CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 21 July 2016
Accepted 1 October 2016

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; copper(II); chloridebridged dimer; dimetridazole; dimet.

CCDC reference: 1507712

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \odot ACCESS

Crystal structure of di- μ-chlorido-bis[chlorido-bis(1,2-dimethyl-5-nitro-1H-imidazole- κN^{3})copper(II)] acetonitrile disolvate

Patrick J. Quinlivan ${ }^{\text {a }}$ and Rita K. Upmacis ${ }^{\text {b }}$

${ }^{\mathbf{a}}$ Department of Chemistry, Columbia University, New York, NY 10027, USA, and ${ }^{\mathbf{b}}$ The Haskins Laboratories, Department of Chemistry and Physical Sciences, Pace University, New York, NY 10038, USA. *Correspondence e-mail: rupmacis@pace.edu

1,2-Dimethyl-5-nitroimidazole (dimetridazole, dimet) is a compound that belongs to a class of nitroimidazole drugs that are effective at inhibiting the activity of certain parasites and bacteria. However, there are few reports that describe structures of compounds that feature metals complexed by dimet. Therefore, we report here that dimet reacts with $\mathrm{CuCl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ to yield a chloridebridged copper(II) dimer, $\left[\mathrm{Cu}_{2} \mathrm{Cl}_{4}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{4}\right]$ or $\left[\mathrm{Cu}(\mu-\mathrm{Cl}) \mathrm{Cl}(\text { dimet })_{2}\right]_{2}$. In this molecule, the $\mathrm{Cu}^{\mathrm{II}}$ ions are coordinated in an approximately trigonalbipyramidal manner, and the molecule lies across an inversion center. The dihedral angle between the imidazole rings in the asymmetric unit is 4.28 (7) ${ }^{\circ}$. Compared to metronidazole, dimetridazole lacks the hydroxyethyl group, and thus cannot form intermolecular $\mathrm{O} \cdots \mathrm{H}$ hydrogen-bonding interactions. Instead, $\left[\mathrm{Cu}(\mu-\mathrm{Cl}) \mathrm{Cl}(\text { dimet })_{2}\right]_{2}$ exhibits weak intermolecular interactions between the hydrogen atoms of $\mathrm{C}-\mathrm{H}$ groups and (i) oxygen in the nitro groups, and (ii) the terminal and bridging chloride ligands. The unit cell contains four disordered acetonitrile molecules. These were modeled as providing a diffuse contribution to the overall scattering by SQUEEZE [Spek (2015). Acta Cryst. C71, 9-18], which identified two voids, each with a volume of $163 \AA^{3}$ and a count of 46 electrons, indicative of a total of four acetonitrile molecules. These acetonitrile molecules are included in the chemical formula to give the expected calculated density and $F(000)$.

1. Chemical context

1,2-Dimethyl-5-nitroimidazole, also known as dimetridazole (dimet), is structurally related to metronidazole [2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethanol, MET]. Thus, both compounds contain a 2-methyl-5-nitroimidazole core and are only differentiated according to whether one of the nitrogen atoms possesses a methyl substituent (as in dimet) or a hydroxyethyl substituent (as in MET), as illustrated in Fig. 1. Both MET and dimet are used to treat microbial infections,

(a)

(b)

Figure 1
A comparison of the structures of (a) metronidazole (MET) and (b) dimetridazole (dimet).
but dimet has specifically been used in animals for the treatment of, for instance, bovine trichomoniasis (McLoughlin, 1968), giardiasis in birds (Panigrahy et al., 1978) and swine dysentery (Messier et al., 1990). In order to control outbreaks of infection, a previous common practice was to incorporate dimet as a feed additive given, for example, to poultry and pigs (Buizer \& Severijnen, 1975). However, concerns about the mutagenic properties displayed by this class of drug (Voogd et al., 1974), and the fact that trace amounts can be detected in certain animal products intended for human consumption (Arias et al., 2016), have led to a discontinuation of this practice (EC bans use of dimetridazole in food animals, 1995). Reports of structures of metal compounds involving the coordination by dimetridazole are scarce. Herein, we describe the structure of the copper compound $\left[\mathrm{Cu}(\mu-\mathrm{Cl}) \mathrm{Cl}(\text { dimet })_{2}\right]_{2}$, which is obtained by the reaction of dimet with $\mathrm{CuCl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (see Scheme).

