (13)
H50	0.2777	0.3773	0.1038	0.06*
C51	0.5230 (5)	0.0205 (4)	0.3430 (3)	0.0460 (12)

H51	0.5273	0.034	0.4052	0.055*
C52	0.5765 (4)	-0.0695 (4)	0.2073 (3)	0.0445 (11)
H52	0.6164	-0.1194	0.1754	0.053*
C53	0.0479 (5)	0.1334 (4)	0.4881 (4)	0.0500 (13)
H53A	0.0865	0.1228	0.5421	0.075*
H53B	0.0222	0.0611	0.4367	0.075*
H53C	-0.0226	0.1593	0.4989	0.075*
C54	0.1851 (4)	0.3328 (4)	0.5270 (3)	0.0354 (10)
C55	0.5341 (5)	0.3265 (4)	0.0301 (3)	0.0516 (13)
H55	0.5135	0.3485	-0.0199	0.062*
C56	0.1779 (6)	0.5883 (5)	0.0967 (4)	0.0689 (18)
H56	0.1981	0.6555	0.0831	0.083*
C57	-0.1519 (5)	0.1869 (6)	0.3069 (4)	0.0593 (15)
H57	-0.2103	0.1206	0.3038	0.071*
C59	0.2525 (5)	0.5213 (6)	0.0887 (4)	0.0709 (19)
H59	0.3237	0.5413	0.0686	0.085*
Cl1	0.74499 (14)	0.04960 (12)	0.56451 (11)	0.0641 (4)
Cl2	0.79599 (14)	0.29365 (12)	0.61857 (12)	0.0734 (5)
C100	0.7937 (6)	0.1792 (5)	0.6560 (4)	0.0699 (17)
H10A	0.8757	0.1894	0.6901	0.084*
H10B	0.7388	0.1784	0.6971	0.084*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0277 (3)	0.0262 (3)	0.0270 (3)	0.0094 (2)	0.0062 (2)	0.0102 (2)
P2	0.0279 (5)	0.0278 (5)	0.0257 (6)	0.0101 (4)	0.0039 (4)	0.0081 (4)
Р3	0.0272 (5)	0.0249 (5)	0.0277 (6)	0.0090 (4)	0.0051 (4)	0.0097 (4)
P4	0.0404 (7)	0.0554 (7)	0.0350 (7)	0.0234 (6)	0.0142 (5)	0.0237 (6)
F7	0.082 (2)	0.0625 (18)	0.0543 (18)	0.0418 (17)	0.0413 (16)	0.0306 (15)
F8	0.0492 (18)	0.073 (2)	0.075 (2)	0.0079 (16)	0.0152 (16)	0.0347 (18)
F9	0.072 (2)	0.115 (3)	0.0448 (19)	0.049 (2)	0.0251 (16)	0.0196 (19)
F10	0.074 (2)	0.0507 (17)	0.0560 (18)	0.0306 (15)	0.0092 (15)	0.0257 (14)
F11	0.071 (2)	0.113 (3)	0.077 (2)	0.053 (2)	0.0374 (18)	0.074 (2)
N12	0.0282 (17)	0.0286 (17)	0.0306 (19)	0.0055 (14)	0.0055 (14)	0.0132 (14)
F13	0.0462 (18)	0.091 (2)	0.062 (2)	0.0077 (17)	0.0022 (15)	0.0260 (18)
C14	0.034 (2)	0.032 (2)	0.028 (2)	0.0137 (18)	0.0034 (17)	0.0101 (17)
C15	0.027 (2)	0.030 (2)	0.033 (2)	0.0097 (17)	0.0049 (17)	0.0134 (18)
C16	0.034 (2)	0.028 (2)	0.031 (2)	0.0119 (17)	0.0046 (18)	0.0101 (17)
C17	0.026 (2)	0.029 (2)	0.030 (2)	0.0073 (16)	0.0031 (16)	0.0137 (17)
C18	0.030 (2)	0.029 (2)	0.026 (2)	0.0096 (17)	0.0081 (17)	0.0089 (16)
N19	0.0292 (18)	0.0302 (17)	0.0294 (19)	0.0062 (14)	0.0080 (14)	0.0133 (15)
