

Received 5 October 2016 Accepted 25 October 2016

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; (*E*)-1,2-di(pyridin-4yl)ethene; 4-alkoxybenzoic acid; hydrogenbonded liquid crystal.

CCDC references: 1511411; 1511410; 1511409; 1511408

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

Crystal structures of four co-crystals of (*E*)-1,2di(pyridin-4-yl)ethene with 4-alkoxybenzoic acids: 4-methoxybenzoic acid—(*E*)-1,2-di(pyridin-4-yl)ethene (2/1), 4-ethoxybenzoic acid—(*E*)-1,2-di(pyridin-4-yl)ethene (2/1), 4-*n*-propoxybenzoic acid— (*E*)-1,2-di(pyridin-4-yl)ethene (2/1) and 4-*n*-butoxybenzoic acid—(*E*)-1,2-di(pyridin-4-yl)ethene (2/1)

Yohei Tabuchi, Kazuma Gotoh and Hiroyuki Ishida*

Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan. *Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

The crystal structures of four hydrogen-bonded co-crystals of 4-alkoxybenzoic acid-(E)-1,2-di(pyridin-4-yl)ethene (2/1), namely, $2C_8H_8O_3 \cdot C_{12}H_{10}N_2$, (I), $2C_{9}H_{10}O_{3}C_{12}H_{10}N_{2}$, (II), $2C_{10}H_{12}O_{3}C_{12}H_{10}N_{2}$, (III) and $2C_{11}H_{14}O_{3}C_{12}H_{10}N_{2}$, (IV), have been determined at 93 K. In compounds (I) and (IV), the asymmetric units are each composed of one 4-alkoxybenzoic acid molecule and one halfmolecule of (E)-1,2-di(pyridin-4-yl)ethene, which lies on an inversion centre. The asymmetric unit of (II) consists of two crystallographically independent 4-ethoxybenzoic acid molecules and one 1,2-di(pyridin-4-yl)ethene molecule. Compound (III) crystallizes in a non-centrosymmetric space group (Pc) and the asymmetric unit comprises four 4-n-proposybenzoic acid molecules and two (E)-1,2-di(pyridin-4-yl)ethane molecules. In each crystal, the acid and base components are linked by O-H···N hydrogen bonds, forming a linear hydrogen-bonded 2:1 unit of the acid and the base. In (I), (II) and (III), intermolecular C-H···O interactions are observed. The 2:1 units of (I) and (II) are linked via C-H···O hydrogen bonds, forming tape structures. In (III), the C-H···O hydrogen bonds, except for those formed in the units, link the two crystallographically independent 2:1 units. In (IV), no $C-H \cdots O$ interactions are observed, but $\pi - \pi$ and C-H··· π interactions link the units into a column structure.

1. Chemical context

Co-crystals of 4-alkoxybenzoic acid-4,4'-bipyridyl (2/1) and 4alkoxybenzoic acid-(E)-1,2-di(pyridin-4-yl)ethene [common name: trans-1,2-bis(4-pyridyl)ethylene] (2/1), in which the two acids and the base are held together by hydrogen bonds, exhibit thermotropic liquid crystallinity (Kato et al., 1990, 1993; Grunert et al., 1997). Similar co-crystals of 4-alkoxybenzoic acid-1,2-bis(pyridin-4-yl)ethane (2/1) also show thermotropic liquid crystallinity, namely, nematic phases at 419, 421 and 419 K for the compounds of 4-methoxy-, 4-ethoxy- and 4-n-propoxybenzoic acid, respectively, and a smectic A phase at 413 K and a nematic phase at 419 K for the compound of 4-n-butoxybenzoic acid (Tabuchi et al., 2015a). The crystal structures of the compound of 4,4'-bipyridyl with 4-methoxybenzoic acid (Mukherjee & Desiraju, 2014; Ramon et al., 2014), the three compounds of 4,4'-bipyridyl with 4-ethoxy-, 4-n-propoxy- and 4-n-butoxybenzoic acid (Tabuchi

et al., 2015*b*), the compound of 1,2-bis(pyridin-4-yl)ethane with 4-methoxybenzoic acid (Mukherjee & Desiraju, 2014) and the three compounds of 1,2-bis(pyridin-4-yl)ethane with with 4-ethoxy-, 4-*n*-propoxy- and 4-*n*-butoxybenzoic acid (Tabuchi *et al.*, 2015*a*) have been reported. As an expansion of our work on the structural characterization of hydrogenbonded co-crystals which exhibit liquid phases, we have prepared four compounds of 4-alkoxybenzoic acid–(*E*)-1,2-di(pyridin-4-yl)ethene (2/1) and analyzed the crystal structures.

2. Structural commentary

The molecular structures of compounds (I)–(IV) are shown in Fig. 1. The asymmetric units of (I) and (IV) are each

composed of one 4-alkoxybenzoic acid molecule and one halfmolecule of (*E*)-1,2-di(pyridin-4-yl)ethene, which lies on an inversion centre. The two acid molecules and the base molecule are held together *via* O—H···N hydrogen bonds (Tables 1 and 4) to afford a centrosymmetric linear 2:1 unit. The hydrogen-bonded asymmetric unit of (I) is twisted with dihedral angles of 48.93 (12), 8.66 (12) and 57.16 (5)°, respectively, between the pyridine (N1/C9–C13) and carboxyl (O1/C7/O2) planes, the carboxyl and benzene (C1–C6) planes, and the pyridine and benzene rings, while the asymmetric unit of (IV) is approximately planar with dihedral angles of 5.24 (11), 3.29 (11) and 8.36 (4)°, respectively, between the pyridine (N1/C12–C16) and carboxyl (O1/C7/O2) planes, the carboxyl and benzene (C1–C6) planes, and the pyridine and benzene (C1–C6) planes, and the pyridine and benzene rings.

The asymmetric unit of (II) consists of two crystallographically independent 4-ethoxybenzoic acid molecules and one (*E*)-1,2-di(pyridin-4-yl)ethene molecule, and the two acids and the base are held together by $O-H\cdots N$ hydrogen bonds (Table 2), forming a linear hydrogen-bonded 2:1 aggregate. The pyridine rings of the base molecule are twisted slightly to each other with a dihedral angle of 11.61 (5)°. One side of the hydrogen-bonded unit, *i.e.* C1–C7/O1/O2/N1/C19–

Figure 1

The molecular structures of compounds (I), (II), (III) and (IV) determined at 93 K, showing the atom-numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level and H atoms are drawn as circles of arbitrary size. The $O-H \cdots N$ hydrogen bonds are indicated by dashed lines. [Symmetry code for (I): (iii) -x + 1, -y + 1, -z; symmetry code for (IV): (ii) -x + 1, -y + 1, -z + 1.]

research communications

Table 1	
Hydrogen-bond geometry (Å, $^{\circ}$) for (I).	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O1 - H1 \cdots N1 \\ C8 - H8B \cdots O2^{i} \\ C10 - H10 \cdots O2^{ii} \end{array}$	1.01 (2)	1.61 (2)	2.6210 (15)	175.0 (17)
	0.98	2.56	3.4993 (18)	162
	0.95	2.57	3.4900 (18)	162

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) -x, -y + 1, -z.

 Table 2

 Hydrogen-bond geometry (Å, °) for (II).

cg is the centrold of the C10-C15 belizene fill	Cg	is th	e centroid	of the	C10-C15	benzene	ring
---	----	-------	------------	--------	---------	---------	------

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
01 H1. N1	1.02(2)	1.57(2)	25031(14)	178 (3)
$O4-H4\cdots N2$	0.93(2)	1.37(2) 1.76(2)	2.6858 (15)	178(3) 177(2)
C8−H8A···O5 ⁱ	0.99	2.50	3.316 (2)	139
$C20-H20\cdots O2^{i}$	0.95	2.29	3.238 (2)	173
$C23-H23\cdots O1^{ii}$	0.95	2.58	3.449 (2)	152
$C24 - H24 \cdots O2^{iii}$	0.95	2.47	3.2993 (17)	146
C28−H28···O5	0.95	2.56	3.2291 (19)	128
$C8-H8B\cdots Cg^{iv}$	0.00	2.75	3.6471 (18)	150

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) -x, -y + 2, -z + 1; (iv) x + 1, y - 2, z + 1.

Table 3 Hydrogen-bond geometry (Å, °) for (III).

Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1/C21–C25 pyridine, C1–C6 benzene, C11–C16 benzene and N4/C58–C62 pyridine rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - H \cdots A$
$O1-H1\cdots N1$	0.95 (4)	1.71 (4)	2.6607 (19)	175 (4)
$O4-H4\cdots N2$	0.98 (3)	1.62 (3)	2.5974 (19)	179 (4)
$O7 - H7 \cdot \cdot \cdot N3$	1.01 (2)	1.59 (2)	2.5836 (18)	170 (3)
$O10-H10D\cdots N4$	0.97 (3)	1.63 (3)	2.5950 (18)	179 (3)
C21-H21···O2	0.95	2.50	3.193 (2)	130
C21-H21···O11	0.95	2.50	3.124 (2)	123
$C26-H26\cdots O7^{i}$	0.95	2.55	3.236 (2)	129
$C30-H30\cdots O8^{ii}$	0.95	2.47	3.155 (2)	129
$C57 - H57 \cdots O2^{iii}$	0.95	2.45	3.146 (2)	130
C58-H58···O11	0.95	2.51	3.165 (2)	126
$C62 - H62 \cdots O5^{iv}$	0.95	2.37	3.057 (2)	129
$C8-H8A\cdots Cg1^{v}$	0.99	2.85	3.6843 (19)	143
$C8-H8B\cdots Cg3^{vi}$	0.99	2.83	3.7013 (19)	147
$C18-H18A\cdots Cg2^{vii}$	0.99	2.80	3.5897 (19)	137
$C50-H50B\cdots Cg4^{viii}$	0.99	2.79	3.5721 (18)	136

Symmetry codes: (i) $x - 1, -y + 1, z + \frac{1}{2}$; (ii) $x - 1, -y, z + \frac{1}{2}$; (iii) x + 1, y, z; (iv) $x, -y, z - \frac{1}{2}$; (v) $x, -y + 1, z - \frac{1}{2}$; (vi) x - 1, y, z - 1; (vii) x + 1, y, z + 1; (viii) x - 1, y, z.

Table 4Hydrogen-bond geometry (Å, °) for (IV).

Co	is	the	centroid	of	the	C1-C6	benzene	rino
US.	13	unc	centrolu	oı	unc	CI-CU	UCHIZCHC	ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O1-H1\cdots N1$	1.02 (3)	1.57 (3)	2.5912 (18)	179 (2)
$C11-H11C\cdots Cg^{i}$	0.98	2.92	3.800 (2)	150

Symmetry code: (i) x, y - 1, z.

C23, is considerably twisted, while the other side, *i.e.* C10–C16/O4/O5/N2/C24–C28, is approximately planar, which causes an additional C–H···O interaction (C28–H28···O5; Table 2)

Figure 2

A partial packing diagram of compound (I), showing the tape structure formed by $C-H\cdots O$ and $O-H\cdots N$ hydrogen bonds (dashed lines). H atoms not involved in the hydrogen bonds have been omitted. [Symmetry code: (ii) -x, -y + 1, -z.]

between the acid and the base. The dihedral angles between the benzene (C1–C6) and pyridine (N1/C19–C23) rings, the C1–C6 and carboxyl O1/C7/O2 planes, and the N1/C19–C23 and O1/C7/O2 planes are 50.52 (5), 6.68 (13) and 43.98 (13)°, respectively, while the corresponding angles for the other side are 6.12 (5), 3.00 (12) and 3.38 (12)°, respectively, between the C10–C15 and N2/C24–C28 rings, the C10–C15 and carboxyl O4/C16/O5 planes, and the N2/C24–C28 and O4/C16/O5 planes.

The asymmetric unit of (III) is composed of four crystallographically independent molecules of 4-n-proposybenzoic acid and two base molecules, forming two independent linear hydrogen-bonded 2:1 aggregates through O-H···N hydrogen bonds (Table 3). Both of the independent base molecules are essentially planar with dihedral angles of 1.84 (8) and 0.58 (7) $^{\circ}$, respectively, between the pyridine N1/ C21-C25 and N2/C26-C30 rings, and between the pyridine N3/C53-C57 and N4/C58-C62 rings. The two hydrogenbonded 2:1 units are also approximately planar. For one unit, the dihedral angles between the N1/C21-C25 and O1/C7/O2 planes, the C1-C6 and O1/C7/O2 planes, and the N1/C21-C25 and C1–C6 planes are 12.79 (19), 3.66 (19) and 9.16 $(7)^{\circ}$, respectively, and the corresponding angles between the N2/ C26-C30 and O4/C17/O5 planes, the C11-C16 and O4/C17/O5 planes, and the N2/C26-C30 and C11-C16 planes are 5.95 (19), 1.16 (19) and 5.82 (8)°, respectively. For the other 2:1 unit, the dihedral angles are 3.19 (19), 4.93 (19) and 7.59 (8)°, respectively, between the N3/C53-C57 and O7/C39/ O8 planes, the C33-C38 and O7/C39/O8 planes, and the N3/ C53-C57 and C33-C38 planes, and the corresponding dihedral angles are 7.71 (19), 7.70 (19) and 15.40 (8) $^{\circ}$, respectively, between the N4/C58-C62 and O10/C49/O11 planes, the C43-C48 and O10/C49/O11 planes, and the N4/C58-C62 and C43-C48 planes.

3. Supramolecular features

In the crystal of (I), the 2:1 units are linked into a tape structure along the *a* axis through a pair of $C-H\cdots O$ hydrogen bonds (C10-H10···O2ⁱⁱ; symmetry code in Table 1), forming an $R_4^4(16)$ ring motif together with $O-H\cdots N$ hydrogen bonds (Fig. 2). In addition, another $C-H\cdots O$

Figure 3

A partial packing diagram of compound (II), showing the tape structure formed by $C-H\cdots O$ and $O-H\cdots N$ hydrogen bonds (dashed lines). H atoms not involved in the hydrogen bonds have been omitted. [Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 1.]

hydrogen bond (C8 $-H8B \cdots O2^{i}$; symmetry code in Table 1) links the tapes into a three-dimensional network.

In the crystal of (II), the 2:1 units are linked by $C-H\cdots O$ interactions (C8–H8 $A\cdots O5^{i}$, C20–H2 $0\cdots O2^{i}$ and C23– H2 $3\cdots O1^{ii}$; symmetry codes in Table 2), forming a tape structure along the *a* axis (Fig. 3). Between the tapes, another C–H \cdots O and a C–H $\cdots \pi$ interaction (C24–H2 $4\cdots O2^{iii}$ and C8–H8 $B\cdots Cg^{iv}$; Cg is the centroid of the C10–C15 benzene ring; Table 2) are observed.

In the crystal of (III), two crystallographically independent 2:1 units separately form layers parallel to the *ac* plane through weak $C-H\cdots\pi$ interactions (Table 3). These two layers are alternately stacked along the *b* axis through the $C-H\cdots$ O interactions (Table 3 and Fig. 4). In each layer, the 2:1

Figure 4

A partial packing diagram of compound (III), showing the two independent layers. H atoms not involved in the $O-H \cdots N$ hydrogen bonds (dashed lines) have been omitted.

Figure 5

A partial packing diagram of compound (IV), showing the column structure formed by π - π and C-H··· π interactions (dashed lines). H atoms not involved in these interactions have been omitted.

units are arranged with their long axes parallel to each other, while the units in neighbouring layers are arranged approximately perpendicular with an angle of $ca 87^{\circ}$ between their long axes (Fig. 4).

In the crystal of (IV), the 2:1units are stacked in a column along the *b* axis through a weak C-H··· π interaction between the methyl group and the benzene ring (Table 4) and π - π interactions between the benzene (C1-C6) and pyridine (N1/C12-C16) rings and between the pyridine rings (Fig. 5). The centroid-centroid distances are 3.658 (2) and 3.960 (2) Å, respectively, between the benzene and pyridine rings and between the pyridine rings.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, last update May 2016; Groom *et al.*, 2016) for organic cocrystals of 1,2-di(pyridin-4-yl)ethene with 4-alkoxybenzoic acid derivatives gave two structures: 1,2-di(pyridin-4-yl)ethene with 2,4,6-tris(4-carboxyphenoxy)-1,3,5-triazine (Refcode YAKVEM; Aakeröy *et al.*, 2005) and with 4,4'oxydibenzoic acid (Refcode QEWHEH; Ma *et al.*, 2006).