2. Structural commentary

Crystals of composition $\left[\mathrm{Cu}(\mu-\mathrm{Cl}) \mathrm{Cl}(\text { dimet })_{2}\right]_{2}$ were obtained by addition of dimet to $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in chloroform, followed by recrystallization of the blue precipitate from acetonitrile. The molecular structure, as illustrated in Fig. 2, shows a centrosymmetric chlorido-bridged dimer. The coordination geometry around each copper atom is a slightly distorted trigonal-bipyramidal with two axial dimet ligands, and three chlorine ligands in the equatorial plane, two of which bridge to the adjacent copper. This structure is analogous to a previously reported copper(II) dimer containing MET, instead of dimet, $\left[\mathrm{Cu}(\mathrm{MET})_{2}(\mu-\mathrm{Cl}) \mathrm{Cl}\right]_{2}$ (Barba-Behrens et al., 1991), and a comparison of the two structures is shown in Fig. 3. Other recent examples of metal compounds containing MET include: $\mathrm{Cu}(\mathrm{MET})_{2} \mathrm{Cl}_{2}, \quad\left[\mathrm{Ag}(\mathrm{MET})_{2}\right]\left(\mathrm{BF}_{4}\right), \quad$ and $[\mathrm{H}(\mathrm{MET})]\left[\mathrm{AuCl}_{4}\right]$ (Palmer et al., 2015; Palmer \& Upmacis, 2015; Quinlivan et al., 2015).

Examination of the structure of the $\left[\mathrm{Cu}(\mu-\mathrm{Cl}) \mathrm{Cl}(\text { dimet })_{2}\right]_{2}$ complex demonstrates that, interestingly, the chlorine atoms bridge in an asymmetric manner, with $\mathrm{Cu}-\mathrm{Cl}_{\text {bridge }}$ bond lengths of 2.3811 (3) and 2.6024 (3) \AA, both of which are longer than the terminal $\mathrm{Cu}-\mathrm{Cl}$ bond length of 2.2822 (3) \AA. Of note, these features are also observed for the MET analog,

Figure 2
The molecular structure of $\left[\mathrm{Cu}(\mu-\mathrm{Cl}) \mathrm{Cl}(\text { dimet })_{2}\right]_{2}$, with displacement ellipsoids depicted at the 30% probability level. H atoms associated with methyl groups are not shown [symmetry code ('): $-x,-y+1,-z+1$].
$\left[\mathrm{Cu}(\mathrm{MET})_{2}(\mu-\mathrm{Cl}) \mathrm{Cl}\right]_{2}$, which possesses bridging $\mathrm{Cu}-\mathrm{Cl}$ distances of 2.418 (1) and 2.619 (1) A, and a terminal bond length of 2.297 (2) A (Barba-Behrens et al., 1991). Furthermore, the $\mathrm{Cu}-\mathrm{N}$ bond lengths [2.0009 (10) and 1.9914 (9) \AA] are also similar to the $\mathrm{Cu}-\mathrm{N}$ bond lengths reported for the MET analog [2.002 (4) and 1.993 (4) \AA]. In terms of the bond angles, the $\mathrm{N}-\mathrm{Cu}-\mathrm{Cl}_{\text {term }}$ and $\mathrm{N}-\mathrm{Cu}-\mathrm{Cl}_{\text {bridge }}$ angles are all close to 90° [ranging from $88.95(3)^{\circ}$ for $\mathrm{N} 13-\mathrm{Cu}-\mathrm{Cl} 1$ to

(a)

(b)

Figure 3
A comparison of the structures of the dinuclear Cu complexes which are derived from (a) metronidazole (MET) and (b) dimetridazole (dimet).