C20	0.030(2)	0.029 (2)	0.034 (2)	0.0090 (17)	0.0036 (18)	0.0123 (18)
C21	0.047 (3)	0.032 (2)	0.040 (3)	0.015 (2)	-0.001 (2)	0.009 (2)
C22	0.029 (2)	0.035 (2)	0.037 (2)	0.0078 (18)	0.0073 (18)	0.0169 (19)
C23	0.026 (2)	0.046 (3)	0.041 (3)	0.0103 (19)	0.0071 (19)	0.014 (2)
C24	0.081 (4)	0.033 (2)	0.045 (3)	0.023 (3)	-0.010 (3)	0.011 (2)
C25	0.0186 (18)	0.030 (2)	0.026 (2)	0.0062 (15)	0.0037 (15)	0.0097 (16)

supporting information

C26	0.056 (3)	0.046 (3)	0.032 (3)	0.026 (2)	0.006 (2)	0.008 (2)
C27	0.042 (3)	0.030 (2)	0.043 (3)	0.0074 (19)	0.008 (2)	0.0111 (19)
C28	0.038 (2)	0.039 (2)	0.030 (2)	0.017 (2)	0.0061 (19)	0.0095 (19)
C29	0.029 (2)	0.036 (2)	0.023 (2)	0.0149 (18)	0.0021 (16)	0.0078 (17)
C30	0.032 (2)	0.036 (2)	0.030 (2)	0.0130 (18)	0.0037 (17)	0.0146 (18)
C31	0.041 (3)	0.056 (3)	0.055 (3)	-0.008 (2)	0.019 (2)	0.016 (3)
C32	0.036 (2)	0.051 (3)	0.039 (3)	0.007 (2)	0.011 (2)	0.020 (2)
C33	0.049 (3)	0.040 (2)	0.034 (2)	0.025 (2)	0.007 (2)	0.015 (2)
C34	0.041 (3)	0.046 (3)	0.035 (3)	0.023 (2)	0.006 (2)	0.007 (2)
C35	0.034 (2)	0.032 (2)	0.032 (2)	0.0124 (18)	0.0074 (18)	0.0068 (18)
C36	0.034 (2)	0.041 (2)	0.041 (3)	0.0134 (19)	0.0115 (19)	0.025 (2)
C37	0.032 (2)	0.033 (2)	0.036 (2)	0.0077 (18)	0.0079 (18)	0.0204 (19)
C38	0.031 (2)	0.030 (2)	0.025 (2)	0.0089 (17)	0.0034 (16)	0.0099 (16)
C39	0.035 (2)	0.030 (2)	0.027 (2)	0.0078 (18)	0.0039 (17)	0.0099 (17)
C40	0.053 (3)	0.040 (3)	0.055 (3)	0.002 (2)	0.019 (2)	0.023 (2)
C41	0.033 (2)	0.031 (2)	0.028 (2)	0.0098 (18)	0.0094 (17)	0.0070 (17)
C42	0.035 (2)	0.031 (2)	0.032 (2)	0.0051 (18)	0.0007 (18)	0.0095 (18)
C43	0.060 (3)	0.057 (3)	0.042 (3)	0.021 (3)	0.024 (2)	0.024 (2)
C44	0.050 (3)	0.044 (3)	0.047 (3)	0.023 (2)	0.005 (2)	0.020 (2)
C45	0.037 (2)	0.042 (2)	0.035 (3)	0.003 (2)	0.009 (2)	0.010(2)
C46	0.084 (4)	0.088 (4)	0.030 (3)	0.063 (4)	0.014 (3)	0.009 (3)
C47	0.057 (4)	0.124 (6)	0.050 (4)	0.056 (4)	0.029 (3)	0.044 (4)
C48	0.035 (3)	0.056 (3)	0.047 (3)	0.010 (2)	0.011 (2)	0.013 (2)
C49	0.035 (2)	0.035 (2)	0.033 (2)	0.0093 (18)	0.0092 (18)	0.0173 (19)
C50	0.038 (3)	0.064 (3)	0.061 (3)	0.011 (2)	0.010 (2)	0.045 (3)
C51	0.061 (3)	0.052 (3)	0.034 (3)	0.028 (3)	0.008 (2)	0.020 (2)
C52	0.045 (3)	0.040 (3)	0.048 (3)	0.022 (2)	0.008 (2)	0.010 (2)