5. Synthesis and crystallization

Single crystals of compounds (I), (III) and (IV) were obtained from ethanol solutions of (E)-1,2-di(pyridin-4-yl)ethene with 4-methoxybenzoic acid, 4-*n*-propoxybenzoic acid and 4-*n*butoxybenzoic acid, respectively, at room temperature [ethanol solution (160 ml) of 1,2-di(pyridin-4-yl)ethene (72 mg) and 4-methoxybenzoic acid (120 mg) for (I), ethanol solution (160 ml) of 1,2-di(pyridin-4-yl)ethene (61 mg) and 4-*n*-propoxybenzoic acid (120 mg) for (III), and ethanol solution (160 ml) of 1,2-di(pyridin-4-yl)ethene (56 mg) and 4-*n*-butoxybenzoic acid (120 mg) for (IV)]. Crystals of compound (II) were obtained by slow evaporation from an acetone solution (150 ml) of 1,2-di(pyridin-4-yl)ethene (66 mg) with 4-ethoxybenzoic acid (120 mg) at room temperature.

6. Phase transitions

Phase transitions of the four title compounds were observed by DSC and the liquid crystal phases were confirmed by

research communications

 Table 5

 Experimental details.

	(I)	(II)	(III)	(IV)
Crystal data				
Chemical formula	$2C_8H_8O_3 \cdot C_{12}H_{10}N_2$	$2C_{9}H_{10}O_{3}\cdot C_{12}H_{10}N_{2}$	$2C_{10}H_{12}O_3 \cdot C_{12}H_{10}N_2$	$2C_{11}H_{14}O_3 \cdot C_{12}H_{10}N_2$
M _r	486.52	514.58	542.63	570.68
Crystal system, space group	Monoclinic, $P2_1/n$	Triclinic, P1	Monoclinic, Pc	Triclinic, $P\overline{1}$
Temperature (K)	93	93	93	93
a, b, c (Å)	11.259 (4), 7.2693 (17), 14.758 (4)	10.873 (3), 11.197 (4), 12.921 (4)	11.1192 (18), 10.8289 (13), 23.020 (3)	7.103 (4), 9.060 (5), 11.627 (7)
$lpha,eta,\gamma(^\circ)$	90, 105.706 (15), 90	82.399 (13), 66.241 (10), 62.207 (11)	90, 93.517 (8), 90	82.29 (2), 78.54 (3), 86.79 (3)
$V(Å^3)$	1162.8 (6)	1270.6 (7)	2766.6 (7)	726.3 (7)
Z	2	2	4	1
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.10	0.09	0.09	0.09
Crystal size (mm)	$0.31\times0.30\times0.10$	$0.40 \times 0.13 \times 0.10$	$0.47 \times 0.27 \times 0.10$	$0.49\times0.21\times0.10$
Data collection				
Diffractometer	Rigaku R-AXIS RAPIDII	Rigaku R-AXIS RAPIDII	Rigaku R-AXIS RAPIDII	Rigaku R-AXIS RAPIDII
Absorption correction	Multi-scan (ABSCOR; Higashi, 1995)	Multi-scan (ABSCOR; Higashi, 1995)	Multi-scan (<i>ABSCOR</i> ; Higashi, 1995)	Multi-scan (ABSCOR; Higashi, 1995)
T_{\min}, T_{\max}	0.896, 0.990	0.900, 0.991	0.914, 0.991	0.841, 0.991
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	11262, 2674, 2437	20685, 5814, 5127	43672, 11868, 11427	7250, 3311, 2919
R _{int}	0.015	0.015	0.022	0.033
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.649	0.649	0.649	0.649
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.037, 0.099, 1.10	0.038, 0.109, 1.09	0.032, 0.080, 1.06	0.041, 0.118, 1.08
No. of reflections	2674	5814	11868	3311
No. of parameters	168	353	742	195
No. of restraints	0	0	2	0
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.29, -0.30	0.30, -0.35	0.19, -0.45	0.18, -0.45
Absolute structure	_	_	Refined as an inversion twin.	_
Absolute structure parameter	-	_	0.0 (5)	_

Computer programs: RAPID-AUTO (Rigaku, 2006), Il Milione (Burla et al., 2007), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), CrystalStructure (Rigaku, 2010) and PLATON (Spek, 2015).

polarizing microscope. DSC measurements were performed by using a Perkin Elmer Pyris 1 in the temperature range from 103 K to the melting temperature at a heating rate of $10 \text{ K} \text{ min}^{-1}$. Phase transition temperatures (K) and enthalpies (kJ mol⁻¹) determined by DSC are as follows:

- (I) 439.0 (7) [60 (3)] $K \rightarrow N$, 457.3 (5) [4.0 (2)] $N \rightarrow I$;
- (II) 432.6 (5) [66.6 (17)] $K \rightarrow N$, 461 (1) [6.8 (15)] $N \rightarrow I$;
- (III) 401.0 (6) [16.5 (10)] $K_1 \rightarrow K_2$, 425.2 (5) [45.6 (13)] K_2
- \rightarrow N, 450.2 (5) [5.0 (5)] N \rightarrow I;

(IV) 417.5 (5) [65 (2)] $K \rightarrow S_A$, 438 (1) [1.4 (2)] $S_A \rightarrow N$, 449 (1) [6.1 (10)] $N \rightarrow I$.

K, S_A , N and I denote crystal, smectic A, nematic and isotropic phases, respectively. The observed transition temperatures and enthalpies are good agreement with the reported values (Kato *et al.*, 1993).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. For all compounds, C-bound H

atoms were positioned geometrically with C-H = 0.95-0.99 Å and were refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$. The O-bound H atoms were located in a difference Fourier map and refined freely [refined O-H = 0.93 (2)-1.02 (2) Å].

References

- Aakeröy, C. B., Desper, J. & Urbina, J. F. (2005). *CrystEngComm*, 7, 193–201.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Grunert, M., Howie, A., Kaeding, A. & Imrie, C. T. (1997). J. Mater. Chem. 7, 211–214.

Higashi (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Kato, T., Fréchet, J. M. J., Wilson, P. G., Saito, T., Uryu, T., Fujishima, A., Jin, C. & Kaneuchi, F. (1993). *Chem. Mater.* 5, 1094–1100.

- Kato, T., Wilson, P. G., Fujishima, A. & Fréchet, J. M. J. (1990). Chem. Lett. 19, 2003–2006.
- Ma, Z.-C., Ma, A.-Q. & Wang, G.-P. (2006). Acta Cryst. E62, o1165-01166.
- Mukherjee, A. & Desiraju, G. R. (2014). Cryst. Growth Des. 14, 1375–1385.
- Ramon, G., Davies, K. & Nassimbeni, L. R. (2014). *CrystEngComm*, **16**, 5802–5810.
- Rigaku (2006). *RAPID-AUTO*. Rigaku Corporation, Tokyo, Japan. Rigaku (2010). *CrystalStructure*. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2015). *Acta Cryst.* C71, 3–8.
- Spek, A. L. (2015). Acta Cryst. C71, 9–18.
- Tabuchi, Y., Gotoh, K. & Ishida, H. (2015a). Acta Cryst. E71, 1340– 1344.
- Tabuchi, Y., Gotoh, K. & Ishida, H. (2015b). Acta Cryst. E71, 1290–1295.

Acta Cryst. (2016). E72, 1666-1671 [https://doi.org/10.1107/S2056989016017138]

Crystal structures of four co-crystals of (*E*)-1,2-di(pyridin-4-yl)ethene with 4alkoxybenzoic acids: 4-methoxybenzoic acid–(*E*)-1,2-di(pyridin-4-yl)ethene (2/1), 4-ethoxybenzoic acid–(*E*)-1,2-di(pyridin-4-yl)ethene (2/1), 4-*n*propoxybenzoic acid–(*E*)-1,2-di(pyridin-4-yl)ethene (2/1) and 4-*n*-butoxybenzoic acid–(*E*)-1,2-di(pyridin-4-yl)ethene (2/1)

Yohei Tabuchi, Kazuma Gotoh and Hiroyuki Ishida

Computing details

For all compounds, data collection: *RAPID-AUTO* (Rigaku, 2006); cell refinement: *RAPID-AUTO* (Rigaku, 2006); data reduction: *RAPID-AUTO* (Rigaku, 2006); program(s) used to solve structure: *Il Milione* (Burla *et al.*, 2007); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *CrystalStructure* (Rigaku, 2010) and *PLATON* (Spek, 2015).

(I) 4-Methoxybenzoic acid–(*E*)-1,2-di(pyridin-4-yl)ethene (2/1)

Crystal data

 $2C_8H_8O_3 \cdot C_{12}H_{10}N_2$ $M_r = 486.52$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 11.259 (4) Å b = 7.2693 (17) Å c = 14.758 (4) Å $\beta = 105.706$ (15)° V = 1162.8 (6) Å³ Z = 2

Data collection

Rigaku R-AXIS RAPIDII diffractometer Detector resolution: 10.000 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\min} = 0.896, T_{\max} = 0.990$ 11262 measured reflections F(000) = 512.00 $D_x = 1.389 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 12695 reflections $\theta = 3.2-30.1^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 93 KBlock, colorless $0.31 \times 0.30 \times 0.10 \text{ mm}$

2674 independent reflections 2437 reflections with $I > 2\sigma(I)$ $R_{int} = 0.015$ $\theta_{max} = 27.5^\circ, \theta_{min} = 3.2^\circ$ $h = -14 \rightarrow 14$ $k = -9 \rightarrow 8$ $l = -19 \rightarrow 19$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.037$	Hydrogen site location: mixed
$wR(F^2) = 0.099$	H atoms treated by a mixture of independent
S = 1.10	and constrained refinement
2674 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0554P)^2 + 0.3311P]$
168 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.29 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.07932 (7)	0.45344 (11)	0.29896 (5)	0.02040 (18)
O2	-0.04269 (7)	0.29971 (11)	0.17718 (5)	0.02025 (18)
O3	-0.38497 (6)	0.33362 (10)	0.45442 (5)	0.01748 (17)
N1	0.22710 (8)	0.49461 (12)	0.19037 (6)	0.0198 (2)
C1	-0.11584 (8)	0.36124 (13)	0.31108 (6)	0.0137 (2)
C2	-0.10070 (8)	0.46264 (13)	0.39320 (7)	0.0143 (2)
H2	-0.0288	0.5358	0.4154	0.017*
C3	-0.18891 (9)	0.45914 (13)	0.44362 (6)	0.0146 (2)
H3	-0.1775	0.5289	0.4998	0.017*
C4	-0.29405 (8)	0.35178 (13)	0.41034 (7)	0.0143 (2)
C5	-0.31129 (9)	0.25306 (14)	0.32684 (7)	0.0173 (2)
Н5	-0.3842	0.1825	0.3036	0.021*
C6	-0.22277 (9)	0.25724 (14)	0.27769 (7)	0.0166 (2)
H6	-0.2349	0.1890	0.2210	0.020*
C7	-0.02356 (9)	0.36617 (13)	0.25543 (7)	0.0148 (2)
C8	-0.36144 (10)	0.40882 (15)	0.54742 (7)	0.0194 (2)
H8A	-0.2817	0.3640	0.5861	0.029*
H8B	-0.4269	0.3705	0.5757	0.029*
H8C	-0.3597	0.5434	0.5441	0.029*
C9	0.17790 (9)	0.54944 (14)	0.10152 (7)	0.0196 (2)
H9	0.0931	0.5823	0.0829	0.023*
C10	0.24464 (9)	0.56063 (14)	0.03539 (7)	0.0177 (2)
H10	0.2061	0.6007	-0.0269	0.021*
C11	0.36946 (9)	0.51212 (13)	0.06160 (7)	0.0155 (2)
C12	0.42043 (9)	0.45621 (14)	0.15457 (7)	0.0179 (2)
H12	0.5051	0.4229	0.1756	0.022*
C13	0.34688 (10)	0.44970 (15)	0.21567 (7)	0.0195 (2)
H13	0.3830	0.4115	0.2787	0.023*

C14	0.44046 (9)	0.52048 (14)	-0.00820 (7)	0.0171 (2)
H14	0.3980	0.5582	-0.0701	0.021*
H1	0.1344 (19)	0.463 (3)	0.2554 (14)	0.064 (6)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0160 (4)	0.0290 (4)	0.0188 (4)	-0.0048 (3)	0.0093 (3)	-0.0038 (3)
O2	0.0205 (4)	0.0259 (4)	0.0163 (3)	0.0010 (3)	0.0083 (3)	-0.0027 (3)
03	0.0145 (3)	0.0221 (4)	0.0183 (3)	-0.0021 (3)	0.0087 (3)	-0.0021 (3)
N1	0.0206 (4)	0.0212 (4)	0.0215 (4)	-0.0045 (3)	0.0123 (3)	-0.0041 (3)
C1	0.0136 (4)	0.0150 (4)	0.0132 (4)	0.0024 (3)	0.0047 (3)	0.0026 (3)
C2	0.0118 (4)	0.0170 (4)	0.0138 (4)	0.0001 (3)	0.0028 (3)	0.0014 (3)
C3	0.0144 (4)	0.0174 (4)	0.0120 (4)	0.0013 (3)	0.0038 (3)	-0.0005 (3)
C4	0.0129 (4)	0.0157 (4)	0.0155 (4)	0.0022 (3)	0.0063 (3)	0.0027 (3)
C5	0.0157 (4)	0.0171 (5)	0.0194 (5)	-0.0031 (4)	0.0054 (4)	-0.0021 (4)
C6	0.0183 (5)	0.0170 (5)	0.0151 (4)	-0.0006 (4)	0.0055 (3)	-0.0023 (4)
C7	0.0157 (4)	0.0147 (4)	0.0148 (4)	0.0027 (3)	0.0054 (3)	0.0024 (3)
C8	0.0207 (5)	0.0228 (5)	0.0179 (5)	-0.0004 (4)	0.0106 (4)	-0.0013 (4)
С9	0.0163 (5)	0.0207 (5)	0.0237 (5)	-0.0013 (4)	0.0089 (4)	-0.0033 (4)
C10	0.0178 (5)	0.0183 (5)	0.0180 (4)	-0.0017 (4)	0.0066 (4)	-0.0014 (4)
C11	0.0170 (5)	0.0149 (4)	0.0167 (4)	-0.0037 (4)	0.0081 (4)	-0.0029 (4)
C12	0.0165 (5)	0.0216 (5)	0.0172 (5)	-0.0017 (4)	0.0070 (4)	-0.0011 (4)
C13	0.0214 (5)	0.0228 (5)	0.0160 (4)	-0.0032 (4)	0.0083 (4)	-0.0013 (4)
C14	0.0188 (5)	0.0198 (5)	0.0146 (4)	-0.0023 (4)	0.0076 (3)	-0.0007 (4)

Geometric parameters (Å, °)

01—C7	1.3244 (12)	С5—Н5	0.9500
01—H1	1.01 (2)	С6—Н6	0.9500
O2—C7	1.2160 (12)	C8—H8A	0.9800
O3—C4	1.3599 (11)	C8—H8B	0.9800
O3—C8	1.4338 (12)	C8—H8C	0.9800
N1—C9	1.3385 (14)	C9—C10	1.3859 (14)
N1-C13	1.3388 (15)	С9—Н9	0.9500
C1—C2	1.3889 (14)	C10—C11	1.3981 (15)
C1—C6	1.3938 (14)	C10—H10	0.9500
C1—C7	1.4890 (13)	C11—C12	1.3967 (14)
С2—С3	1.3931 (13)	C11—C14	1.4661 (13)
С2—Н2	0.9500	C12—C13	1.3804 (14)
C3—C4	1.3917 (14)	C12—H12	0.9500
С3—Н3	0.9500	C13—H13	0.9500
C4—C5	1.3934 (14)	$C14$ — $C14^{i}$	1.330 (2)
С5—С6	1.3826 (14)	C14—H14	0.9500
C7—O1—H1	109.4 (11)	O3—C8—H8A	109.5
C4—O3—C8	116.93 (8)	O3—C8—H8B	109.5
C9—N1—C13	117.66 (9)	H8A—C8—H8B	109.5