Table 1
Hydrogen-bond geometry (${ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 25-\mathrm{H} 25 C \cdots \mathrm{O} 22^{\mathrm{i}}$	0.98	2.39	$3.2804(17)$	150
$\mathrm{C} 15-\mathrm{H} 15 B \cdots \mathrm{Cl} 2^{\mathrm{i}}$	0.98	2.73	$3.6737(13)$	163
$\mathrm{C} 12-\mathrm{H} 12 A \cdots \mathrm{O} 22^{\mathrm{ii}}$	0.95	2.51	$3.4029(16)$	156
${\mathrm{C} 22-\mathrm{H} 22 A \cdots \mathrm{Cl} 2^{\mathrm{ii}}}^{\mathrm{C} 24-\mathrm{H} 24 C \cdots \mathrm{Cl} 1^{\mathrm{iii}}}$	0.95	2.75	$3.6828(12)$	167

Symmetry codes: (i) $x, y+1, z$; (ii) $-x+1,-y,-z+1$; (iii) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$.
$91.85(3)^{\circ}$ for $\mathrm{N} 23-\mathrm{Cu}-\mathrm{Cl} 2$], with the exception of $\mathrm{N} 23-$ $\mathrm{Cu}-\mathrm{Cl} 2_{\text {bridge }}$ which is 85.42 (3) \AA.

3. Supramolecular features

The crystal structure displays a number of weak intermolecular interactions between hydrogen atoms of CH groups and the more electronegative atoms on adjacent molecules, such as the oxygen atoms in the nitro groups of the dimet ligand and also the terminal and bridging chlorine atoms (see Table 1 and Fig. 4). In this regard, one of the oxygen atoms of the nitro group participates in intermolecular hydrogenbonding interactions with CH_{3} and CH groups of an adjacent molecule. For reference, intermolecular and intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving an O atom from a nitro group (or other O-containing groups) have been reported (Desiraju, 1991; Sharma \& Desiraju, 1994; Forlani, 2009). As an illustration, intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (involving $\mathrm{C}-\mathrm{H}$ motifs from an NMe_{2} substituent and the O atoms of a nitro group) are reported at $2.71(3) \AA$, with $\mathrm{C} \cdots \mathrm{O}$ distances of 3.658 (4) and 3.725 (4) \AA (Sharma \& Desiraju, 1994). The results of our structure analysis are also comparable to the average values that have been reported for hydrogen-bonding interactions of $(\mathrm{N}, \mathrm{C}) \mathrm{Csp}^{2}-\mathrm{H}$ (2.48 and

Figure 4
Weak intermolecular hydrogen-bonding interactions (shown as dashed lines) for $\left[\mathrm{Cu}(\mu-\mathrm{Cl}) \mathrm{Cl}(\text { dimet })_{2}\right]_{2}$.
$3.47 \AA$) and $\mathrm{Csp} p^{3}-\mathrm{CH}_{3}$ (2.63 and $3.61 \AA$) groups with a water O atom (Steiner, 2002). For comparison, intramolecular $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ interactions to an O atom of a nitro substituent form shorter contacts, e.g. 1.927 (15) \AA for N-(2-nitrophenyl)benzamide (Saeed \& Simpson, 2009) and $2.11 \AA$ for 2-iodoN -(2-nitrophenyl)benzamide (Wardell et al., 2005), which is in accord with the reports that $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bonds are weaker than $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bonds (Desiraju, 1991).

The bridging chlorine atoms also form weak intermolecular interactions with CH_{3} and CH groups of an adjacent molecule. In addition, the terminal chlorine atom participates in a hydrogen-bonding interaction with a CH_{3} group of an adjacent molecule.

While $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions are widely accepted (Desiraju, 1991), $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions are considered more controversial, but a survey of the literature reveals that they also represent a common phenomenon (Aakeröy et al., 1999). For example, hydrogen-bonding interactions of $s p^{2}(\mathrm{~N}, \mathrm{C}) \mathrm{C}-$ H with Cl^{-}are reported at $2.64 \AA$ (Kovacs \& Varga, 2006). However, when Cl is bonded to a metal, the average C $\mathrm{H} \cdots \mathrm{Cl}-M$ hydrogen-bonding distance is $2.974 \AA$ (Thallapally \& Nangia, 2001).

Fig. 4 illustrates some of these intermolecular interactions. An important difference between this structure and the MET analog is that the dimet compound lacks the hydroxyethyl group, which is involved in classical intermolecular hydrogenbonding interactions for the MET derivative (Barba-Behrens et al., 1991).