C53	0.054 (3)	0.048 (3)	0.058 (3)	0.009 (2)	0.027 (3)	0.031 (3)
C54	0.035 (2)	0.043 (2)	0.034 (2)	0.014 (2)	0.0111 (19)	0.019 (2)
C55	0.056 (3)	0.057 (3)	0.039 (3)	0.003 (3)	0.013 (2)	0.023 (2)
C56	0.085 (5)	0.047 (3)	0.066 (4)	-0.001 (3)	-0.011 (3)	0.036 (3)
C57	0.038 (3)	0.098 (5)	0.053 (3)	0.018 (3)	0.018 (2)	0.041 (3)
C59	0.051 (3)	0.084 (4)	0.090 (5)	0.002 (3)	0.002 (3)	0.068 (4)
Cl1	0.0641 (9)	0.0491 (7)	0.0746 (10)	0.0129 (7)	0.0155 (7)	0.0197 (7)
Cl2	0.0685 (10)	0.0511 (8)	0.0955 (12)	0.0158 (7)	0.0000 (8)	0.0303 (8)
C100	0.087 (5)	0.064 (4)	0.053 (4)	0.028 (3)	-0.006 (3)	0.020 (3)

Geometric parameters (Å, °)

Cu1—N12	2.063 (4)	C31—C55	1.380 (7)
Cu1—N19	2.091 (4)	C31—C48	1.386 (8)
Cu1—P2	2.212 (2)	C31—H31	0.95
Cu1—P3	2.276 (2)	C32—C57	1.387 (7)
P2—C41	1.823 (4)	C32—H32	0.95
P2—C38	1.834 (4)	C33—C51	1.394 (6)
P2-C14	1.839 (4)	С33—Н33	0.95
P3—C29	1.824 (4)	C34—C52	1.397 (6)
P3—C18	1.827 (4)	C34—H34	0.95

P3—C42	1.831 (5)	С35—Н35	0.95
P4—F7	1.580 (3)	C36—C54	1.386 (6)
P4—F9	1.589 (3)	C36—C37	1.404 (6)
P4—F11	1.595 (3)	C36—C53	1.510 (6)
P4—F13	1.600 (4)	С37—Н37	0.95
P4—F8	1.598 (4)	C38—C39	1.522 (6)
P4—F10	1.604 (3)	C38—H38A	0.99
N12—C37	1.337 (5)	C38—H38B	0.99
N12—C17	1.368 (5)	C39—C16 ⁱ	1.532 (6)
C14—C33	1.383 (6)	С39—Н39А	0.99
C14—C34	1.386 (6)	С39—Н39В	0.99
C15—C25	1.406 (6)	C40—H40A	0.98
C15—C35	1.422 (6)	C40—H40B	0.98
C15—C20	1.428 (6)	C40—H40C	0.98
C16—C18	1.528 (6)	C41—C45	1.394 (6)
C16—C39 ⁱ	1.532 (6)	C42—C50	1.391 (7)
C16—H16A	0.99	C43—C54	1.498 (6)
C16—H16B	0.99	C43—H43A	0.98
C17—C30	1.406 (6)	C43—H43B	0.98
C17—C25	1.446 (5)	C43—H43C	0.98
C18—H18A	0.99	C44—C51	1.372 (7)
C18—H18B	0.99	C44—C52	1.374 (7)
N19—C49	1.330 (5)	C44—H44	0.95
N19—C25	1.357 (5)	C45—C55	1.396 (6)
C20—C22	1.383 (6)	C45—H45	0.95
C20—C27	1.507 (6)	C46—C47	1.376 (9)
C21—C42	1.387 (6)	C46—H46	0.95
C21—C24	1.398 (7)	C47—C57	1.350 (9)
C21—H21	0.95	C47—H47	0.95
C22—C49	1.399 (6)	C48—H48	0.95
C22—C40	1.505 (6)	C49—H49	0.95
C23—C48	1.376 (7)	С50—С59	1.391 (7)
C23—C41	1.406 (6)	С50—Н50	0.95
С23—Н23	0.95	C51—H51	0.95
C24—C56	1.379 (9)	С52—Н52	0.95
C24—H24	0.95	С53—Н53А	0.98
C26—C46	1.392 (8)	С53—Н53В	0.98
C26—C29	1.395 (6)	С53—Н53С	0.98
C26—H26	0.95	С55—Н55	0.95
С27—Н27А	0.98	C56—C59	1.360 (9)