C2—C1—C6	119.12 (9)	O3—C8—H8C	109.5
C2—C1—C7	121.96 (9)	H8A—C8—H8C	109.5
C6—C1—C7	118.88 (9)	H8B—C8—H8C	109.5
C1—C2—C3	121.30 (9)	N1	123.22 (10)
C1—C2—H2	119.4	N1—C9—H9	118.4
C3—C2—H2	119.4	С10—С9—Н9	118.4
C4—C3—C2	118.88 (9)	C9—C10—C11	119.11 (9)
С4—С3—Н3	120.6	C9—C10—H10	120.4
С2—С3—Н3	120.6	C11-C10-H10	120.4
O3—C4—C3	124.35 (9)	C12—C11—C10	117.39 (9)
O3—C4—C5	115.49 (9)	C12—C11—C14	123.02 (9)
C3—C4—C5	120.16 (9)	C10-C11-C14	119.58 (9)
C6—C5—C4	120.33 (9)	C13—C12—C11	119.47 (10)
С6—С5—Н5	119.8	C13—C12—H12	120.3
С4—С5—Н5	119.8	C11—C12—H12	120.3
C5—C6—C1	120.18 (9)	N1-C13-C12	123.14 (10)
С5—С6—Н6	119.9	N1-C13-H13	118.4
С1—С6—Н6	119.9	C12—C13—H13	118.4
O2—C7—O1	123.90 (9)	C14 ⁱ —C14—C11	125.27 (12)
O2—C7—C1	122.92 (9)	C14 ⁱ —C14—H14	117.4
O1—C7—C1	113.16 (8)	C11—C14—H14	117.4
C6—C1—C2—C3	1.38 (14)	C6—C1—C7—O2	8.04 (14)
C7—C1—C2—C3	178.85 (8)	C2-C1-C7-O1	9.13 (13)
C1—C2—C3—C4	-0.14 (14)	C6-C1-C7-O1	-173.39 (8)
C8—O3—C4—C3	-9.37 (13)	C13—N1—C9—C10	0.34 (15)
C8—O3—C4—C5	170.34 (9)	N1-C9-C10-C11	0.23 (15)
C2—C3—C4—O3	178.32 (8)	C9-C10-C11-C12	-0.64 (14)
C2—C3—C4—C5	-1.37 (14)	C9—C10—C11—C14	178.99 (9)
O3—C4—C5—C6	-178.08 (9)	C10-C11-C12-C13	0.50 (14)
C3—C4—C5—C6	1.64 (15)	C14—C11—C12—C13	-179.11 (9)
C4—C5—C6—C1	-0.37 (15)	C9—N1—C13—C12	-0.49 (15)
C2-C1-C6-C5	-1.12 (14)	C11—C12—C13—N1	0.07 (16)
C7—C1—C6—C5	-178.67 (8)	C12-C11-C14-C14 ⁱ	-1.01 (19)
C2-C1-C7-O2	-169.44 (9)	C10-C11-C14-C14 ⁱ	179.39 (13)

Symmetry code: (i) -x+1, -y+1, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
01—H1…N1	1.01 (2)	1.61 (2)	2.6210 (15)	175.0 (17)
C8—H8 <i>B</i> ···O2 ⁱⁱ	0.98	2.56	3.4993 (18)	162
С10—Н10…О2 ^{ііі}	0.95	2.57	3.4900 (18)	162

Symmetry codes: (ii) x-1/2, -y+1/2, z+1/2; (iii) -x, -y+1, -z.

(II) 4-Ethoxybenzoic acid–(*E*)-1,2-di(pyridin-4-yl)ethene (2/1)

Crystal data

 $\begin{aligned} & 2\text{C}_9\text{H}_{10}\text{O}_3 \cdot \text{C}_{12}\text{H}_{10}\text{N}_2 \\ & M_r = 514.58 \\ & \text{Triclinic, } P\overline{1} \\ & \text{Hall symbol: -P 1} \\ & a = 10.873 \text{ (3) } \text{\AA} \\ & b = 11.197 \text{ (4) } \text{\AA} \\ & c = 12.921 \text{ (4) } \text{\AA} \\ & a = 82.399 \text{ (13)}^\circ \\ & \beta = 66.241 \text{ (10)}^\circ \\ & \gamma = 62.207 \text{ (11)}^\circ \\ & V = 1270.6 \text{ (7) } \text{\AA}^3 \end{aligned}$

Data collection

Rigaku R-AXIS RAPIDII	5814 independent reflections
diffractometer	5127 reflections with $I > 2\sigma(I)$
Detector resolution: 10.000 pixels mm ⁻¹	$R_{\rm int} = 0.015$
ω scans	$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 3.3^{\circ}$
Absorption correction: multi-scan	$h = -14 \rightarrow 14$
(ABSCOR; Higashi, 1995)	$k = -14 \rightarrow 14$
$T_{\min} = 0.900, \ T_{\max} = 0.991$	$l = -16 \rightarrow 16$
20685 measured reflections	

Z = 2

F(000) = 544.00

 $\theta = 3.3 - 30.0^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$

Platelet, colorless

 $0.40 \times 0.13 \times 0.10 \text{ mm}$

T = 93 K

 $D_{\rm x} = 1.345 {\rm Mg} {\rm m}^{-3}$

Mo *Ka* radiation, $\lambda = 0.71075$ Å

Cell parameters from 22362 reflections

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: mixed
$wR(F^2) = 0.109$	H atoms treated by a mixture of independent
<i>S</i> = 1.09	and constrained refinement
5814 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0717P)^2 + 0.1676P]$
353 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.35 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.44575 (8)	0.29817 (7)	0.49920 (6)	0.02270 (17)	
02	0.22493 (8)	0.30835 (7)	0.62196 (6)	0.02228 (16)	
03	0.70637 (8)	-0.25170 (7)	0.71620 (6)	0.01917 (15)	
O4	-0.40769 (8)	1.64915 (7)	0.18066 (6)	0.02136 (16)	
05	-0.50193 (9)	1.52880 (7)	0.14118 (7)	0.02571 (17)	
O6	-0.87480 (8)	2.10135 (7)	-0.00980 (6)	0.01967 (16)	
N1	0.28738 (9)	0.53158 (8)	0.43973 (7)	0.01887 (18)	

N2	-0.24387 (9)	1.41152 (8)	0.24761 (7)	0.01975 (18)
C1	0.45252 (10)	0.11559 (9)	0.61365 (8)	0.01602 (19)
C2	0.60886 (11)	0.04391 (10)	0.55614 (8)	0.01699 (19)
H2	0.6599	0.0802	0.4926	0.020*
C3	0.68971 (10)	-0.07954 (10)	0.59126 (8)	0.01692 (19)
Н3	0.7958	-0.1281	0.5513	0.020*
C4	0.61597 (10)	-0.13298 (9)	0.68521 (8)	0.01573 (18)
C5	0.45923 (11)	-0.06414 (10)	0.74142 (8)	0.01780 (19)
Н5	0.4078	-0.1014	0.8039	0.021*
C6	0.37964 (10)	0.05957 (10)	0.70471 (8)	0.01762 (19)
Н6	0.2731	0.1067	0.7428	0.021*
C7	0.36266 (11)	0.24964 (9)	0.57911 (8)	0.01740 (19)
C8	0.63496 (12)	-0.30580(10)	0.81677 (9)	0.0216(2)
H8A	0.5750	-0.3412	0.8019	0.026*
H8B	0 5663	-0.2340	0.8791	0.026*
C9	0.75677(12)	-0.41802(10)	0.84936 (9)	0.0231(2)
Н9А	0.8258	-0.4873	0.7863	0.0251 (2)
H9R	0.7109	-0.4584	0.9163	0.035*
H9C	0.8129	-0.3813	0.8667	0.035*
C10	-0.59976(10)	1 76311 (9)	0.10913 (8)	0.01658 (19)
C11	-0.69670(11)	1 75879 (10)	0.06566 (8)	0.01050(1))
H11	-0.6993	1.6759	0.0617	0.0195 (2)
C12	-0.78868(11)	1.87368 (10)	0.02853 (8)	0.023
H12	-0.8551	1 8600	0.02033 (0)	0.0109 (2)
C13	-0.78373(10)	1.00537 (0)	0.03265 (8)	0.025
C14	-0.68028(11)	2.00189(10)	0.03203(8)	0.01005(19)
H14	-0.6868	2.00105 (10)	0.07724(0)	0.021*
C15	-0.59854(11)	2.0040	0.11586 (8)	0.021 0.01718 (10)
U15	-0.5351	1.88550 (10)	0.11380 (8)	0.01/18(19) 0.021*
C16	-0.40062(11)	1.63572 (10)	0.1471 0.14515 (8)	0.021
C10 C17	-0.86841(12)	1.03372(10) 2.22730(10)	-0.01373(0)	0.01803(19)
	-0.7652	2.22730 (10)	-0.0621	0.0200 (2)
П1/А Ц1 7 Р	-0.7033	2.2130	-0.0021	0.025*
П1/D С19	-0.0940	2.2005	0.0034	0.025°
	-0.97908 (12)	2.32730 (10)	-0.06207(9)	0.0238 (2)
	-1.0820	2.3430	-0.0111	0.039*
	-0.9337	2.2915	-0.1300	0.039
П18C	-0.9/3/	2.4151	-0.0099	0.039°
U19	0.10445 (11)	0.55222 (10)	0.42448 (8)	0.0195 (2)
П19 С20	0.1364	0.4601	0.4558	0.025°
C20	0.07334 (11)	0.67374 (10)	0.39300 (8)	0.01813 (19)
H20	-0.0128	0.6840	0.3829	0.022^{*}
C21	0.10966 (10)	0.78120 (9)	0.37619 (8)	0.01547 (19)
0.22	0.23808 (11)	0.75891 (10)	0.39243 (8)	0.01/54 (19)
H22	0.2670	0.8290	0.3820	0.021*
C23	0.32276 (11)	0.63424 (10)	0.42375 (8)	0.0191 (2)
H23	0.4097	0.6207	0.4344	0.023*
C24	-0.13435 (11)	1.39130 (10)	0.28095 (8)	0.01879 (19)
H24	-0.1176	1.4660	0.2858	0.023*

~				
C25	-0.04417 (11)	1.26610 (10)	0.30882 (8)	0.01838 (19)
H25	0.0332	1.2562	0.3310	0.022*
C26	-0.06734 (10)	1.15489 (9)	0.30414 (8)	0.01639 (19)
C27	-0.18146 (12)	1.17653 (10)	0.26908 (9)	0.0234 (2)
H27	-0.2012	1.1039	0.2638	0.028*
C28	-0.26563 (12)	1.30443 (11)	0.24211 (10)	0.0252 (2)
H28	-0.3428	1.3171	0.2185	0.030*
C29	0.01377 (10)	0.91023 (9)	0.34238 (8)	0.01701 (19)
H29	-0.0630	0.9128	0.3231	0.020*
C30	0.02655 (10)	1.02405 (10)	0.33681 (8)	0.01731 (19)
H30	0.1041	1.0200	0.3559	0.021*
H1	0.382 (3)	0.391 (2)	0.4775 (19)	0.082 (7)*
H4	-0.354 (2)	1.566 (2)	0.2045 (15)	0.059 (5)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
01	0.0197 (3)	0.0169 (3)	0.0299 (4)	-0.0070 (3)	-0.0119 (3)	0.0082 (3)
O2	0.0170 (3)	0.0157 (3)	0.0329 (4)	-0.0046 (3)	-0.0118 (3)	0.0011 (3)
O3	0.0174 (3)	0.0149 (3)	0.0216 (3)	-0.0047 (3)	-0.0086(3)	0.0048 (3)
O4	0.0205 (3)	0.0162 (3)	0.0307 (4)	-0.0079 (3)	-0.0152 (3)	0.0069 (3)
05	0.0339 (4)	0.0152 (3)	0.0356 (4)	-0.0118 (3)	-0.0216 (3)	0.0078 (3)
06	0.0211 (3)	0.0140 (3)	0.0269 (4)	-0.0073 (3)	-0.0145 (3)	0.0066 (3)
N1	0.0182 (4)	0.0156 (4)	0.0194 (4)	-0.0053 (3)	-0.0076 (3)	0.0032 (3)
N2	0.0182 (4)	0.0158 (4)	0.0223 (4)	-0.0052 (3)	-0.0089 (3)	0.0038 (3)
C1	0.0168 (4)	0.0131 (4)	0.0199 (4)	-0.0057 (3)	-0.0096 (4)	-0.0002 (3)
C2	0.0177 (4)	0.0164 (4)	0.0177 (4)	-0.0079 (4)	-0.0078 (4)	0.0018 (3)
C3	0.0137 (4)	0.0162 (4)	0.0187 (4)	-0.0047 (3)	-0.0063 (3)	-0.0004 (3)
C4	0.0173 (4)	0.0121 (4)	0.0190 (4)	-0.0052 (3)	-0.0098 (4)	0.0003 (3)
C5	0.0176 (4)	0.0166 (4)	0.0194 (4)	-0.0086 (4)	-0.0066 (4)	0.0017 (3)
C6	0.0144 (4)	0.0161 (4)	0.0214 (4)	-0.0056 (3)	-0.0068(4)	-0.0014 (3)
C7	0.0186 (4)	0.0138 (4)	0.0224 (4)	-0.0063 (4)	-0.0113 (4)	-0.0002 (3)
C8	0.0227 (5)	0.0180 (5)	0.0252 (5)	-0.0107 (4)	-0.0105 (4)	0.0075 (4)
C9	0.0285 (5)	0.0172 (5)	0.0256 (5)	-0.0091 (4)	-0.0151 (4)	0.0055 (4)
C10	0.0165 (4)	0.0148 (4)	0.0171 (4)	-0.0065 (3)	-0.0068 (4)	0.0037 (3)
C11	0.0229 (5)	0.0160 (4)	0.0230 (5)	-0.0111 (4)	-0.0100 (4)	0.0038 (4)
C12	0.0203 (4)	0.0187 (5)	0.0221 (4)	-0.0104 (4)	-0.0114 (4)	0.0045 (4)
C13	0.0151 (4)	0.0150 (4)	0.0173 (4)	-0.0055 (3)	-0.0063 (4)	0.0033 (3)
C14	0.0186 (4)	0.0142 (4)	0.0210 (4)	-0.0083 (4)	-0.0083 (4)	0.0027 (3)
C15	0.0169 (4)	0.0166 (4)	0.0188 (4)	-0.0079 (4)	-0.0078 (4)	0.0027 (3)
C16	0.0183 (4)	0.0157 (4)	0.0184 (4)	-0.0072 (4)	-0.0067 (4)	0.0029 (3)
C17	0.0243 (5)	0.0135 (4)	0.0241 (5)	-0.0075 (4)	-0.0117 (4)	0.0037 (4)
C18	0.0286 (5)	0.0161 (5)	0.0288 (5)	-0.0046 (4)	-0.0152 (4)	0.0046 (4)
C19	0.0209 (5)	0.0146 (4)	0.0222 (4)	-0.0081 (4)	-0.0083 (4)	0.0021 (3)
C20	0.0163 (4)	0.0164 (4)	0.0217 (4)	-0.0066 (4)	-0.0083 (4)	0.0005 (3)
C21	0.0155 (4)	0.0128 (4)	0.0146 (4)	-0.0043 (3)	-0.0052 (3)	0.0009 (3)
C22	0.0181 (4)	0.0158 (4)	0.0194 (4)	-0.0084 (4)	-0.0077 (4)	0.0036 (3)
C23	0.0168 (4)	0.0191 (5)	0.0208 (4)	-0.0072 (4)	-0.0087 (4)	0.0042 (4)