4. Database survey

There is only one structurally characterized metal compound containing dimet listed in the Cambridge Database (CSD Version 5.37; Groom et al., 2016), namely, a mononuclear cobalt complex, $\left[\mathrm{Co}(\text { dimet })_{2} \mathrm{Cl}_{2}\right]$, in which the cobalt(II) atom is surrounded by two dimet and two chlorido ligands in a distorted tetrahedron (Rosu et al., 1997; Idešicová et al., 2012). The $\mathrm{Co}-\mathrm{N}$ distances are reported to be 2.228 (2) and 2.035 (4) Å (Rosu et al., 1997).

5. Synthesis and crystallization

$\mathrm{CuCl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(3 \mathrm{mg}, 0.018 \mathrm{mmol})$ was added to a solution of dimet ($6 \mathrm{mg}, 0.043 \mathrm{mmol}$) in chloroform (0.7 mL), resulting in the precipitation of a blue solid over the course of 1 h at room temperature. The blue solid was isolated by decantation and crystals of $\left[\mathrm{Cu}(\mu-\mathrm{Cl}) \mathrm{Cl}(\text { dimet })_{2}\right]_{2}$, suitable for X-ray diffraction, were obtained by slow evaporation from a solution in acetonitrile.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms on carbon were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.95-1.00 \AA)$ and included as riding contributions with isotropic displacement parameters $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}\left(\mathrm{Cs} p^{2}\right)$ or $1.5 U_{\mathrm{eq}}\left(\mathrm{Cs} p^{3}\right)$. The unit

Table 2
Experimental details.

Crystal data	
Chemical formula	$\left[\mathrm{Cu}_{2} \mathrm{Cl}_{4}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{4}\right] \cdot 2 \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$
$M_{\text {r }}$	915.53
Crystal system, space group	Monoclinic, $P 2_{1} / \mathrm{c}$
Temperature (K)	130
$a, b, c(\AA)$	$\begin{aligned} & 13.9545(8), 6.7004(4), \\ & 19.5031 \text { (11) } \end{aligned}$
$\beta\left({ }^{\circ}\right.$)	96.424 (1)
$V\left(\AA^{3}\right)$	1812.10 (18)
Z	2
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	1.54
Crystal size (mm)	$0.35 \times 0.17 \times 0.10$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2010)
$T_{\text {min }}, T_{\text {max }}$	0.637, 0.746
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	28822, 5564, 5034
$R_{\text {int }}$	0.033
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$	0.716
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.024, 0.071, 1.26
No. of reflections	5564
No. of parameters	212
H -atom treatment	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	$0.51,-0.51$

Computer programs: APEX2 and SAINT (Bruker, 2010), SHELXS97 and SHELXTL (Sheldrick, 2008) and SHELXL2014 (Sheldrick, 2015).
cell contains four disordered acetonitrile molecules. In view of the disorder, the acetonitrile molecules were modeled as providing a diffuse contribution to the overall scattering by SQUEEZE (Spek, 2015), which identified two voids, each with a volume of $163 \AA^{3}$ and a count of 46 electrons, indicative of a total of four acetonitrile molecules.

Acknowledgements

RKU would like to thank Pace University for research support. Gerard Parkin (Columbia University) is thanked for helpful discussions.

References

Aakeröy, C. B., Evans, T. A., Seddon, K. R. \& Pálinkó, I. (1999). New J. Chem. 23, 145-152.

Arias, M., Chevallier, O. P., Graham, S. F., Gasull-Gimenez, A., Fodey, T., Cooper, K. M., Crooks, S. R., Danaher, M. \& Elliott, C. T. (2016). Food Chem. 199, 876-884.

Barba-Behrens, N., Mutio-Rico, A. M., Joseph-Nathan, P. \& Contreras, R. (1991). Polyhedron, 10, 1333-1341.
Bruker (2010). APEX2, SAINT and $S A D A B S$. Bruker AXS Inc., Madison, Wisconsin, USA.
Buizer, F. G. \& Severijnen, M. (1975). Analyst, 100, 854-856.
Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290-296.
EC bans use of dimetridazole in food animals (1995). Vet. Rec. 137, 230.