С27—Н27В	0.98	С56—Н56	0.95
С27—Н27С	0.98	С57—Н57	0.95
C28—C35	1.356 (6)	С59—Н59	0.95
C28—C30	1.436 (6)	Cl1—C100	1.751 (6)
C28—H28	0.95	Cl2—C100	1.764 (6)
C29—C32	1.380 (6)	C100—H10A	0.99
C30—C54	1.423 (6)	C100—H10B	0.99

N12—Cu1—N19	80.10 (13)	С57—С32—Н32	119.3
N12—Cu1—P2	127.97 (10)	C14—C33—C51	120.2 (4)
N19—Cu1—P2	111.67 (13)	C14—C33—H33	119.9
N12—Cu1—P3	100.49 (11)	С51—С33—Н33	119.9
N19—Cu1—P3	104.06 (12)	C14—C34—C52	120.1 (4)
P2—Cu1—P3	122.83 (8)	C14—C34—H34	119.9
C41—P2—C38	105.3 (2)	С52—С34—Н34	119.9
C41—P2—C14	102.2 (2)	C28—C35—C15	121.6 (4)
C38—P2—C14	102.7(2)	C28—C35—H35	119.2
C41—P2—Cu1	106.99 (16)	C15—C35—H35	119.2
C_{38} P2 C_{11}	118 10 (16)	C54 - C36 - C37	119.1 (4)
C14 P2 Cu1	119 70 (16)	C54 - C36 - C53	122.3 (4)
C_{29} P3 C_{18}	103.9(2)	C_{37} $-C_{36}$ $-C_{53}$	1122.5(1) 118 5(4)
C_{29} P3 C_{42}	105.9(2) 105.8(2)	N12 - C37 - C36	1241(4)
C_{18} P3 C_{12}	103.0(2) 103.2(2)	N12-C37-H37	121.1(1)
$C_{10} = P_{3} = C_{11}$	109.2(2) 109.29(15)	$C_{36} - C_{37} - H_{37}$	118
C18 - P3 - Cu1	109.29(13) 119.27(14)	C_{30} C_{38} P2	110 110.2(3)
$C_{10} = 15 - C_{11}$	119.27(14) 114.08(15)	C_{39} C_{38} H_{38}	109.6
F7P4F9	179.5(2)	P2-C38-H38A	109.6
F7 - P4 - F11	89.82 (19)	C_{30} C_{38} H_{38B}	109.6
F_{9} P_{4} F_{11}	90.4(2)	P2C38H38B	109.6
F7P4F13	89 8 (2)	H38A_C38_H38B	109.0
F9 - P4 - F13	89.8 (2)	C_{38} C_{39} C_{16i}	112.9(3)
F11_P4_F13	90.7(2)	C_{38} C_{39} H_{39A}	109
F7 P/ F8	90.7(2)	$C16^{i}$ $C30$ H30A	109
FQ PA F8	91.1(2) 89.4(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109
$F_{11} = P_{10} = F_{10}$	90.4(2)	$C_{16^{i}}$ C_{30} H30B	109
F13_P4_F8	178 68 (19)	$H_{304} - C_{30} - H_{30B}$	107.8
$F7_{2}P4_{10}$	89 44 (18)	C_{22} C_{40} H_{40A}	107.0
F_{9} P_{4} F_{10}	90.3(2)	$C_{22} = C_{40} = H_{40}R$	109.5
F11P4F10	1791(2)	H40A - C40 - H40B	109.5
$F13_P4_F10$	89.8 (2)	C_{22} C_{40} $H_{40}C$	109.5
F8 - P4 - F10	89.21 (19)	H40A - C40 - H40C	109.5
C_{37} N12 C_{17}	1173(4)	H40B - C40 - H40C	109.5
$C_{37} = N_{12} = C_{11}$	128 3 (3)	C_{45} C_{41} C_{23}	109.5 118 5 (4)
C17 - N12 - Cu1	120.3(3) 112.2(3)	C45 - C41 - P2	120.7(3)
C_{33} C_{14} C_{34}	112.2(3) 119.2(4)	$C_{43} = C_{41} = P_{2}^{2}$	120.7(3) 120.3(3)