C24	0.0202 (5)	0.0146 (4)	0.0203 (4)	-0.0072 (4)	-0.0079(4)	0.0019 (3)
C25	0.0183 (4)	0.0168 (4)	0.0205 (4)	-0.0070 (4)	-0.0095 (4)	0.0022 (3)
C26	0.0155 (4)	0.0142 (4)	0.0159 (4)	-0.0049 (3)	-0.0053 (3)	0.0022 (3)
C27	0.0257 (5)	0.0164 (5)	0.0348 (5)	-0.0106 (4)	-0.0185 (5)	0.0076 (4)
C28	0.0244 (5)	0.0208 (5)	0.0366 (6)	-0.0105 (4)	-0.0194 (5)	0.0086 (4)
C29	0.0147 (4)	0.0149 (4)	0.0191 (4)	-0.0046 (3)	-0.0077 (4)	0.0031 (3)
C30	0.0157 (4)	0.0151 (4)	0.0190 (4)	-0.0043 (3)	-0.0085 (4)	0.0025 (3)

Geometric parameters (Å, °)

01	1.3173 (12)	C11—H11	0.9500
O1—H1	1.02 (2)	C12—C13	1.3972 (14)
O2—C7	1.2213 (12)	C12—H12	0.9500
O3—C4	1.3606 (11)	C13—C14	1.3963 (13)
O3—C8	1.4407 (12)	C14—C15	1.3948 (13)
O4—C16	1.3267 (12)	C14—H14	0.9500
O4—H4	0.93 (2)	C15—H15	0.9500
O5—C16	1.2173 (13)	C17—C18	1.5067 (14)
O6—C13	1.3636 (12)	C17—H17A	0.9900
O6—C17	1.4373 (12)	C17—H17B	0.9900
N1—C19	1.3385 (13)	C18—H18A	0.9800
N1—C23	1.3406 (13)	C18—H18B	0.9800
N2—C24	1.3384 (13)	C18—H18C	0.9800
N2—C28	1.3413 (14)	C19—C20	1.3853 (13)
C1—C6	1.3866 (13)	C19—H19	0.9500
C1—C2	1.3978 (14)	C20—C21	1.3985 (14)
C1—C7	1.4877 (13)	C20—H20	0.9500
C2—C3	1.3826 (13)	C21—C22	1.3977 (13)
C2—H2	0.9500	C21—C29	1.4698 (13)
C3—C4	1.3948 (13)	C22—C23	1.3829 (13)
С3—Н3	0.9500	C22—H22	0.9500
C4—C5	1.3970 (14)	С23—Н23	0.9500
C5—C6	1.3899 (14)	C24—C25	1.3876 (13)
С5—Н5	0.9500	C24—H24	0.9500
С6—Н6	0.9500	C25—C26	1.3937 (14)
C8—C9	1.5060 (14)	C25—H25	0.9500
C8—H8A	0.9900	C26—C27	1.3954 (14)
C8—H8B	0.9900	C26—C30	1.4682 (13)
С9—Н9А	0.9800	C27—C28	1.3830 (14)
С9—Н9В	0.9800	C27—H27	0.9500
С9—Н9С	0.9800	C28—H28	0.9500
C10—C15	1.3917 (14)	C29—C30	1.3347 (14)
C10-C11	1.4002 (14)	С29—Н29	0.9500
C10—C16	1.4904 (13)	C30—H30	0.9500
C11—C12	1.3816 (14)		
C7—O1—H1	112.5 (13)	C10—C15—C14	120.80 (9)
C4—O3—C8	117.16 (8)	C10—C15—H15	119.6

C16—O4—H4	107.3 (12)	C14—C15—H15	119.6
C13—O6—C17	117.81 (8)	O5—C16—O4	123.33 (9)
C19—N1—C23	117.86 (8)	O5—C16—C10	122.47 (9)
C24—N2—C28	117.29 (8)	O4—C16—C10	114.19 (8)
C6—C1—C2	118.97 (9)	O6—C17—C18	107.58 (8)
C6—C1—C7	119.35 (9)	O6—C17—H17A	110.2
C2—C1—C7	121.68 (9)	C18—C17—H17A	110.2
C3—C2—C1	120.38 (9)	O6—C17—H17B	110.2
C3—C2—H2	119.8	C18—C17—H17B	110.2
C1—C2—H2	119.8	H17A—C17—H17B	108.5
C2-C3-C4	120.20 (9)	C17—C18—H18A	109.5
C2—C3—H3	119.9	C17—C18—H18B	109.5
C4—C3—H3	119.9	H18A—C18—H18B	109.5
03-C4-C3	115.67 (8)	C17—C18—H18C	109.5
03-C4-C5	124 38 (8)	H18A - C18 - H18C	109.5
C_{3} $-C_{4}$ $-C_{5}$	119 94 (9)	H18B— $C18$ — $H18C$	109.5
C6-C5-C4	119.07 (9)	N1-C19-C20	123 14 (9)
C6-C5-H5	120.5	N1-C19-H19	118.4
C4-C5-H5	120.5	C_{20} C_{19} H_{19}	118.4
C1 - C6 - C5	121.38 (9)	C19-C20-C21	119 28 (9)
C1—C6—H6	119 3	C19 - C20 - H20	120.4
C5-C6-H6	119.3	$C_{21} - C_{20} - H_{20}$	120.1
02-07-01	123 82 (9)	C_{22} C_{21} C_{20} C_{20} C_{20} C_{20}	117 24 (8)
02-07-01	122.55 (9)	$C_{22} = C_{21} = C_{29}$	123 22 (8)
01 - C7 - C1	113 62 (8)	C_{20} C_{21} C_{29}	119 54 (9)
03-08-09	108 07 (8)	C_{23} C_{22} C_{21} C_{23}	119.66 (9)
03—C8—H8A	110.1	C23—C22—H22	120.2
C9—C8—H8A	110.1	C_{21} C_{22} H_{22}	120.2
03—C8—H8B	110.1	N1—C23—C22	122.83 (9)
C9—C8—H8B	110.1	N1—C23—H23	118.6
H8A—C8—H8B	108.4	C22—C23—H23	118.6
C8—C9—H9A	109.5	N2—C24—C25	122.96 (9)
C8—C9—H9B	109.5	N2—C24—H24	118.5
H9A—C9—H9B	109.5	C25—C24—H24	118.5
C8—C9—H9C	109.5	C24—C25—C26	119.90 (9)
Н9А—С9—Н9С	109.5	C24—C25—H25	120.1
H9B—C9—H9C	109.5	C26—C25—H25	120.1
C15—C10—C11	119.03 (9)	C25—C26—C27	116.87 (9)
C15—C10—C16	122.19 (9)	C25—C26—C30	119.11 (9)
C11—C10—C16	118.78 (9)	C27—C26—C30	124.01 (9)
C12—C11—C10	120.75 (9)	C28—C27—C26	119.58 (9)
C12—C11—H11	119.6	C28—C27—H27	120.2
C10—C11—H11	119.6	С26—С27—Н27	120.2
$C_{11} - C_{12} - C_{13}$	119.86 (9)	N2-C28-C27	123.40 (10)
C11—C12—H12	120.1	N2-C28-H28	118.3
C13—C12—H12	120.1	C27—C28—H28	118.3
O6-C13-C14	124.69 (9)	C30—C29—C21	124.82 (9)
06-C13-C12	115 20 (8)	C_{30} C_{29} H_{29}	117.6
00 010 012			

C14—C13—C12	120.11 (9)	C21—C29—H29	117.6
C15—C14—C13	119.42 (9)	C29—C30—C26	126.47 (9)
C15—C14—H14	120.3	С29—С30—Н30	116.8
C13—C14—H14	120.3	С26—С30—Н30	116.8
C6—C1—C2—C3	-1.41 (14)	C13—C14—C15—C10	0.81 (14)
C7—C1—C2—C3	179.01 (8)	C15—C10—C16—O5	178.78 (9)
C1—C2—C3—C4	-0.64 (14)	C11—C10—C16—O5	-2.10(14)
C8—O3—C4—C3	176.51 (8)	C15-C10-C16-O4	-1.78 (13)
C8—O3—C4—C5	-2.87 (13)	C11—C10—C16—O4	177.33 (8)
C2—C3—C4—O3	-176.95 (8)	C13—O6—C17—C18	-179.28 (8)
C2—C3—C4—C5	2.45 (14)	C23—N1—C19—C20	0.14 (14)
O3—C4—C5—C6	177.18 (8)	N1-C19-C20-C21	-0.13 (15)
C3—C4—C5—C6	-2.17 (14)	C19—C20—C21—C22	0.04 (14)
C2—C1—C6—C5	1.69 (14)	C19—C20—C21—C29	179.78 (8)
C7—C1—C6—C5	-178.72 (8)	C20-C21-C22-C23	0.04 (14)
C4—C5—C6—C1	0.10 (14)	C29—C21—C22—C23	-179.69 (9)
C6—C1—C7—O2	-6.00 (14)	C19—N1—C23—C22	-0.05 (14)
C2—C1—C7—O2	173.58 (9)	C21—C22—C23—N1	-0.04 (15)
C6—C1—C7—O1	173.62 (8)	C28—N2—C24—C25	0.33 (14)
C2—C1—C7—O1	-6.80 (13)	N2-C24-C25-C26	-0.90 (15)
C4—O3—C8—C9	-167.74 (8)	C24—C25—C26—C27	0.98 (14)
C15—C10—C11—C12	0.81 (14)	C24—C25—C26—C30	-178.40 (8)
C16—C10—C11—C12	-178.33 (9)	C25—C26—C27—C28	-0.58 (15)
C10-C11-C12-C13	0.96 (15)	C30—C26—C27—C28	178.77 (9)
C17—O6—C13—C14	2.93 (13)	C24—N2—C28—C27	0.09 (16)
C17—O6—C13—C12	-176.60 (8)	C26—C27—C28—N2	0.05 (17)
C11—C12—C13—O6	177.69 (8)	C22—C21—C29—C30	-8.51 (15)
C11—C12—C13—C14	-1.86 (14)	C20-C21-C29-C30	171.76 (9)
O6—C13—C14—C15	-178.53 (8)	C21—C29—C30—C26	-179.62 (8)
C12—C13—C14—C15	0.98 (14)	C25—C26—C30—C29	176.47 (9)
C11—C10—C15—C14	-1.70 (14)	C27—C26—C30—C29	-2.87 (16)
C16—C10—C15—C14	177.41 (8)		

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C10–C15 benzene ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
01—H1…N1	1.02 (2)	1.57 (2)	2.5931 (14)	178 (3)
O4—H4…N2	0.93 (2)	1.76 (2)	2.6858 (15)	177 (2)
C8—H8A····O5 ⁱ	0.99	2.50	3.316 (2)	139
C20—H20…O2 ⁱ	0.95	2.29	3.238 (2)	173
C23—H23…O1 ⁱⁱ	0.95	2.58	3.449 (2)	152
C24—H24…O2 ⁱⁱⁱ	0.95	2.47	3.2993 (17)	146
С28—Н28…О5	0.95	2.56	3.2291 (19)	128
C8—H8 B ···· Cg^{iv}	0.00	2.75	3.6471 (18)	150

Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+2, -z+1; (iv) x+1, y-2, z+1.

(III) 4-*n*-Propoxybenzoic acid–(*E*)-1,2-di(pyridin-4-yl)ethene (2/1)

Crystal data

 $2C_{10}H_{12}O_3 \cdot C_{12}H_{10}N_2$ $M_r = 542.63$ Monoclinic, Pc Hall symbol: P -2yc a = 11.1192 (18) Åb = 10.8289 (13) Åc = 23.020(3) Å $\beta = 93.517 \ (8)^{\circ}$ V = 2766.6 (7) Å³ Z = 4

Data collection

Rigaku R-AXIS RAPIDII diffractometer	11868 independent reflections 11427 reflections with $I > 2\sigma(I)$
Detector resolution: 10.000 pixels mm ⁻¹	$R_{\rm int} = 0.022$
ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
Absorption correction: multi-scan	$h = -14 \rightarrow 14$
(ABSCOR; Higashi, 1995)	$k = -13 \rightarrow 14$
$T_{\min} = 0.914, T_{\max} = 0.991$	$l = -29 \longrightarrow 29$
43672 measured reflections	
Refinement	
Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.032$	and constrained refinement
$wR(F^2) = 0.080$	$w = 1/[\sigma^2(F_o^2) + (0.0601P)^2 + 0.1097P]$

 $w = 1/[\sigma^2(F_o^2) + (0.0601P)^2 + 0.1097P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.45 \text{ e} \text{ Å}^{-3}$ Primary atom site location: structure-invariant Absolute structure: Refined as an inversion twin. Secondary atom site location: difference Fourier Absolute structure parameter: 0.0 (5)

F(000) = 1152.00

 $\theta = 3.1 - 30.1^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$

Block, colorless

 $0.47 \times 0.27 \times 0.10 \text{ mm}$

T = 93 K

 $D_{\rm x} = 1.303 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71075$ Å

Cell parameters from 52745 reflections

Special details

S = 1.06

11868 reflections

direct methods

742 parameters

2 restraints

map

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.32953 (12)	0.53144 (11)	0.14865 (5)	0.0194 (2)	
O2	0.32547 (13)	0.32943 (11)	0.16857 (5)	0.0256 (3)	
O3	0.15985 (11)	0.32000 (10)	-0.09975 (5)	0.0175 (2)	
O4	0.74306 (11)	0.61561 (10)	0.76437 (5)	0.0192 (2)	
05	0.74264 (12)	0.40996 (11)	0.75692 (5)	0.0246 (3)	

O6	0.90934 (11)	0.50197 (10)	1.02430 (5)	0.0170 (2)
07	1.64469 (10)	-0.01975 (11)	0.11593 (6)	0.0192 (2)
08	1.65201 (11)	-0.22435 (11)	0.10387 (6)	0.0231 (3)
09	2.16733 (10)	-0.04986 (11)	0.02766 (5)	0.0184 (2)
O10	0.42885 (10)	-0.04174 (10)	0.31208 (6)	0.0189 (2)
011	0.44387 (11)	0.16385 (11)	0.31005 (6)	0.0232(3)
012	-0.08488(10)	0.10616 (10)	0.39427(5)	0.0180(2)
N1	0 40817 (12)	0 55374 (13)	0 25966 (6)	0.0164(3)
N2	0.65872(13)	0.61638(12)	0.65662 (6)	0.0162(3)
N3	143371(12)	-0.05632(13)	0.15388(6)	0.0102(3)
N4	0.64132(12)	-0.02903(12)	0 27170 (6)	0.0101(3)
C1	0.07132(12) 0.27225(14)	0.39443(14)	0.27180(7)	0.0133(3) 0.0142(3)
C^2	0.27223(11) 0.25007(14)	0.39113(11) 0.49248(14)	0.03367(7)	0.0112(3)
С2 H2	0.2613	0.5746	0.03307 (7)	0.0101 (3)
C3	0.2013	0.3740 0.47258(14)	-0.02430(7)	0.019
	0.1061	0.47238 (14)	-0.02430 (7)	0.0104(3)
115 C4	0.1901 0.10672 (14)	0.3404 0.25145 (14)	-0.0433	0.020
C4	0.19072(14) 0.21082(14)	0.55145(14) 0.25211(14)	-0.04430(7)	0.0140(3)
C3	0.21982 (14)	0.23211(14)	-0.00039(7)	0.0133(3)
H3 C(0.2102	0.1098	-0.0202	0.018°
C6	0.25659 (14)	0.2/355 (14)	0.05111(/)	0.0155 (3)
H6	0.2714	0.2058	0.0768	0.019*
C7	0.31161 (14)	0.41411 (15)	0.13429 (7)	0.0159 (3)
C8	0.13607 (15)	0.41/3/(15)	-0.14122 (7)	0.0167 (3)
H8A	0.2100	0.4662	-0.1461	0.020*
H8B	0.0729	0.4732	-0.1279	0.020*
C9	0.09421 (16)	0.35684 (16)	-0.19813 (7)	0.0204 (3)
H9A	0.0196	0.3093	-0.1928	0.024*
H9B	0.1567	0.2986	-0.2101	0.024*
C10	0.07013 (17)	0.45360 (18)	-0.24547 (8)	0.0259 (4)
H10A	0.0375	0.4133	-0.2812	0.039*
H10B	0.1456	0.4957	-0.2531	0.039*
H10C	0.0118	0.5140	-0.2326	0.039*
C11	0.79737 (14)	0.50089 (14)	0.84888 (7)	0.0144 (3)
C12	0.81679 (14)	0.38887 (14)	0.87723 (7)	0.0163 (3)
H12	0.8040	0.3141	0.8561	0.020*
C13	0.85464 (15)	0.38402 (14)	0.93601 (7)	0.0159 (3)
H13	0.8679	0.3068	0.9549	0.019*
C14	0.87278 (14)	0.49443 (15)	0.96683 (7)	0.0145 (3)
C15	0.85349 (15)	0.60769 (14)	0.93858 (7)	0.0165 (3)
H15	0.8663	0.6826	0.9595	0.020*
C16	0.81583 (14)	0.61066 (14)	0.88022 (7)	0.0154 (3)
H16	0.8024	0.6878	0.8613	0.019*
C17	0.75811 (14)	0.50347 (14)	0.78582 (7)	0.0155 (3)
C18	0.92950 (15)	0.38910 (14)	1.05584 (7)	0.0159 (3)
H18A	0.9930	0.3400	1.0382	0.019*
H18B	0.8546	0.3395	1.0547	0.019*
C19	0.96841 (15)	0.42194 (15)	1.11810(7)	0.0170 (3)
H19A	0.9047	0.4715	1.1352	0.020*