Forlani, L. (2009). In PATAI'S Chemistry of Functional Groups. London: John Wiley \& Sons.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Idešicová, M., Dlháň, L., Moncol̆, J., Titiš, J. \& Boča, R. (2012). Polyhedron, 36, 79-84.
Kovacs, A. \& Varga, Z. (2006). Coord. Chem. Rev. 250, 710-727.
McLoughlin, D. K. (1968). J. Parasitol. 54, 1038-1039.
Messier, S., Higgins, R. \& Moore, C. (1990). J. Vet. Diagn. Invest. 2, 330-333.
Palmer, J. H. \& Upmacis, R. K. (2015). Acta Cryst. E71, 284-287.
Palmer, J. H., Wu, J. S. \& Upmacis, R. K. (2015). J. Mol. Struct. 1091, 177-182.
Panigrahy, B., Elissalde, G., Grumbles, L. C. \& Hall, C. F. (1978). Avian Dis. 22, 815-818.
Quinlivan, P. J., Wu, J.-S. \& Upmacis, R. K. (2015). Acta Cryst. E71, 810-812.
Rosu, T., Negoiu, M., Strenger, I. \& Müller, U. (1997). Z. Anorg. Allg. Chem. 623, 1201-1202.
Saeed, A. \& Simpson, J. (2009). Acta Cryst. E65, o1845.
Sharma, C. V. K. \& Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2345-2352.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Spek, A. L. (2015). Acta Cryst. C71, 9-18.
Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 49-76.
Thallapally, P. K. \& Nangia, A. (2001). CrystEngComm, 27, 1-6.
Voogd, C. E., Van Der Stel, J. J. \& Jacobs, J. J. (1974). Mutat. Res./ Fundam. Mol. Mech. Mutagen. 26, 483-490.
Wardell, J. L., Skakle, J. M. S., Low, J. N. \& Glidewell, C. (2005). Acta Cryst. C61, o634-o638.

supporting information

Acta Cryst. (2016). E72, 1633-1636 [https://doi.org/10.1107/S2056989016015413]

Crystal structure of di- μ-chlorido-bis[chloridobis(1,2-dimethyl-5-nitro-1 H-imidazole- κN^{3})copper(II)] acetonitrile disolvate

Patrick J. Quinlivan and Rita K. Upmacis

Computing details

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Di- μ-chlorido-bis[chloridobis(1,2-dimethyl-5-nitro-1H-imidazole- κN^{3}) copper(II)] acetonitrile disolvate

Crystal data

$\left[\mathrm{Cu}_{2} \mathrm{Cl}_{4}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{4}\right] \cdot 2 \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$
$M_{r}=915.53$
Monoclinic, $P 2_{1} / c$
$a=13.9545$ (8) \AA
$b=6.7004$ (4) \AA
$c=19.5031(11) \AA$
$\beta=96.424$ (1) ${ }^{\circ}$
$V=1812.10(18) \AA^{3}$
$Z=2$

Data collection

Bruker APEXII CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
$T_{\text {min }}=0.637, T_{\text {max }}=0.746$
28822 measured reflections
$F(000)=932$
$D_{\mathrm{x}}=1.678 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9452 reflections
$\theta=2.9-30.6^{\circ}$
$\mu=1.54 \mathrm{~mm}^{-1}$
$T=130 \mathrm{~K}$
Block, blue
$0.35 \times 0.17 \times 0.10 \mathrm{~mm}$

5564 independent reflections
5034 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=30.6^{\circ}, \theta_{\text {min }}=1.5^{\circ}$
$h=-19 \rightarrow 19$
$k=-9 \rightarrow 9$
$l=-27 \rightarrow 27$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.071$
$S=1.26$
5564 reflections
212 parameters
0 restraints