C_{33} C_{14} P_{2}	119.2 (4) 119.1 (3)	$C_{23} = C_{41} = 12$ $C_{50} = C_{42} = C_{21}$	120.5(3)
C_{34} C_{14} P_{2}	121.7(3)	$C_{50} - C_{42} - P_{3}$	115.8(3)
C_{25} C_{15} C_{25} C	121.7(3) 118 2 (4)	C_{21} C_{42} P_{3}	125.5(3)
$C_{25} = C_{15} = C_{20}$	117.6(4)	$C_{21} C_{42} H_{3} \Delta$	109 5
$C_{25} = C_{15} = C_{20}$	117.0(4) 124.2(4)	C54 $C43$ $H43R$	109.5
$C18 - C16 - C39^{i}$	124.2(4) 113 3 (3)	$H43\Delta$ $C43$ $H43B$	109.5
C18—C16—H16A	108.9	C54-C43-H43C	109.5
$C39^{i}$ — $C16$ — $H16A$	108.9	H43A - C43 - H43C	109.5
C18—C16—H16B	108.9	H43B-C43-H43C	109.5
C39 ⁱ —C16—H16B	108.9	C51-C44-C52	120 1 (4)
H16A—C16—H16B	107.7	C51—C44—H44	120.1 (1)
	- 0 / • /		120

N12—C17—C30	122.7 (4)	C52—C44—H44	120
N12—C17—C25	116.8 (4)	C55—C45—C41	120.4 (4)
C30—C17—C25	120.5 (4)	C55—C45—H45	119.8
C16—C18—P3	115.4 (3)	C41—C45—H45	119.8
C16—C18—H18A	108.4	C47—C46—C26	121.3 (5)
P3	108.4	C47—C46—H46	119.3
C16—C18—H18B	108.4	C26—C46—H46	119.3
P3-C18-H18B	108.4	C57—C47—C46	119.4 (5)
H18A—C18—H18B	107.5	С57—С47—Н47	120.3
C49—N19—C25	117.4 (4)	C46—C47—H47	120.3
C49—N19—Cu1	129.5 (3)	C23—C48—C31	120.7 (5)
C25—N19—Cu1	111.7 (2)	C23—C48—H48	119.7
C22—C20—C15	119.2 (4)	C31—C48—H48	119.7
C22—C20—C27	120.1 (4)	N19—C49—C22	124.8 (4)
C15—C20—C27	120.7 (4)	N19—C49—H49	117.6
C42—C21—C24	120.7 (5)	С22—С49—Н49	117.6
C42—C21—H21	119.7	C42—C50—C59	120.4 (5)
C24—C21—H21	119.7	С42—С50—Н50	119.8
C20—C22—C49	117.9 (4)	С59—С50—Н50	119.8
C20—C22—C40	124.0 (4)	C44—C51—C33	120.2 (4)
C49—C22—C40	118.1 (4)	C44—C51—H51	119.9
C48—C23—C41	120.5 (4)	C33—C51—H51	119.9
C48—C23—H23	119.8	C44—C52—C34	120.0 (4)
C41—C23—H23	119.8	С44—С52—Н52	120
C56—C24—C21	119.4 (5)	С34—С52—Н52	120
С56—С24—Н24	120.3	С36—С53—Н53А	109.5
C21—C24—H24	120.3	С36—С53—Н53В	109.5
N19—C25—C15	123.0 (4)	H53A—C53—H53B	109.5
N19—C25—C17	116.8 (3)	С36—С53—Н53С	109.5
C15—C25—C17	120.2 (4)	Н53А—С53—Н53С	109.5
C46—C26—C29	119.2 (5)	H53B—C53—H53C	109.5
C46—C26—H26	120.4	C36—C54—C30	118.1 (4)
С29—С26—Н26	120.4	C36—C54—C43	119.8 (4)
С20—С27—Н27А	109.5	C30—C54—C43	122.1 (4)
С20—С27—Н27В	109.5	C31—C55—C45	120.2 (5)
H27A—C27—H27B	109.5	С31—С55—Н55	119.9
С20—С27—Н27С	109.5	С45—С55—Н55	119.9
H27A—C27—H27C	109.5	C59—C56—C24	120.5 (5)
H27B—C27—H27C	109.5	С59—С56—Н56	119.7