H19B	1.0427	0.4725	1.1188	0.020*
C20	0.99190 (17)	0.30527 (16)	1.15432 (7)	0.0215 (3)
H20A	1.0557	0.2567	1.1376	0.032*
H20B	0.9180	0.2560	1.1542	0.032*
H20C	1.0172	0.3283	1.1944	0.032*
C21	0.44175 (14)	0.44775 (15)	0.28601 (7)	0.0172 (3)
H21	0.4361	0.3734	0.2641	0.021*
C22	0.48435 (14)	0.44187 (15)	0.34388 (7)	0.0162 (3)
H22	0.5084	0.3649	0.3606	0.019*
C23	0.49178 (14)	0.54936 (15)	0.37746 (7)	0.0146 (3)
C24	0.45676 (14)	0.65969 (14)	0.34977 (7)	0.0162 (3)
H24	0.4603	0.7353	0.3707	0.019*
C25	0.41696 (15)	0.65777 (15)	0.29160 (7)	0.0170 (3)
H25	0.3947	0.7337	0.2733	0.020*
C26	0.62835 (14)	0.72313 (14)	0.63042 (7)	0.0163 (3)
H26	0.6371	0.7973	0.6523	0.020*
C27	0.58483 (14)	0.73036 (14)	0.57292 (7)	0.0157 (3)
H27	0.5628	0.8080	0.5562	0.019*
C28	0.57348 (14)	0.62230 (14)	0.53938 (7)	0.0143 (3)
C29	0.60595 (15)	0.51143 (14)	0.56720 (7)	0.0163 (3)
H29	0.6003	0.4358	0.5463	0.020*
C30	0.64636 (15)	0.51207 (15)	0.62520 (7)	0.0175 (3)
H30	0.6662	0.4356	0.6436	0.021*
C31	0.53612 (14)	0.54115 (15)	0.43876 (7)	0.0157 (3)
H31	0.5727	0.4657	0.4514	0.019*
C32	0.52930 (14)	0.63108 (15)	0.47830(7)	0.0151 (3)
H32	0.4929	0.7066	0.4657	0.018*
C33	1.82306 (14)	-0.10410 (14)	0.08278 (7)	0.0143 (3)
C34	1.87138 (15)	0.01377 (14)	0.07642 (7)	0.0155 (3)
H34	1.8251	0.0844	0.0851	0.019*
C35	1.98640 (15)	0.02828 (14)	0.05759 (7)	0.0163 (3)
H35	2.0184	0.1088	0.0530	0.020*
C36	2.05535 (14)	-0.07502(15)	0.04539(7)	0.0155 (3)
C37	2.00860 (15)	-0.19323 (15)	0.05190 (7)	0.0168 (3)
H37	2.0552	-0.2638	0.0435	0.020*
C38	1.89264 (14)	-0.20662 (14)	0.07082 (7)	0.0155 (3)
H38	1.8606	-0.2871	0.0756	0.019*
C39	1.69845 (14)	-0.12297 (14)	0.10180 (7)	0.0147 (3)
C40	2.23943 (14)	-0.15240 (15)	0.01121 (7)	0.0169 (3)
H40A	2.1987	-0.1966	-0.0221	0.020*
H40B	2.2510	-0.2110	0.0441	0.020*
C41	2.36007 (15)	-0.10366 (16)	-0.00547 (7)	0.0196 (3)
H41A	2.4001	-0.0588	0.0278	0.024*
H41B	2.3481	-0.0453	-0.0384	0.024*
C42	2.43915 (17)	-0.21100 (18)	-0.02284 (9)	0.0282 (4)
H42A	2.4542	-0.2663	0.0105	0.042*
H42B	2.5160	-0.1790	-0.0352	0.042*
H42C	2.3981	-0.2567	-0.0550	0.042*

C43	0.26098 (14)	0.07523 (14)	0.33818 (7)	0.0148 (3)
C44	0.20144 (14)	-0.03061 (14)	0.35473 (7)	0.0152 (3)
H44	0.2407	-0.1083	0.3529	0.018*
C45	0.08563 (14)	-0.02495 (14)	0.37387 (7)	0.0154 (3)
H45	0.0460	-0.0980	0.3853	0.018*
C46	0.02829 (14)	0.08912 (15)	0.37615 (7)	0.0149 (3)
C47	0.08671 (15)	0.19663 (14)	0.35876 (7)	0.0183 (3)
H47	0.0470	0.2742	0.3597	0.022*
C48	0.20245 (15)	0.18907 (15)	0.34025 (7)	0.0183 (3)
H48	0.2424	0.2619	0.3289	0.022*
C49	0.38641 (14)	0.07066 (14)	0.31880 (7)	0.0151 (3)
C50	-0.15245 (14)	-0.00148 (15)	0.40715 (7)	0.0162 (3)
H50A	-0.1097	-0.0492	0.4387	0.019*
H50B	-0.1626	-0.0549	0.3723	0.019*
C51	-0.27412 (15)	0.04002 (15)	0.42582 (7)	0.0188 (3)
H51A	-0.3160	0.0884	0.3942	0.023*
H51B	-0.2632	0.0938	0.4605	0.023*
C52	-0.34991 (16)	-0.07171 (17)	0.43997 (9)	0.0256 (4)
H52A	-0.3600	-0.1250	0.4056	0.038*
H52B	-0.4291	-0.0441	0.4513	0.038*
H52C	-0.3095	-0.1179	0.4721	0.038*
C53	1.37844 (15)	-0.16641 (14)	0.15381 (7)	0.0158 (3)
H53	1.4217	-0.2375	0.1429	0.019*
C54	1.26071 (14)	-0.18018 (14)	0.16912 (7)	0.0154 (3)
H54	1.2243	-0.2596	0.1684	0.018*
C55	1.19548 (14)	-0.07673 (14)	0.18562 (6)	0.0136 (3)
C56	1.25420 (15)	0.03742 (14)	0.18563 (7)	0.0154 (3)
H56	1.2136	0.1104	0.1963	0.018*
C57	1.37192 (15)	0.04280 (15)	0.16993 (7)	0.0164 (3)
H57	1.4111	0.1208	0.1705	0.020*
C58	0.69887 (14)	0.07938 (14)	0.27061 (7)	0.0152 (3)
H58	0.6572	0.1521	0.2807	0.018*
C59	0.81687 (14)	0.08950 (14)	0.25528 (7)	0.0151 (3)
H59	0.8551	0.1679	0.2554	0.018*
C60	0.87958 (14)	-0.01604 (14)	0.23960 (6)	0.0139 (3)
C61	0.81821 (14)	-0.12871 (14)	0.24027 (7)	0.0154 (3)
H61	0.8570	-0.2029	0.2297	0.018*
C62	0.70047 (14)	-0.13104 (15)	0.25645 (7)	0.0163 (3)
H62	0.6597	-0.2081	0.2568	0.020*
C63	1.07037 (14)	-0.09180 (14)	0.20120 (6)	0.0146 (3)
H63	1.0336	-0.1701	0.1944	0.018*
C64	1.00481 (14)	-0.00392 (14)	0.22417 (7)	0.0153 (3)
H64	1.0426	0.0738	0.2312	0.018*
H1	0.362 (4)	0.539 (4)	0.1878 (17)	0.086 (12)*
H4	0.711 (3)	0.615 (3)	0.7237 (13)	0.050 (8)*
H7	1.564 (2)	-0.044 (3)	0.1301 (11)	0.040 (7)*
H10D	0.508 (3)	-0.036 (3)	0.2969 (14)	0.055 (9)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0288 (6)	0.0148 (5)	0.0139 (5)	0.0000 (5)	-0.0040 (5)	-0.0016 (4)
O2	0.0432 (8)	0.0150 (5)	0.0174 (6)	-0.0006 (5)	-0.0085 (5)	0.0000 (4)
03	0.0257 (6)	0.0137 (5)	0.0126 (5)	0.0002 (4)	-0.0019 (4)	0.0009 (4)
O4	0.0296 (6)	0.0137 (5)	0.0136 (5)	-0.0012 (5)	-0.0045 (5)	0.0009 (4)
O5	0.0400 (7)	0.0147 (5)	0.0181 (6)	-0.0005 (5)	-0.0064 (5)	-0.0021 (5)
O6	0.0237 (6)	0.0138 (5)	0.0129 (5)	0.0008 (4)	-0.0024 (5)	0.0003 (4)
O7	0.0151 (5)	0.0134 (5)	0.0300 (6)	0.0006 (4)	0.0069 (5)	-0.0004 (4)
08	0.0206 (6)	0.0158 (5)	0.0333 (7)	-0.0029 (5)	0.0052 (5)	-0.0027 (5)
09	0.0164 (5)	0.0157 (5)	0.0239 (6)	0.0012 (4)	0.0076 (5)	0.0001 (4)
O10	0.0148 (5)	0.0138 (5)	0.0286 (6)	0.0013 (4)	0.0061 (5)	0.0014 (5)
O11	0.0195 (6)	0.0141 (5)	0.0369 (7)	-0.0021 (5)	0.0090 (5)	-0.0015 (5)
O12	0.0155 (5)	0.0152 (5)	0.0237 (6)	-0.0002 (4)	0.0056 (5)	-0.0006 (4)
N1	0.0181 (6)	0.0164 (6)	0.0144 (6)	-0.0012 (5)	-0.0007 (5)	-0.0004 (5)
N2	0.0186 (6)	0.0159 (6)	0.0138 (6)	-0.0016 (5)	-0.0014 (5)	0.0000 (5)
N3	0.0143 (6)	0.0174 (6)	0.0167 (6)	0.0012 (5)	0.0011 (5)	0.0014 (5)
N4	0.0143 (6)	0.0152 (6)	0.0169 (6)	0.0008 (5)	0.0017 (5)	0.0009 (5)
C1	0.0139 (7)	0.0149 (7)	0.0138 (7)	0.0006 (5)	0.0006 (6)	-0.0007 (6)
C2	0.0183 (7)	0.0127 (7)	0.0172 (7)	-0.0006 (6)	0.0009 (6)	-0.0016 (6)
С3	0.0202 (8)	0.0116 (7)	0.0172 (7)	-0.0001 (5)	-0.0003 (6)	0.0025 (5)
C4	0.0137 (7)	0.0162 (7)	0.0139 (7)	-0.0003 (6)	0.0011 (6)	-0.0013 (6)
C5	0.0176 (7)	0.0102 (6)	0.0182 (7)	0.0004 (5)	0.0011 (6)	-0.0016 (6)
C6	0.0171 (7)	0.0131 (7)	0.0162 (7)	0.0007 (5)	-0.0001 (6)	0.0020 (6)
C7	0.0166 (7)	0.0162 (7)	0.0148 (7)	0.0006 (6)	-0.0007 (6)	-0.0012 (6)
C8	0.0195 (7)	0.0153 (7)	0.0150 (7)	0.0005 (6)	-0.0007 (6)	0.0026 (6)
С9	0.0236 (8)	0.0224 (8)	0.0149 (7)	0.0016 (6)	-0.0013 (6)	0.0004 (6)
C10	0.0276 (9)	0.0323 (9)	0.0175 (8)	0.0044 (7)	-0.0007 (7)	0.0053 (7)
C11	0.0143 (7)	0.0145 (7)	0.0143 (7)	-0.0005 (5)	-0.0003 (6)	0.0002 (6)
C12	0.0178 (7)	0.0134 (7)	0.0174 (7)	-0.0007 (6)	-0.0001 (6)	-0.0021 (6)
C13	0.0191 (7)	0.0117 (7)	0.0168 (7)	0.0001 (6)	-0.0001 (6)	0.0017 (6)
C14	0.0137 (7)	0.0162 (7)	0.0136 (7)	-0.0001 (5)	0.0000 (6)	0.0011 (5)
C15	0.0204 (7)	0.0127 (7)	0.0162 (7)	0.0000 (6)	-0.0009 (6)	-0.0021 (6)
C16	0.0178 (7)	0.0121 (7)	0.0162 (7)	0.0006 (6)	-0.0006 (6)	0.0007 (6)
C17	0.0152 (7)	0.0152 (7)	0.0159 (7)	-0.0011 (5)	-0.0002 (6)	0.0001 (6)
C18	0.0191 (8)	0.0143 (7)	0.0140 (7)	0.0011 (6)	-0.0006 (6)	0.0024 (6)
C19	0.0197 (8)	0.0179 (7)	0.0133 (7)	-0.0001 (6)	0.0001 (6)	0.0001 (6)
C20	0.0301 (9)	0.0189 (8)	0.0150 (7)	-0.0004 (6)	-0.0028 (7)	0.0002 (6)
C21	0.0193 (8)	0.0157 (7)	0.0166 (7)	-0.0017 (6)	0.0002 (6)	-0.0029 (6)
C22	0.0177 (7)	0.0140 (7)	0.0166 (7)	0.0006 (6)	-0.0001 (6)	0.0002 (6)
C23	0.0121 (7)	0.0169 (7)	0.0147 (7)	-0.0019 (5)	-0.0001 (6)	-0.0005 (6)
C24	0.0187 (8)	0.0140 (7)	0.0157 (7)	-0.0009 (6)	-0.0008 (6)	-0.0023 (6)
C25	0.0196 (8)	0.0143 (7)	0.0166 (7)	-0.0012 (6)	-0.0014 (6)	0.0013 (6)
C26	0.0191 (7)	0.0148 (7)	0.0148 (7)	-0.0005 (6)	0.0008 (6)	-0.0018 (6)
C27	0.0179 (7)	0.0133 (7)	0.0160 (7)	0.0014 (6)	0.0008 (6)	0.0012 (6)
C28	0.0123 (7)	0.0164 (7)	0.0141 (7)	-0.0018 (5)	0.0011 (6)	-0.0002 (6)
C29	0.0189 (7)	0.0136 (7)	0.0163 (7)	-0.0015 (6)	-0.0012 (6)	-0.0012 (6)