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0371 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.033$
$\Delta \rho_{\text {max }}=0.51$ e \AA^{-3}
$\Delta \rho_{\min }=-0.51 \mathrm{e} \AA^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Cu	0.41957 (2)	0.46806 (2)	0.42320 (2)	0.01249 (5)
Cl1	0.32308 (2)	0.45734 (5)	0.32075 (2)	0.02105 (7)
C12	0.46436 (2)	0.25939 (4)	0.52033 (2)	0.01295 (6)
O11	0.10021 (7)	0.39434 (18)	0.58607 (6)	0.0303 (2)
O12	0.02709 (7)	0.66914 (16)	0.55203 (5)	0.0280 (2)
O21	0.81805 (7)	0.13329 (16)	0.33794 (5)	0.0263 (2)
O22	0.72749 (7)	-0.08394 (15)	0.38274 (6)	0.0276 (2)
N11	0.09544 (8)	0.55179 (17)	0.55458 (6)	0.0209 (2)
N12	0.18478 (7)	0.77681 (16)	0.48250 (5)	0.01611 (19)
N13	0.30915 (7)	0.58276 (15)	0.46736 (5)	0.01353 (18)
N21	0.74156 (7)	0.07990 (16)	0.35776 (5)	0.0175 (2)
N22	0.65940 (7)	0.39673 (15)	0.31873 (5)	0.01363 (18)
N23	0.53211 (7)	0.37776 (14)	0.37688 (5)	0.01264 (18)
C11	0.17488 (8)	0.59978 (19)	0.51720 (6)	0.0164 (2)
C12	0.25207 (9)	0.48130 (18)	0.50794 (6)	0.0152 (2)
H12A	0.2639	0.3513	0.5264	0.018*
C13	0.26757 (8)	0.76046 (17)	0.45264 (6)	0.0146 (2)
C14	0.12067 (10)	0.9527 (2)	0.47787 (8)	0.0247 (3)
H14A	0.1480	1.0572	0.4508	0.037*
H14B	0.1145	1.0030	0.5244	0.037*
H14C	0.0569	0.9147	0.4554	0.037*
C15	0.30624 (9)	0.92050 (19)	0.41131 (7)	0.0189 (2)
H15A	0.3555	0.8650	0.3847	0.028*
H15B	0.3350	1.0252	0.4422	0.028*
H15C	0.2538	0.9774	0.3797	0.028*
C21	0.66334 (8)	0.21847 (17)	0.35462 (6)	0.0138 (2)
C22	0.58485 (8)	0.20765 (17)	0.39040 (6)	0.0135 (2)
H22A	0.5696	0.1011	0.4194	0.016*
C23	0.57767 (8)	0.48769 (17)	0.33275 (6)	0.0131 (2)
C24	0.72860 (10)	0.4744 (2)	0.27397 (7)	0.0218 (3)
H24A	0.7509	0.3653	0.2463	0.033*
H24B	0.7838	0.5330	0.3024	0.033*
H24C	0.6973	0.5768	0.2433	0.033*
C25	0.54213 (9)	0.68022 (18)	0.30190 (6)	0.0181 (2)
H25A	0.4740	0.6973	0.3085	0.027*
H25B	0.5491	0.6802	0.2525	0.027*
H25C	0.5798	0.7902	0.3244	0.027*