C35—C28—C30	122.3 (4)	С24—С56—Н56	119.7
С35—С28—Н28	118.8	C47—C57—C32	120.4 (6)
C30—C28—H28	118.8	С47—С57—Н57	119.8
C32—C29—C26	118.2 (4)	С32—С57—Н57	119.8
C32—C29—P3	120.9 (3)	C56—C59—C50	120.4 (6)
C26—C29—P3	120.3 (4)	С56—С59—Н59	119.8
C17—C30—C54	118.6 (4)	С50—С59—Н59	119.8
C17—C30—C28	117.2 (4)	Cl1—C100—Cl2	110.9 (3)
C54—C30—C28	124.2 (4)	Cl1—C100—H10A	109.5

C55—C31—C48	119.7 (5)	Cl2—C100—H10A	109.5
С55—С31—Н31	120.1	Cl1—C100—H10B	109.5
C48—C31—H31	120.1	Cl2—C100—H10B	109.5
C29—C32—C57	121.4 (5)	H10A-C100-H10B	108.1
С29—С32—Н32	119.3		
N12—Cu1—P2—C41	-124.73 (19)	Cu1—P3—C29—C26	80.0 (4)
N19—Cu1—P2—C41	-30.41 (18)	N12—C17—C30—C54	-1.3 (6)
P3—Cu1—P2—C41	94.16 (16)	C25—C17—C30—C54	176.8 (4)
N12—Cu1—P2—C38	116.9 (2)	N12—C17—C30—C28	-179.9 (4)
N19—Cu1—P2—C38	-148.81 (18)	C25—C17—C30—C28	-1.8(6)
P3—Cu1—P2—C38	-24.24 (16)	C35—C28—C30—C17	2.7 (6)
N12—Cu1—P2—C14	-9.4 (2)	C35—C28—C30—C54	-175.8 (4)
N19—Cu1—P2—C14	84.91 (19)	C26—C29—C32—C57	0.4 (7)
P3—Cu1—P2—C14	-150.52 (16)	P3—C29—C32—C57	171.5 (4)
N12—Cu1—P3—C29	-6.90 (17)	C34—C14—C33—C51	2.6 (7)
N19—Cu1—P3—C29	-89.21 (18)	P2-C14-C33-C51	-177.2 (4)
P2—Cu1—P3—C29	142.87 (16)	C33—C14—C34—C52	-1.3(7)
N12—Cu1—P3—C18	-126.11 (19)	P2-C14-C34-C52	178.5 (4)
N19—Cu1—P3—C18	151.59 (18)	C30—C28—C35—C15	-1.0(6)
P2—Cu1—P3—C18	23.67 (17)	C25—C15—C35—C28	-1.6(6)
N12—Cu1—P3—C42	111.35 (18)	C20—C15—C35—C28	178.6 (4)
N19—Cu1—P3—C42	29.04 (19)	C17 - N12 - C37 - C36	-2.1(6)
P2—Cu1—P3—C42	-98.87 (18)	Cu1—N12—C37—C36	-164.0(3)
N19—Cu1—N12—C37	175.8 (4)	C54—C36—C37—N12	0.7 (6)
P2—Cu1—N12—C37	-74.4 (4)	C53—C36—C37—N12	178.9 (4)
P3—Cu1—N12—C37	73.2 (4)	C41—P2—C38—C39	166.2 (3)
N19—Cu1—N12—C17	13.1 (3)	C14—P2—C38—C39	59.6 (3)
P2—Cu1—N12—C17	122.9 (3)	Cu1—P2—C38—C39	-74.5(3)
P3—Cu1—N12—C17	-89.5 (3)	P2-C38-C39-C16 ⁱ	176.9 (3)
C41—P2—C14—C33	118.2 (4)	C48—C23—C41—C45	1.3 (6)
C38—P2—C14—C33	-132.8 (4)	C48—C23—C41—P2	-170.4 (4)
Cu1—P2—C14—C33	0.4 (4)	C38—P2—C41—C45	47.9 (4)
C41—P2—C14—C34	-61.6 (4)	C14—P2—C41—C45	154.9 (4)
C38—P2—C14—C34	47.4 (4)	Cu1—P2—C41—C45	-78.5 (4)
Cu1—P2—C14—C34	-179.4 (3)	C38—P2—C41—C23	-140.5(3)
C37—N12—C17—C30	2.3 (6)	C14—P2—C41—C23	-33.6 (4)
Cu1—N12—C17—C30	167.1 (3)	Cu1—P2—C41—C23	93.0 (3)
C37—N12—C17—C25	-175.8 (3)	C24—C21—C42—C50	-1.6 (7)