C30	0.0206 (8)	0.0142 (7)	0.0174 (8)	-0.0002 (6)	-0.0014 (6)	0.0025 (6)
C31	0.0166 (7)	0.0157 (7)	0.0145 (7)	-0.0012 (6)	-0.0010 (6)	0.0009 (6)
C32	0.0146 (7)	0.0155 (7)	0.0149 (7)	-0.0011 (5)	-0.0008 (6)	0.0016 (6)
C33	0.0155 (7)	0.0149 (7)	0.0126 (7)	-0.0006 (6)	0.0000 (6)	-0.0008(5)
C34	0.0177 (7)	0.0134 (7)	0.0155 (7)	0.0017 (6)	0.0007 (6)	-0.0011 (5)
C35	0.0187 (8)	0.0128 (7)	0.0174 (7)	-0.0005 (6)	0.0021 (6)	-0.0005 (5)
C36	0.0157 (7)	0.0193 (8)	0.0113 (6)	-0.0004 (6)	0.0000 (6)	-0.0002 (6)
C37	0.0171 (7)	0.0143 (7)	0.0189 (7)	0.0025 (6)	0.0018 (6)	-0.0029 (6)
C38	0.0197 (8)	0.0108 (7)	0.0160 (7)	-0.0013 (6)	0.0000 (6)	-0.0011 (5)
C39	0.0158 (7)	0.0136 (7)	0.0146 (7)	0.0001 (6)	-0.0008 (6)	0.0003 (5)
C40	0.0163 (7)	0.0166 (7)	0.0180 (7)	0.0021 (6)	0.0024 (6)	-0.0015 (6)
C41	0.0175 (8)	0.0215 (8)	0.0202 (7)	0.0010 (6)	0.0041 (6)	0.0019 (6)
C42	0.0200 (8)	0.0284 (9)	0.0371 (10)	0.0055 (7)	0.0088 (8)	-0.0008 (8)
C43	0.0133 (7)	0.0157 (7)	0.0154 (7)	-0.0011 (6)	0.0007 (6)	-0.0013 (6)
C44	0.0159 (7)	0.0124 (7)	0.0171 (7)	0.0020 (5)	0.0000 (6)	0.0002 (5)
C45	0.0161 (7)	0.0138 (7)	0.0162 (7)	-0.0021 (6)	0.0002 (6)	0.0019 (5)
C46	0.0145 (7)	0.0166 (7)	0.0138 (7)	-0.0001 (6)	0.0015 (6)	-0.0011 (6)
C47	0.0184 (8)	0.0121 (7)	0.0247 (8)	0.0022 (6)	0.0034 (6)	-0.0007 (6)
C48	0.0177 (8)	0.0140 (7)	0.0233 (8)	-0.0026 (6)	0.0027 (6)	0.0007 (6)
C49	0.0159 (7)	0.0137 (7)	0.0156 (7)	0.0000 (5)	0.0012 (6)	-0.0001 (5)
C50	0.0171 (7)	0.0151 (7)	0.0167 (7)	-0.0019 (6)	0.0032 (6)	0.0007 (6)
C51	0.0173 (7)	0.0205 (8)	0.0190 (8)	-0.0007 (6)	0.0045 (6)	0.0002 (6)
C52	0.0198 (8)	0.0249 (9)	0.0327 (9)	-0.0034 (7)	0.0075 (7)	0.0030(7)
C53	0.0162 (7)	0.0147 (7)	0.0165 (7)	0.0037 (6)	0.0017 (6)	0.0006 (6)
C54	0.0166 (7)	0.0144 (7)	0.0151 (7)	-0.0009 (6)	0.0003 (6)	0.0007 (5)
C55	0.0137 (7)	0.0167 (7)	0.0103 (6)	0.0008 (6)	0.0000 (5)	0.0014 (5)
C56	0.0164 (7)	0.0138 (7)	0.0160 (7)	0.0026 (6)	0.0015 (6)	0.0009 (5)
C57	0.0173 (7)	0.0147 (7)	0.0174 (7)	-0.0019 (6)	0.0020 (6)	0.0013 (6)
C58	0.0171 (7)	0.0136 (7)	0.0150 (7)	0.0027 (6)	0.0019 (6)	0.0011 (5)
C59	0.0173 (7)	0.0120 (7)	0.0160 (7)	-0.0008(5)	0.0008 (6)	0.0012 (5)
C60	0.0144 (7)	0.0159 (7)	0.0113 (6)	0.0000 (6)	0.0000 (5)	0.0020 (5)
C61	0.0170 (7)	0.0128 (7)	0.0163 (7)	0.0021 (6)	0.0007 (6)	-0.0007 (5)
C62	0.0157 (8)	0.0148 (7)	0.0182 (7)	-0.0013 (5)	0.0007 (6)	0.0003 (6)
C63	0.0141 (7)	0.0154 (7)	0.0143 (7)	-0.0016 (6)	0.0000 (6)	0.0010 (5)
C64	0.0141 (7)	0.0156 (7)	0.0162 (7)	-0.0011 (6)	0.0012 (6)	0.0015 (6)

Geometric parameters (Å, °)

01—C7	1.325 (2)	C24—H24	0.9500
01—H1	0.95 (4)	С25—Н25	0.9500
O2—C7	1.214 (2)	C26—C27	1.383 (2)
O3—C4	1.3598 (18)	C26—H26	0.9500
O3—C8	1.4360 (18)	C27—C28	1.403 (2)
O4—C17	1.3177 (19)	С27—Н27	0.9500
O4—H4	0.98 (3)	C28—C29	1.398 (2)
O5—C17	1.218 (2)	C28—C32	1.464 (2)
O6—C14	1.3625 (18)	C29—C30	1.383 (2)
O6—C18	1.4322 (18)	С29—Н29	0.9500

O7—C39	1.3177 (19)	С30—Н30	0.9500
O7—H7	1.01 (3)	C31—C32	1.338 (2)
O8—C39	1.215 (2)	C31—H31	0.9500
O9—C36	1.361 (2)	С32—Н32	0.9500
O9—C40	1.4340 (18)	C33—C38	1.390 (2)
O10—C49	1.3180 (19)	C33—C34	1.396 (2)
O10—H10D	0.97 (3)	C33—C39	1.493 (2)
O11—C49	1.218 (2)	C34—C35	1.384 (2)
O12—C46	1.3624 (19)	С34—Н34	0.9500
O12—C50	1.4278 (19)	C35—C36	1.394 (2)
N1—C21	1.340 (2)	С35—Н35	0.9500
N1—C25	1.346 (2)	C36—C37	1.393 (2)
N2—C26	1.338 (2)	C37—C38	1.394 (2)
N2—C30	1.344 (2)	С37—Н37	0.9500
N3—C57	1.339 (2)	C38—H38	0.9500
N3—C53	1.341 (2)	C40—C41	1.513 (2)
N4—C58	1.338 (2)	C40—H40A	0.9900
N4—C62	1.343 (2)	C40—H40B	0.9900
C1—C2	1.390 (2)	C41—C42	1.526 (2)
C1—C6	1.400 (2)	C41—H41A	0.9900
C1—C7	1.493 (2)	C41—H41B	0.9900
C2—C3	1.393 (2)	C42—H42A	0.9800
С2—Н2	0.9500	C42—H42B	0.9800
C3—C4	1.397 (2)	C42—H42C	0.9800
С3—Н3	0.9500	C43—C44	1.389 (2)
C4—C5	1.399 (2)	C43—C48	1.396 (2)
C5—C6	1.381 (2)	C43—C49	1.491 (2)
С5—Н5	0.9500	C44—C45	1.388 (2)
С6—Н6	0.9500	C44—H44	0.9500
C8—C9	1.512 (2)	C45—C46	1.393 (2)
C8—H8A	0.9900	C45—H45	0.9500
C8—H8B	0.9900	C46—C47	1.403 (2)
C9—C10	1.524 (2)	C47—C48	1.383 (2)
С9—Н9А	0.9900	C47—H47	0.9500
С9—Н9В	0.9900	C48—H48	0.9500
C10—H10A	0.9800	C50—C51	1.513 (2)
C10—H10B	0.9800	C50—H50A	0.9900
C10—H10C	0.9800	С50—Н50В	0.9900
C11—C12	1.388 (2)	C51—C52	1.521 (2)
C11—C16	1.399 (2)	C51—H51A	0.9900
C11—C17	1.490 (2)	C51—H51B	0.9900
C12—C13	1.393 (2)	С52—Н52А	0.9800
C12—H12	0.9500	С52—Н52В	0.9800
C13—C14	1.399 (2)	С52—Н52С	0.9800
C13—H13	0.9500	C53—C54	1.384 (2)
C14—C15	1.399 (2)	С53—Н53	0.9500
C15—C16	1.383 (2)	C54—C55	1.400 (2)
C15—H15	0.9500	С54—Н54	0.9500

C16—H16	0.9500	C55—C56	1.398 (2)
C18—C19	1.514 (2)	C55—C63	1.467 (2)
C18—H18A	0.9900	C56—C57	1.380 (2)
C18—H18B	0.9900	С56—Н56	0.9500
C19—C20	1.527 (2)	С57—Н57	0.9500
C19—H19A	0.9900	C58—C59	1 384 (2)
C19—H19B	0.9900	C58—H58	0.9500
C_{20} H20A	0.9900	C59 - C60	1.398(2)
C20—H20B	0.9800	C59-H59	0.9500
C_{20} H20C	0.9800	C60 $C61$	1.300(2)
$C_{20} = 1120C$	1 288 (2)	C60 - C61	1.399(2)
$C_{21} - C_{22}$	1.300 (2)	$C_{00} = C_{04}$	1.404(2) 1.382(2)
	0.9300	C01-C02	1.383 (2)
C22—C23	1.397 (2)		0.9500
C22—H22	0.9500	С62—Н62	0.9500
C23—C24	1.398 (2)	C63—C64	1.328 (2)
C23—C31	1.469 (2)	С63—Н63	0.9500
C24—C25	1.384 (2)	C64—H64	0.9500
C7—O1—H1	111 (2)	C32 - C31 - C23	125 44 (14)
C4-03-C8	118(2) 118 22 (12)	C_{32} C_{31} H_{31}	117.3
$C_{17} - O_{4} - H_{4}$	110.22(12) 112.7(17)	C_{23} C_{31} H_{31}	117.3
$C_{14} - 06 - C_{18}$	112.7(17) 117.98(12)	$C_{23} = C_{31} = C_{28}$	125 19 (14)
$C_{14}^{-00} = C_{18}^{-01}$	117.90(12) 106.7(16)	$C_{31} = C_{32} = C_{20}$	117 4
$C_{3}^{2} = 0^{7} = 11^{7}$	100.7(10) 117.42(12)	$C_{31} = C_{32} = H_{32}$	117.4
$C_{30} = 0_{9} = C_{40}$	117.42(12) 109.7(19)	$C_{28} = C_{32} = C_{34}$	11/.4
C49—010—H10D	108.7 (18)	$C_{38} = C_{33} = C_{34}$	119.14 (14)
C46-012-C30	117.43 (12)	$C_{38} = C_{33} = C_{39}$	119.12 (13)
$C_2I = NI = C_2S$	117.43 (14)	$C_{34} - C_{33} - C_{39}$	121.74 (14)
C26—N2—C30	117.97 (14)	C35—C34—C33	120.37 (14)
C57—N3—C53	118.04 (14)	C35—C34—H34	119.8
C58—N4—C62	118.30 (14)	C33—C34—H34	119.8
C2—C1—C6	119.07 (14)	C34—C35—C36	120.13 (15)
C2—C1—C7	121.97 (14)	С34—С35—Н35	119.9
C6—C1—C7	118.96 (14)	С36—С35—Н35	119.9
C1—C2—C3	121.26 (14)	O9—C36—C37	124.77 (14)
C1—C2—H2	119.4	O9—C36—C35	115.09 (14)
С3—С2—Н2	119.4	C37—C36—C35	120.13 (15)
C2—C3—C4	118.99 (14)	C36—C37—C38	119.19 (14)
С2—С3—Н3	120.5	С36—С37—Н37	120.4
С4—С3—Н3	120.5	С38—С37—Н37	120.4
O3—C4—C3	124.59 (14)	C33—C38—C37	121.03 (14)
O3—C4—C5	115.24 (13)	C33—C38—H38	119.5
C3—C4—C5	120.17 (14)	С37—С38—Н38	119.5
C6-C5-C4	120.07 (14)	08-039-07	123.80 (15)
С6—С5—Н5	120.0	08-C39-C33	122.64 (14)
C4—C5—H5	120.0	07 - C39 - C33	113 56 (13)
$C_{5} - C_{6} - C_{1}$	120.0	09-C40-C41	$108\ 40\ (13)$
С5—С6—Н6	110.8	$O9-C40-H40\Delta$	110.0
C1-C6-H6	119.8	C41 - C40 - H40A	110.0
	117.0		110.0

O2—C7—O1	123.45 (15)	O9—C40—H40B	110.0
O2—C7—C1	122.46 (14)	C41—C40—H40B	110.0
O1—C7—C1	114.09 (13)	H40A—C40—H40B	108.4
O3—C8—C9	106.97 (13)	C40—C41—C42	109.57 (14)
O3—C8—H8A	110.3	C40—C41—H41A	109.8
С9—С8—Н8А	110.3	C42—C41—H41A	109.8
O3—C8—H8B	110.3	C40—C41—H41B	109.8
С9—С8—Н8В	110.3	C42—C41—H41B	109.8
H8A—C8—H8B	108.6	H41A—C41—H41B	108.2
C8—C9—C10	110.65 (15)	C41—C42—H42A	109.5
C8-C9-H9A	109.5	C41-C42-H42B	109.5
C10-C9-H9A	109.5	H42A - C42 - H42B	109.5
C8-C9-H9B	109.5	C41 - C42 - H42C	109.5
C10-C9-H9B	109.5	H42A - C42 - H42C	109.5
H9A - C9 - H9B	108.1	H42B-C42-H42C	109.5
C9-C10-H10A	109.5	C44 - C43 - C48	119 23 (14)
C_{0} C_{10} H_{10} H_{10}	109.5	C44 - C43 - C49	119.29(14) 121.69(14)
	109.5	$C_{44} = C_{43} = C_{49}$	121.09(14) 110.08(14)
C_{0}	109.5	C45 - C44 - C43	117.00(14) 121.20(14)
H_{10A} $-C_{10}$ H_{10C}	109.5	C45 - C44 - H44	119.4
$H_{10}B_{}C_{10}-H_{10}C$	109.5	C43 - C44 - H44	119.4
C_{12} C_{11} C_{16}	109.5	C_{43} C_{45} C_{46}	119.4
C_{12} C_{11} C_{10} C_{12} C_{11} C_{17}	119.11(14) 120.14(14)	C44 - C45 - H45	120.4
$C_{12} = C_{11} = C_{17}$	120.14(14) 120.74(13)	$C_{44} = C_{45} = H_{45}$	120.4
$C_{10} - C_{11} - C_{12} - C_{13}$	120.74(13) 121.24(14)	$C_{40} - C_{45} - 1145$	120.4 124.42(14)
$C_{11} = C_{12} = C_{13}$	121.24 (14)	012 - C46 - C43	124.42(14) 115 30(14)
$C_{11} = C_{12} = H_{12}$	119.4	$C_{12} = C_{40} = C_{47}$	113.30(14) 120.27(14)
$C_{12} = C_{12} = C_{14}$	119.4	$C_{43} = C_{40} = C_{47}$	120.27(14)
$C_{12} = C_{13} = C_{14}$	119.06 (14)	$C_{48} = C_{47} = C_{40}$	119.05 (14)
C12 - C13 - H13	120.5	$C_{46} = C_{47} = H_{47}$	120.2
06 C14 C15	120.3 115.27(13)	$C_{40} - C_{47} - C$	120.2 120.40 (14)
06 - C14 - C13	113.27(13) 124.68(14)	C47 = C48 = U43	120.49 (14)
$C_{15} = C_{14} = C_{13}$	124.08(14) 120.04(14)	$C_{47} = C_{40} = H_{40}$	119.8
C16 - C15 - C14	120.04(14) 120.05(14)	C43 - C40 - C40	119.0 122.42(15)
C16 C15 H15	120.05 (14)	011 - C49 - 010	123.42(13) 122.13(14)
$C_{10} - C_{15} - H_{15}$	120.0	011 - C49 - C43	122.13(14)
$C_{14} - C_{15} - H_{15}$	120.0 120.48(14)	010 - 049 - 043	114.43(13) 107.02(12)
C15 - C16 - U16	120.46 (14)	012 - 050 - 051	107.92 (12)
C11 - C16 - H16	119.8	$C_{51} = C_{50} = H_{50A}$	110.1
CII—CI0—HI0	119.0	C_{31} C_{50} H_{50} H_{50}	110.1
05 - 017 - 04	123.44(15)	012—C30—H30B	110.1
03-017-011	122.05 (14)	C51—C50—H50B	110.1
04-C1/-C11	113.90 (13)	H50A-C50-H50B	108.4
06 - C18 - U18	107.85 (15)	$C_{50} = C_{51} = C_{52}$	109.96 (13)
$C_{10} = C_{10} = H_{10} A$	110.1	C_{50} C_{51} H_{51A}	109.7
C19 - C18 - H18A	110.1	C_{2} C_{31} H_{31} H_{31}	109.7
	110.1	C30-C31-H31B	109.7
	110.1		109.7
піод—Сід—ПідВ	108.3	пла—сл—плв	108.2