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu	$0.01138(8)$	$0.01446(8)$	$0.01188(8)$	$0.00362(5)$	$0.00239(5)$	$-0.00060(5)$
C 11	$0.01728(14)$	$0.02815(16)$	$0.01670(14)$	$0.00367(11)$	$-0.00253(11)$	$-0.00714(11)$
C 12	$0.01421(12)$	$0.01058(12)$	$0.01442(12)$	$0.0004(9)$	$0.00312(9)$	$0.00093(9)$
O 11	$0.0229(5)$	$0.0378(6)$	$0.0318(6)$	$0.0017(4)$	$0.0102(4)$	$0.0092(5)$
O 12	$0.0167(4)$	$0.0344(6)$	$0.0343(6)$	$0.0063(4)$	$0.0090(4)$	$-0.0021(4)$
O 21	$0.0165(4)$	$0.0332(5)$	$0.0304(5)$	$0.0058(4)$	$0.0078(4)$	$0.0035(4)$
O 22	$0.0259(5)$	$0.0198(4)$	$0.0379(6)$	$0.0084(4)$	$0.0066(4)$	$0.0071(4)$
N 11	$0.0131(5)$	$0.0292(6)$	$0.0208(5)$	$0.0021(4)$	$0.0034(4)$	$-0.0032(4)$
N 12	$0.0126(4)$	$0.0188(5)$	$0.0171(5)$	$0.0049(4)$	$0.0020(4)$	$-0.0022(4)$
N 13	$0.0116(4)$	$0.0151(4)$	$0.0140(4)$	$0.0015(3)$	$0.0020(3)$	$-0.0017(3)$
N 21	$0.0157(5)$	$0.0211(5)$	$0.0157(5)$	$0.0038(4)$	$0.0018(4)$	$-0.0016(4)$
N 22	$0.0139(4)$	$0.0151(4)$	$0.0122(4)$	$0.0009(4)$	$0.0029(3)$	$0.0007(3)$
N 23	$0.0135(4)$	$0.0125(4)$	$0.0122(4)$	$0.0023(3)$	$0.0026(3)$	$0.0003(3)$
C 11	$0.0131(5)$	$0.0211(6)$	$0.0155(5)$	$0.0017(4)$	$0.0035(4)$	$-0.0016(4)$
C 12	$0.0132(5)$	$0.0173(5)$	$0.0153(5)$	$0.0001(4)$	$0.0022(4)$	$-0.0009(4)$
C 13	$0.0116(5)$	$0.0171(5)$	$0.0148(5)$	$0.0015(4)$	$0.0001(4)$	$-0.0034(4)$
C 14	$0.0214(6)$	$0.0248(7)$	$0.0287(7)$	$0.0140(5)$	$0.0061(5)$	$0.0000(5)$
C 15	$0.0190(6)$	$0.0162(5)$	$0.0217(6)$	$0.0024(4)$	$0.0030(5)$	$0.0019(4)$
C 21	$0.0139(5)$	$0.0143(5)$	$0.0135(5)$	$0.0031(4)$	$0.0020(4)$	$-0.0008(4)$
C 22	$0.0154(5)$	$0.0122(5)$	$0.0130(5)$	$0.0023(4)$	$0.0025(4)$	$0.0005(4)$
C 23	$0.0142(5)$	$0.0133(5)$	$0.0118(5)$	$0.0007(4)$	$0.0015(4)$	$-0.0009(4)$
C 24	$0.0190(6)$	$0.0278(7)$	$0.0202(6)$	$0.0008(5)$	$0.0087(5)$	$0.0068(5)$
C 25	$0.0207(6)$	$0.0158(5)$	$0.0186(6)$	$0.0031(4)$	$0.0049(4)$	$0.0047(4)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Cu}-\mathrm{N} 23$	1.9914 (9)	N22-C24	1.4678 (16)
$\mathrm{Cu}-\mathrm{N} 13$	2.0009 (10)	N23-C23	1.3455 (15)
$\mathrm{Cu}-\mathrm{Cl} 1$	2.2822 (3)	N23-C22	1.3663 (14)
$\mathrm{Cu}-\mathrm{Cl} 2$	2.3811 (3)	C11-C12	1.3662 (16)
$\mathrm{Cu}-\mathrm{Cl2}^{\text {i }}$	2.6024 (3)	C12-H12A	0.9500
$\mathrm{Cl} 2-\mathrm{Cu}^{\text {i }}$	2.6024 (3)	C13-C15	1.4792 (17)
O11-N11	1.2188 (16)	C14-H14A	0.9800
$\mathrm{O} 12-\mathrm{N} 11$	1.2329 (14)	C14-H14B	0.9800
$\mathrm{O} 12-\mathrm{N} 11^{\text {ii }}$	2.9399 (15)	C14-H14C	0.9800
$\mathrm{O} 21-\mathrm{N} 21$	1.2285 (14)	C15-H15A	0.9800
O22-N21	1.2258 (15)	C15-H15B	0.9800
N11-C11	1.4299 (16)	C15-H15C	0.9800
$\mathrm{N} 11-\mathrm{O} 12{ }^{\text {ii }}$	2.9399 (15)	C21-C22	1.3649 (16)
N12-C13	1.3552 (15)	C22-H22A	0.9500
N12-C11	1.3802 (16)	C23-C25	1.4850 (16)
N12-C14	1.4764 (15)	C24-H24A	0.9800
N13-C13	1.3414 (15)	C24-H24B	0.9800
N13-C12	1.3653 (15)	C24-H24C	0.9800
N21-C21	1.4291 (15)	C25-H25A	0.9800