Cu1—N12—C17—C25	-11.0 (4)	C24—C21—C42—P3	-179.9(3)
C39 ⁱ —C16—C18—P3	-176.9 (3)	C29—P3—C42—C50	157.2 (4)
C29—P3—C18—C16	61.4 (3)	C18—P3—C42—C50	-93.9 (4)
C42—P3—C18—C16	-48.9 (3)	Cu1—P3—C42—C50	37.0 (4)
Cu1—P3—C18—C16	-176.6 (2)	C29—P3—C42—C21	-24.4 (4)
N12—Cu1—N19—C49	-179.5 (4)	C18—P3—C42—C21	84.5 (4)
P2—Cu1—N19—C49	53.4 (4)	Cu1—P3—C42—C21	-144.6 (3)
P3—Cu1—N19—C49	-81.1 (4)	C23—C41—C45—C55	-0.4 (7)
N12—Cu1—N19—C25	-13.4 (3)	P2-C41-C45-C55	171.2 (4)

P2—Cu1—N19—C25	-140.4(2)	C29—C26—C46—C47	0.4 (7)
P3—Cu1—N19—C25	85.1 (3)	C26—C46—C47—C57	-0.2 (8)
C25—C15—C20—C22	-0.7 (6)	C41—C23—C48—C31	-0.6 (7)
C35—C15—C20—C22	179.1 (4)	C55—C31—C48—C23	-0.9 (8)
C25—C15—C20—C27	178.0 (4)	C25—N19—C49—C22	-2.8 (6)
C35—C15—C20—C27	-2.3 (6)	Cu1—N19—C49—C22	162.7 (3)
C15—C20—C22—C49	-0.3 (6)	C20-C22-C49-N19	2.1 (6)
C27—C20—C22—C49	-179.0 (4)	C40-C22-C49-N19	-176.4 (4)
C15—C20—C22—C40	178.1 (4)	C21—C42—C50—C59	1.6 (7)
C27—C20—C22—C40	-0.6 (7)	P3-C42-C50-C59	-179.9 (4)
C42—C21—C24—C56	0.3 (7)	C52—C44—C51—C33	-1.8 (8)
C49—N19—C25—C15	1.6 (6)	C14—C33—C51—C44	-1.1 (7)
Cu1—N19—C25—C15	-166.3 (3)	C51—C44—C52—C34	3.1 (8)
C49—N19—C25—C17	179.6 (3)	C14—C34—C52—C44	-1.5 (7)
Cu1—N19—C25—C17	11.6 (4)	C37—C36—C54—C30	0.4 (6)
C35-C15-C25-N19	-179.7 (3)	C53—C36—C54—C30	-177.7 (4)
C20-C15-C25-N19	0.0 (6)	C37—C36—C54—C43	179.9 (4)
C35—C15—C25—C17	2.4 (6)	C53—C36—C54—C43	1.7 (7)
C20-C15-C25-C17	-177.8 (3)	C17—C30—C54—C36	-0.1 (6)
N12-C17-C25-N19	-0.5 (5)	C28—C30—C54—C36	178.3 (4)
C30-C17-C25-N19	-178.7 (3)	C17—C30—C54—C43	-179.6 (4)
N12—C17—C25—C15	177.5 (3)	C28—C30—C54—C43	-1.1 (7)
C30—C17—C25—C15	-0.7 (6)	C48—C31—C55—C45	1.8 (8)
C46—C26—C29—C32	-0.5 (6)	C41—C45—C55—C31	-1.1 (8)
C46—C26—C29—P3	-171.7 (4)	C21—C24—C56—C59	1.1 (8)
C18—P3—C29—C32	37.4 (4)	C46—C47—C57—C32	0.0 (8)
C42—P3—C29—C32	145.8 (3)	C29—C32—C57—C47	-0.1 (8)
Cu1—P3—C29—C32	-91.0 (3)	C24—C56—C59—C50	-1.1 (9)
C18—P3—C29—C26	-151.7 (3)	C42—C50—C59—C56	-0.2 (9)
C42—P3—C29—C26	-43.3 (4)		

Symmetry code: (i) -x, -y, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···· A	D—H···A
C32—H32…F10 ⁱⁱ	0.95	2.51	3.382 (6)	152
C100—H10A…F11 ⁱⁱⁱ	0.99	2.39	3.360 (8)	165
C100—H10A…F13 ⁱⁱⁱ	0.99	2.55	3.373 (9)	141

Symmetry codes: (ii) -x, -y, -z+1; (iii) x+1, y, z.