G10 G10 G 0 0	110 (0 (12)		100 5
C18—C19—C20	110.60 (13)	C51—C52—H52A	109.5
С18—С19—Н19А	109.5	С51—С52—Н52В	109.5
С20—С19—Н19А	109.5	H52A—C52—H52B	109.5
C18—C19—H19B	109.5	С51—С52—Н52С	109.5
С20—С19—Н19В	109.5	H52A—C52—H52C	109.5
H19A—C19—H19B	108.1	H52B—C52—H52C	109.5
C19—C20—H20A	109.5	N3—C53—C54	122.40 (14)
C19—C20—H20B	109.5	N3—C53—H53	118.8
H20A—C20—H20B	109.5	С54—С53—Н53	118.8
С19—С20—Н20С	109.5	C53—C54—C55	119.78 (14)
H20A—C20—H20C	109.5	С53—С54—Н54	120.1
H20B-C20-H20C	109.5	С55—С54—Н54	120.1
N1—C21—C22	122.88 (15)	C56—C55—C54	117.25 (14)
N1—C21—H21	118.6	C56—C55—C63	123.26 (14)
C22—C21—H21	118.6	C54—C55—C63	119.49 (14)
$C_{21} - C_{22} - C_{23}$	119.88 (14)	C57—C56—C55	119.19 (14)
C21—C22—H22	120.1	С57—С56—Н56	120.4
C_{23} C_{22} H_{22}	120.1	C55-C56-H56	120.1
$C_{23} = C_{23} = C_{24}$	117.02 (14)	N3-C57-C56	120.4 123 33 (14)
$C_{22} = C_{23} = C_{24}$	117.02(14) 110 10 (14)	N3 C57 H57	118.3
$C_{22} = C_{23} = C_{31}$	119.10(14) 123.88(14)	105 - 057 - 1157	118.3
$C_{24} = C_{23} = C_{31}$	123.00(14) 110.45(14)	$C_{50} - C_{57} - H_{57}$	110.3
$C_{23} = C_{24} = C_{23}$	119.45 (14)	$N4 - C_{30} - C_{39}$	122.44 (14)
C25—C24—H24	120.3	N4-C38-H38	118.8
C23—C24—H24	120.3	С59—С58—Н58	118.8
NI-C25-C24	123.32 (14)	C58—C59—C60	119.80 (14)
N1—C25—H25	118.3	С58—С59—Н59	120.1
C24—C25—H25	118.3	С60—С59—Н59	120.1
N2—C26—C27	122.98 (14)	C59—C60—C61	117.33 (14)
N2—C26—H26	118.5	C59—C60—C64	119.10 (14)
C27—C26—H26	118.5	C61—C60—C64	123.57 (14)
C26—C27—C28	119.58 (14)	C62—C61—C60	119.30 (14)
С26—С27—Н27	120.2	С62—С61—Н61	120.4
С28—С27—Н27	120.2	С60—С61—Н61	120.4
C29—C28—C27	116.88 (14)	N4—C62—C61	122.83 (14)
C29—C28—C32	123.92 (14)	N4—C62—H62	118.6
C27—C28—C32	119.20 (14)	С61—С62—Н62	118.6
C30—C29—C28	119.85 (15)	C64—C63—C55	124.72 (14)
С30—С29—Н29	120.1	С64—С63—Н63	117.6
C28—C29—H29	120.1	С55—С63—Н63	117.6
N2-C30-C29	122.72 (15)	C63 - C64 - C60	125 87 (14)
$N_2 = C_{30} = H_{30}$	118.6	C63 - C64 - H64	117.1
C_{29} C_{30} H_{30}	118.6	C60-C64-H64	117.1
62)-630-1130	110.0	00-00-110-	11/.1
C6—C1—C2—C3	0.6 (2)	C38—C33—C34—C35	1.0 (2)
C7—C1—C2—C3	-179.08 (14)	C39—C33—C34—C35	-178.71 (14)
C1—C2—C3—C4	-0.7 (2)	C33—C34—C35—C36	-0.6 (2)
C8—O3—C4—C3	0.9 (2)	C40—O9—C36—C37	3.9 (2)
C8—O3—C4—C5	-179.18 (13)	C40—O9—C36—C35	-176.38 (13)

~ ~ ~ ~ ~			
C2—C3—C4—O3	179.98 (14)	C34—C35—C36—O9	-179.49 (14)
C2—C3—C4—C5	0.1 (2)	C34—C35—C36—C37	0.2 (2)
O3—C4—C5—C6	-179.34 (13)	O9—C36—C37—C38	179.53 (14)
C3—C4—C5—C6	0.6 (2)	C35—C36—C37—C38	-0.2 (2)
C4—C5—C6—C1	-0.7(2)	C34—C33—C38—C37	-0.9 (2)
C2-C1-C6-C5	0.1 (2)	C39—C33—C38—C37	178.79 (14)
C7—C1—C6—C5	179.75 (14)	C36—C37—C38—C33	0.5 (2)
C2—C1—C7—O2	176.28 (16)	C38—C33—C39—O8	-4.7(2)
C6—C1—C7—O2	-3.4(2)	C34—C33—C39—O8	174.99 (16)
C2-C1-C7-01	-3.6(2)	C38—C33—C39—O7	175.30 (14)
$C_{6} - C_{1} - C_{7} - O_{1}$	176 79 (14)	$C_{34} - C_{33} - C_{39} - O_{7}$	-50(2)
C4 - C3 - C8 - C9	-178.66(13)	$C_{36} - C_{9} - C_{40} - C_{41}$	-17873(13)
$O_3 C_8 C_9 C_{10}$	-17838(13)	09 C40 C41 C42	170.75(13)
$C_{16} = C_{11} = C_{12} = C_{13}$	-0.3(2)	$C_{48} = C_{40} = C_{41} = C_{42}$	-0.7(2)
$C_{10} - C_{11} - C_{12} - C_{13}$	(1.3)(2)	$C_{40} = C_{43} = C_{44} = C_{45}$	179.62(14)
$C_{11} = C_{12} = C_{13}$	1/9.3/(14)	$C_{49} = C_{43} = C_{44} = C_{45}$	178.02(14)
C11 - C12 - C13 - C14	0.5(2)	$C_{43} = C_{44} = C_{43} = C_{46}$	0.3(2)
	1/9.40 (13)	012-046-045	-5.4 (2)
C18—O6—C14—C13	-0.7(2)	C50—O12—C46—C47	174.21 (14)
C12—C13—C14—O6	179.86 (14)	C44—C45—C46—O12	-179.82 (14)
C12—C13—C14—C15	-0.3 (2)	C44—C45—C46—C47	0.6 (2)
O6—C14—C15—C16	-179.79 (14)	O12—C46—C47—C48	179.30 (15)
C13—C14—C15—C16	0.3 (2)	C45—C46—C47—C48	-1.1 (2)
C14—C15—C16—C11	-0.4 (2)	C46—C47—C48—C43	0.7 (3)
C12-C11-C16-C15	0.3 (2)	C44—C43—C48—C47	0.3 (2)
C17—C11—C16—C15	-179.31 (14)	C49—C43—C48—C47	-179.13 (15)
C12—C11—C17—O5	-0.6 (2)	C44—C43—C49—O11	-172.16 (16)
C16—C11—C17—O5	179.02 (16)	C48—C43—C49—O11	7.2 (2)
C12—C11—C17—O4	-179.96 (14)	C44—C43—C49—O10	7.9 (2)
C16—C11—C17—O4	-0.3 (2)	C48—C43—C49—O10	-172.77 (14)
C14—O6—C18—C19	-179.70 (12)	C46—O12—C50—C51	-179.65 (13)
O6—C18—C19—C20	-179.83(13)	Q12-C50-C51-C52	179.89 (13)
$C_{25} N_{1} C_{21} C_{22}$	0.0(2)	C57—N3—C53—C54	0.6.(2)
N1-C21-C22-C23	10(2)	N3-C53-C54-C55	-0.2(2)
C_{21} C_{22} C_{23} C_{24}	-10(2)	C_{53} C_{54} C_{55} C_{56}	0.2(2)
$C_{21} = C_{22} = C_{23} = C_{21}$	17948(15)	C_{53} C_{54} C_{55} C_{63}	179.36(14)
$C_{22}^{22} C_{23}^{23} C_{24}^{24} C_{25}^{25}$	0.1(2)	C54 C55 C56 C57	-0.3(2)
$C_{22} = C_{23} = C_{24} = C_{25}$	170.55(15)	$C_{54} = C_{55} = C_{50} = C_{57}$	-17954(14)
$C_{21} = C_{23} = C_{24} = C_{23}$	-10(2)	$C_{03} = C_{03} = C$	-0.8(2)
$C_{21} = N_1 = C_{23} = C_{24}$	-1.0(2)	$C_{55} = N_{5} = C_{57} = N_{2}$	-0.8(2)
$C_{23} = C_{24} = C_{23} = N_1$	1.0(2)	$C_{33} = C_{30} = C_{37} = N_3$	0.7(2)
$C_{30} = N_2 = C_{26} = C_{27}$	0.2 (2)	C62—N4—C58—C59	-1.0(2)
N2-C26-C27-C28	-1.3(2)	N4—C58—C59—C60	0.7 (2)
C26—C27—C28—C29	1.0 (2)	C58—C59—C60—C61	0.0 (2)
C26—C27—C28—C32	-178.96 (14)	C58—C59—C60—C64	-179.28 (14)
C27—C28—C29—C30	0.3 (2)	C59—C60—C61—C62	-0.4 (2)
C32—C28—C29—C30	-179.75 (14)	C64—C60—C61—C62	178.88 (14)
C26—N2—C30—C29	1.2 (2)	C58—N4—C62—C61	0.6 (2)
C28—C29—C30—N2	-1.5 (3)	C60—C61—C62—N4	0.1 (2)
C22—C23—C31—C32	-168.18 (15)	C56—C55—C63—C64	-9.4 (2)

C24—C23—C31—C32	12.4 (2)	C54—C55—C63—C64	171.36 (15)
C23—C31—C32—C28	179.89 (15)	C55—C63—C64—C60	179.38 (14)
C29—C28—C32—C31	-13.7 (2)	C59—C60—C64—C63	-170.54 (15)
C27—C28—C32—C31	166.22 (15)	C61—C60—C64—C63	10.2 (2)

Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1/C21–C25 pyridine, C1–C6 benzene, C11–C16 benzene and N4/C58–C62 pyridine rings, respectively.

D—H···A	<i>D</i> —Н	Н…А	D····A	<i>D</i> —H…A
01—H1…N1	0.95 (4)	1.71 (4)	2.6607 (19)	175 (4)
O4—H4…N2	0.98 (3)	1.62 (3)	2.5974 (19)	179 (4)
O7—H7…N3	1.01 (2)	1.59 (2)	2.5836 (18)	170 (3)
O10—H10D…N4	0.97 (3)	1.63 (3)	2.5950 (18)	179 (3)
C21—H21···O2	0.95	2.50	3.193 (2)	130
C21—H21···O11	0.95	2.50	3.124 (2)	123
C26—H26…O7 ⁱ	0.95	2.55	3.236 (2)	129
C30—H30…O8 ⁱⁱ	0.95	2.47	3.155 (2)	129
С57—Н57…О2 ^{ііі}	0.95	2.45	3.146 (2)	130
C58—H58…O11	0.95	2.51	3.165 (2)	126
C62—H62···O5 ^{iv}	0.95	2.37	3.057 (2)	129
C8—H8 A ··· $Cg1^{v}$	0.99	2.85	3.6843 (19)	143
C8—H8 <i>B</i> ··· <i>Cg</i> 3 ^{vi}	0.99	2.83	3.7013 (19)	147
C18—H18 A ···Cg2 ^{vii}	0.99	2.80	3.5897 (19)	137
C50—H50 <i>B</i> ··· <i>Cg</i> 4 ^{viii}	0.99	2.79	3.5721 (18)	136

Symmetry codes: (i) *x*-1, -*y*+1, *z*+1/2; (ii) *x*-1, -*y*, *z*+1/2; (iii) *x*+1, *y*, *z*; (iv) *x*, -*y*, *z*-1/2; (v) *x*, -*y*+1, *z*-1/2; (vi) *x*-1, *y*, *z*-1; (vii) *x*+1, *y*, *z*+1; (viii) *x*-1, *y*, *z*.

(IV) 4-*n*-Butoxybenzoic acid–(*E*)-1,2-di(pyridin-4-yl)ethene (2/1)

Crystal data

$2C_{11}H_{14}O_3 \cdot C_{12}H_{10}N_2$ $M_r = 570.68$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 7.103 (4) Å b = 9.060 (5) Å c = 11.627 (7) Å a = 82.29 (2)°	Z = 1 F(000) = 304.00 $D_x = 1.305 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 7992 reflections $\theta = 3.1-30.0^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 93 K
$\beta = 78.54 (3)^{\circ}$ $\gamma = 86.79 (3)^{\circ}$ $V = 726.3 (7) Å^{3}$ Data collection	Block, colorless $0.49 \times 0.21 \times 0.10 \text{ mm}$
Rigaku R-AXIS RAPIDII diffractometer Detector resolution: 10.000 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{min} = 0.841, T_{max} = 0.991$ 7250 measured reflections	3311 independent reflections 2919 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 3.1^{\circ}$ $h = -9 \rightarrow 9$ $k = -11 \rightarrow 10$ $l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.041$	and constrained refinement
$wR(F^2) = 0.118$	$w = 1/[\sigma^2(F_o^2) + (0.0831P)^2 + 0.0445P]$
S = 1.08	where $P = (F_o^2 + 2F_c^2)/3$
3311 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
195 parameters	$\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.45 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

_reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.87741 (10)	-0.23737 (7)	0.37208 (5)	0.02330 (17)
O2	0.77725 (10)	-0.20959 (7)	0.19912 (6)	0.02700 (18)
O3	1.18789 (9)	-0.85943 (7)	0.22858 (6)	0.02097 (17)
N1	0.73630 (11)	0.02600 (8)	0.40868 (7)	0.02009 (18)
C1	0.94410 (12)	-0.43488 (9)	0.25797 (7)	0.01695 (19)
C2	1.04332 (12)	-0.51022 (9)	0.34173 (7)	0.01810 (19)
H2	1.0577	-0.4631	0.4076	0.022*
C3	1.12077 (12)	-0.65193 (9)	0.33042 (7)	0.01837 (19)
H3	1.1849	-0.7027	0.3892	0.022*
C4	1.10454 (12)	-0.72040 (9)	0.23223 (8)	0.01745 (19)
C5	1.00760 (13)	-0.64625 (9)	0.14720 (7)	0.01907 (19)
Н5	0.9966	-0.6921	0.0801	0.023*
C6	0.92703 (12)	-0.50462 (9)	0.16124 (8)	0.01858 (19)
H6	0.8593	-0.4549	0.1038	0.022*
C7	0.85686 (12)	-0.28309 (9)	0.27212 (8)	0.0186 (2)
C8	1.17439 (13)	-0.93751 (9)	0.13072 (8)	0.0196 (2)
H8A	1.2305	-0.8782	0.0550	0.024*
H8B	1.0382	-0.9549	0.1303	0.024*
C9	1.28435 (12)	-1.08457 (9)	0.14586 (8)	0.0193 (2)
H9A	1.2238	-1.1442	0.2204	0.023*
H9B	1.4179	-1.0657	0.1516	0.023*
C10	1.28714 (14)	-1.17236 (10)	0.04249 (8)	0.0241 (2)
H10A	1.3452	-1.1112	-0.0319	0.029*
H10B	1.1533	-1.1916	0.0377	0.029*
C11	1.39915 (14)	-1.32056 (10)	0.05306 (9)	0.0280 (2)
H11A	1.5311	-1.3027	0.0599	0.042*
H11B	1.4014	-1.3696	-0.0174	0.042*

H11C	1.3370	-1.3847	0.1235	0.042*
C12	0.66351 (13)	0.11082 (10)	0.32383 (8)	0.0209 (2)
H12	0.6610	0.0707	0.2528	0.025*
C13	0.59161 (12)	0.25456 (10)	0.33492 (8)	0.0194 (2)
H13	0.5429	0.3116	0.2719	0.023*
C14	0.59107 (12)	0.31523 (9)	0.43924 (8)	0.01710 (19)
C15	0.66576 (13)	0.22516 (9)	0.52787 (8)	0.0205 (2)
H15	0.6674	0.2612	0.6007	0.025*
C16	0.73711 (13)	0.08358 (10)	0.50919 (8)	0.0212 (2)
H16	0.7889	0.0244	0.5700	0.025*
C17	0.51374 (12)	0.46721 (9)	0.45065 (8)	0.0182 (2)
H17	0.4804	0.5238	0.3823	0.022*
H1	0.823 (3)	-0.133 (3)	0.3863 (19)	0.100 (7)*

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0321 (4)	0.0185 (3)	0.0208 (3)	0.0048 (3)	-0.0079 (3)	-0.0060(2)
0.0332 (4)	0.0217 (3)	0.0291 (4)	0.0062 (3)	-0.0145 (3)	-0.0044 (3)
0.0279 (3)	0.0153 (3)	0.0225 (3)	0.0045 (2)	-0.0106 (3)	-0.0062(2)
0.0197 (4)	0.0160 (3)	0.0244 (4)	-0.0004 (3)	-0.0034 (3)	-0.0033 (3)
0.0166 (4)	0.0162 (4)	0.0174 (4)	-0.0017 (3)	-0.0018 (3)	-0.0015 (3)
0.0197 (4)	0.0191 (4)	0.0160 (4)	-0.0019 (3)	-0.0034 (3)	-0.0036 (3)
0.0191 (4)	0.0187 (4)	0.0178 (4)	0.0004 (3)	-0.0055 (3)	-0.0016 (3)
0.0176 (4)	0.0150 (4)	0.0196 (4)	-0.0010 (3)	-0.0035 (3)	-0.0015 (3)
0.0236 (4)	0.0175 (4)	0.0176 (4)	-0.0019 (3)	-0.0063 (3)	-0.0038 (3)
0.0208 (4)	0.0170 (4)	0.0183 (4)	-0.0009 (3)	-0.0064(3)	0.0002 (3)
0.0177 (4)	0.0179 (4)	0.0201 (4)	-0.0023 (3)	-0.0027 (3)	-0.0022 (3)
0.0246 (4)	0.0173 (4)	0.0188 (4)	0.0003 (3)	-0.0074 (3)	-0.0045 (3)
0.0205 (4)	0.0159 (4)	0.0230 (4)	0.0007 (3)	-0.0067 (3)	-0.0042 (3)
0.0302 (5)	0.0195 (4)	0.0237 (4)	0.0015 (3)	-0.0061 (4)	-0.0066 (3)
0.0269 (5)	0.0219 (4)	0.0354 (5)	0.0018 (4)	-0.0029 (4)	-0.0102 (4)
0.0214 (4)	0.0211 (4)	0.0210 (4)	-0.0007 (3)	-0.0032 (3)	-0.0063 (3)
0.0191 (4)	0.0200 (4)	0.0191 (4)	0.0007 (3)	-0.0051 (3)	-0.0010 (3)
0.0152 (4)	0.0150 (4)	0.0210 (4)	-0.0010 (3)	-0.0035 (3)	-0.0016 (3)
0.0252 (4)	0.0161 (4)	0.0218 (4)	0.0007 (3)	-0.0079 (3)	-0.0034 (3)
0.0244 (4)	0.0162 (4)	0.0236 (4)	0.0016 (3)	-0.0073 (3)	-0.0015 (3)
0.0196(4)	0.0145(4)	0.0218 (4)	0.0010(2)	0.0060(2)	0.0004(2)
	U^{11} 0.0321 (4) 0.0332 (4) 0.0279 (3) 0.0197 (4) 0.0166 (4) 0.0197 (4) 0.0197 (4) 0.0191 (4) 0.0236 (4) 0.0236 (4) 0.0208 (4) 0.0205 (4) 0.0205 (4) 0.0205 (4) 0.0269 (5) 0.0214 (4) 0.0152 (4) 0.0252 (4) 0.0252 (4) 0.0244 (4) 0.0186 (4)	U^{11} U^{22} 0.0321 (4) 0.0185 (3) 0.0332 (4) 0.0217 (3) 0.0279 (3) 0.0153 (3) 0.0197 (4) 0.0160 (3) 0.0166 (4) 0.0162 (4) 0.0197 (4) 0.0191 (4) 0.0197 (4) 0.0191 (4) 0.0197 (4) 0.0187 (4) 0.0197 (4) 0.0175 (4) 0.0176 (4) 0.0175 (4) 0.0236 (4) 0.0175 (4) 0.0208 (4) 0.0170 (4) 0.0205 (4) 0.0179 (4) 0.0205 (4) 0.0159 (4) 0.0205 (4) 0.0159 (4) 0.0269 (5) 0.0219 (4) 0.0214 (4) 0.0200 (4) 0.0152 (4) 0.0161 (4) 0.0252 (4) 0.0161 (4) 0.0186 (4) 0.0145 (4)	U^{11} U^{22} U^{33} 0.0321 (4)0.0185 (3)0.0208 (3)0.0332 (4)0.0217 (3)0.0291 (4)0.0279 (3)0.0153 (3)0.0225 (3)0.0197 (4)0.0160 (3)0.0244 (4)0.0166 (4)0.0162 (4)0.0174 (4)0.0197 (4)0.0191 (4)0.0160 (4)0.0197 (4)0.0187 (4)0.0178 (4)0.0176 (4)0.0175 (4)0.0176 (4)0.0236 (4)0.0175 (4)0.0176 (4)0.0208 (4)0.0170 (4)0.0183 (4)0.0205 (4)0.0179 (4)0.0201 (4)0.0205 (4)0.0159 (4)0.0230 (4)0.0205 (4)0.0195 (4)0.0237 (4)0.0269 (5)0.0219 (4)0.0210 (4)0.0191 (4)0.0200 (4)0.0191 (4)0.0152 (4)0.0150 (4)0.0210 (4)0.0252 (4)0.0161 (4)0.0218 (4)0.0244 (4)0.0162 (4)0.0218 (4)	U^{11} U^{22} U^{33} U^{12} 0.0321 (4)0.0185 (3)0.0208 (3)0.0048 (3)0.0332 (4)0.0217 (3)0.0291 (4)0.0062 (3)0.0279 (3)0.0153 (3)0.0225 (3)0.0045 (2)0.0197 (4)0.0160 (3)0.0244 (4) -0.0004 (3)0.0166 (4)0.0162 (4)0.0174 (4) -0.0017 (3)0.0197 (4)0.0191 (4)0.0160 (4) -0.0019 (3)0.0197 (4)0.0191 (4)0.0178 (4)0.0004 (3)0.0197 (4)0.0187 (4)0.0178 (4)0.0004 (3)0.0176 (4)0.0175 (4)0.0176 (4) -0.0019 (3)0.0236 (4)0.0175 (4)0.0176 (4) -0.0019 (3)0.0208 (4)0.0170 (4)0.0183 (4) -0.0009 (3)0.0177 (4)0.0179 (4)0.0201 (4) -0.0023 (3)0.0205 (4)0.0159 (4)0.0237 (4)0.0015 (3)0.0269 (5)0.0219 (4)0.0237 (4)0.0018 (4)0.0211 (4)0.0210 (4) -0.0007 (3)0.0191 (4)0.0200 (4)0.0191 (4) -0.0007 (3)0.0152 (4)0.0150 (4)0.0210 (4) -0.0010 (3)0.0252 (4)0.0161 (4)0.0216 (4) -0.0016 (3)0.0244 (4)0.0162 (4)0.0236 (4)0.0016 (3)0.0244 (4)0.0162 (4)0.0236 (4)0.0016 (3)0.0244 (4)0.0162 (4)0.0236 (4)0.0016 (3)	U^{11} U^{22} U^{33} U^{12} U^{13} 0.0321 (4)0.0185 (3)0.0208 (3)0.0048 (3) -0.0079 (3)0.0332 (4)0.0217 (3)0.0291 (4)0.0062 (3) -0.0145 (3)0.0279 (3)0.0153 (3)0.0225 (3)0.0045 (2) -0.0106 (3)0.0197 (4)0.0160 (3)0.0244 (4) -0.0004 (3) -0.0034 (3)0.0166 (4)0.0162 (4)0.0174 (4) -0.0017 (3) -0.0034 (3)0.0197 (4)0.0191 (4)0.0160 (4) -0.0019 (3) -0.0034 (3)0.0197 (4)0.0191 (4)0.0160 (4) -0.0019 (3) -0.0035 (3)0.0197 (4)0.0187 (4)0.0178 (4) 0.0004 (3) -0.0035 (3)0.0176 (4)0.0150 (4)0.0196 (4) -0.0019 (3) -0.0035 (3)0.0236 (4)0.0170 (4)0.0183 (4) -0.0009 (3) -0.0064 (3)0.0208 (4)0.0170 (4)0.0201 (4) -0.0023 (3) -0.0027 (3)0.0225 (4)0.0159 (4)0.0237 (4)0.0007 (3) -0.0067 (3)0.0226 (5)0.0219 (4)0.0237 (4)0.0015 (3) -0.0022 (4)0.0214 (4)0.0211 (4)0.0210 (4) -0.0007 (3) -0.0032 (3)0.0152 (4)0.0150 (4)0.0210 (4) -0.0010 (3) -0.0035 (3)0.0152 (4)0.0150 (4)0.0210 (4) -0.0010 (3) -0.0035 (3)0.0152 (4)0.0161 (4)0.0218 (4)0.0007 (3) -0.0073 (3)0.0252 (4)0.0161 (4)0.0218 (4)0.0007 (3) -0.0073

Geometric parameters (Å, °)

01—C7	1.3218 (12)	C9—C10	1.5240 (13)
01—H1	1.03 (2)	С9—Н9А	0.9900
O2—C7	1.2167 (12)	С9—Н9В	0.9900
O3—C4	1.3637 (12)	C10—C11	1.5251 (14)
O3—C8	1.4392 (11)	C10—H10A	0.9900
N1-C12	1.3363 (13)	C10—H10B	0.9900
N1-C16	1.3433 (13)	C11—H11A	0.9800

C1—C6	1.3901 (13)	C11—H11B	0.9800
C1—C2	1.3969 (14)	C11—H11C	0.9800
C1—C7	1.4923 (13)	C12—C13	1.3848 (14)
C2—C3	1.3805 (13)	С12—Н12	0.9500
С2—Н2	0.9500	C13—C14	1.3965 (13)
C3—C4	1.3970 (13)	С13—Н13	0.9500
С3—Н3	0.9500	C14—C15	1.3973 (14)
C4—C5	1.3940 (13)	C14—C17	1.4665 (13)
C5—C6	1.3919 (13)	C15—C16	1.3812 (13)
C5—H5	0.9500	C15—H15	0.9500
C6—H6	0.9500	C16—H16	0.9500
C8—C9	1 5138 (13)	$C17 - C17^{i}$	1 3375 (18)
C8—H8A	0.9900	C17—H17	0.9500
C8—H8B	0.9900		0.9500
Co-110D	0.7700		
C7-01-H1	116 3 (12)	C8—C9—H9B	109.4
C4-O3-C8	110.3(12) 118.25(7)	C10-C9-H9B	109.4
$C_{12} = 0.5 = 0.05$	117.80 (8)	$H_{0A} = C_0 + H_{0B}$	109.4
C6-C1-C2	118 62 (8)	C_{0}	113 13 (8)
$C_{0} = C_{1} = C_{2}$	120 51 (8)	C_{0} C_{10} H_{10A}	100.0
$C_{0} = C_{1} = C_{7}$	120.31(8) 120.87(8)	C_{11} C_{10} H_{10A}	109.0
$C_2 = C_1 = C_7$	120.07 (0)	C_{10} C_{10} H_{10} H_{10}	109.0
$C_3 = C_2 = C_1$	110 /	C_{11} C_{10} H_{10B}	109.0
$C_{1} = C_{2} = H_{2}$	119.4		109.0
$C_1 = C_2 = C_1$	119.4	HI0A - CI0 - HI0B	107.8
$C_2 = C_3 = C_4$	119.79 (8)	C10 - C11 - H11A	109.5
$C_2 = C_3 = H_3$	120.1		109.5
C4 - C3 - H3	120.1	HIIA—CII—HIIB	109.5
03 - C4 - C3	124.92 (8)		109.5
03 - 04 - 03	115.24 (8)	HIIA—CII—HIIC	109.5
C_{3}	119.84 (8)	HIIB—CII—HIIC	109.5
C6-C5-C4	119.59 (8)	NI-C12-C13	122.92 (8)
C6—C5—H5	120.2	NI—C12—H12	118.5
C4—C5—H5	120.2	С13—С12—Н12	118.5
C1—C6—C5	121.02 (8)	C12—C13—C14	119.64 (8)
С1—С6—Н6	119.5	С12—С13—Н13	120.2
С5—С6—Н6	119.5	С14—С13—Н13	120.2
O2—C7—O1	124.00 (9)	C13—C14—C15	117.01 (8)
O2—C7—C1	123.57 (8)	C13—C14—C17	119.36 (8)
O1—C7—C1	112.43 (8)	C15—C14—C17	123.63 (9)
O3—C8—C9	107.37 (7)	C16—C15—C14	119.76 (9)
O3—C8—H8A	110.2	C16—C15—H15	120.1
С9—С8—Н8А	110.2	C14—C15—H15	120.1
O3—C8—H8B	110.2	N1—C16—C15	122.78 (8)
C9—C8—H8B	110.2	N1-C16-H16	118.6
H8A—C8—H8B	108.5	C15—C16—H16	118.6
C8—C9—C10	111.29 (8)	C17 ⁱ —C17—C14	125.41 (10)
С8—С9—Н9А	109.4	C17 ⁱ —C17—H17	117.3
С10—С9—Н9А	109.4	C14—C17—H17	117.3

-0.99 (13)	C2-C1-C7-O1	-3.18 (12)
178.60 (7)	C4—O3—C8—C9	177.82 (7)
1.67 (13)	O3—C8—C9—C10	-177.05 (7)
-0.63 (13)	C8—C9—C10—C11	179.13 (7)
179.14 (7)	C16—N1—C12—C13	0.69 (13)
179.19 (7)	N1-C12-C13-C14	-0.95 (14)
-1.03 (13)	C12—C13—C14—C15	0.29 (13)
179.50 (7)	C12-C13-C14-C17	-179.66 (7)
-0.26 (13)	C13—C14—C15—C16	0.56 (13)
-0.33 (13)	C17—C14—C15—C16	-179.49 (8)
-179.92 (7)	C12—N1—C16—C15	0.23 (13)
0.95 (13)	C14—C15—C16—N1	-0.86 (14)
-4.16 (13)	C13—C14—C17—C17 ⁱ	172.64 (10)
176.26 (8)	C15—C14—C17—C17 ⁱ	-7.31 (17)
176.40 (7)		
	$\begin{array}{c} -0.99\ (13)\\ 178.60\ (7)\\ 1.67\ (13)\\ -0.63\ (13)\\ 179.14\ (7)\\ 179.19\ (7)\\ -1.03\ (13)\\ 179.50\ (7)\\ -0.26\ (13)\\ -0.33\ (13)\\ -179.92\ (7)\\ 0.95\ (13)\\ -4.16\ (13)\\ 176.26\ (8)\\ 176.40\ (7)\end{array}$	$-0.99(13)$ $C2-C1-C7-O1$ $178.60(7)$ $C4-O3-C8-C9$ $1.67(13)$ $O3-C8-C9-C10$ $-0.63(13)$ $C8-C9-C10-C11$ $179.14(7)$ $C16-N1-C12-C13$ $179.19(7)$ $N1-C12-C13-C14$ $-1.03(13)$ $C12-C13-C14-C15$ $179.50(7)$ $C12-C13-C14-C17$ $-0.26(13)$ $C13-C14-C15-C16$ $-179.92(7)$ $C12-N1-C16-C15$ $0.95(13)$ $C13-C14-C17-C17^i$ $-4.16(13)$ $C13-C14-C17-C17^i$ $176.26(8)$ $C15-C14-C17-C17^i$

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 benzene ring.

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
O1—H1…N1	1.02 (3)	1.57 (3)	2.5912 (18)	179 (2)
C11—H11 <i>C</i> … <i>Cg</i> ⁱⁱ	0.98	2.92	3.800 (2)	150

Symmetry code: (ii) x, y-1, z.