N22-C23	1.3478 (15)
N22-C21	1.3823 (15)
$\mathrm{N} 23-\mathrm{Cu}-\mathrm{N} 13$	175.06 (4)
$\mathrm{N} 23-\mathrm{Cu}-\mathrm{Cl} 1$	90.65 (3)
$\mathrm{N} 13-\mathrm{Cu}-\mathrm{Cl} 1$	88.95 (3)
$\mathrm{N} 23-\mathrm{Cu}-\mathrm{Cl} 2$	91.85 (3)
$\mathrm{N} 13-\mathrm{Cu}-\mathrm{Cl} 2$	91.68 (3)
$\mathrm{Cl} 1-\mathrm{Cu}-\mathrm{Cl} 2$	139.002 (12)
$\mathrm{N} 23-\mathrm{Cu}-\mathrm{Cl} 2^{\text {i }}$	85.42 (3)
$\mathrm{N} 13-\mathrm{Cu}-\mathrm{Cl} 2^{\text {i }}$	91.21 (3)
$\mathrm{Cl1}-\mathrm{Cu}-\mathrm{Cl2}^{\text {i }}$	132.139 (12)
$\mathrm{Cl} 2-\mathrm{Cu}-\mathrm{Cl}^{2}{ }^{\text {i }}$	88.842 (10)
$\mathrm{Cu}-\mathrm{Cl} 2-\mathrm{Cu}^{\text {i }}$	91.158 (10)
N11-O12-N11 ${ }^{\text {ii }}$	95.37 (8)
O11-N11-O12	124.80 (11)
O11-N11-C11	116.73 (10)
O12-N11-C11	118.46 (11)
$\mathrm{O} 11-\mathrm{N} 11-\mathrm{O} 12{ }^{\text {ii }}$	85.14 (8)
O12-N11-O12 ${ }^{\text {ii }}$	84.63 (8)
$\mathrm{C} 11-\mathrm{N} 11-\mathrm{O} 12{ }^{\text {ii }}$	100.10 (7)
C13-N12-C11	106.15 (10)
C13-N12-C14	125.32 (11)
C11-N12-C14	128.53 (10)
C13-N13-C12	107.43 (10)
C13-N13-Cu	125.75 (8)
C12-N13-Cu	125.84 (8)
$\mathrm{O} 21-\mathrm{N} 21-\mathrm{O} 22$	124.71 (11)
$\mathrm{O} 21-\mathrm{N} 21-\mathrm{C} 21$	118.93 (11)
O22-N21-C21	116.32 (10)
C23-N22-C21	105.94 (9)
C23-N22-C24	126.03 (10)
C21-N22-C24	128.03 (10)
C23-N23-C22	107.29 (9)
C23-N23-Cu	125.24 (8)
C22-N23-Cu	126.94 (8)
C12-C11-N12	108.11 (10)
C12-C11-N11	127.19 (12)
N12-C11-N11	124.69 (10)
C11-C12-N13	107.88 (11)
C11-C12-H12A	126.1
N11ii-O12-N11-O11	-80.27 (13)
N11ii-O12-N11-C11	98.59 (11)
$\mathrm{N} 11{ }^{\text {iii }}$-O12-N11-O12 ${ }^{\text {ii }}$	0.0
C13-N12-C11-C12	0.40 (13)
C14-N12-C11-C12	-179.12 (12)
C13-N12-C11-N11	-178.29 (11)

C25-H25B	0.9800
C25-H25C	0.9800
N13-C12-H12A	126.1
N13-C13-N12	110.42 (11)
N13-C13-C15	125.78 (11)
N12-C13-C15	123.78 (11)
N12-C14-H14A	109.5
N12-C14-H14B	109.5
H14A-C14-H14B	109.5
N12-C14-H14C	109.5
H14A-C14-H14C	109.5
H14B-C14-H14C	109.5
C13-C15-H15A	109.5
C13-C15-H15B	109.5
H15A-C15-H15B	109.5
C13-C15-H15C	109.5
H15A-C15-H15C	109.5
H15B-C15-H15C	109.5
$\mathrm{C} 22-\mathrm{C} 21-\mathrm{N} 22$	108.42 (10)
$\mathrm{C} 22-\mathrm{C} 21-\mathrm{N} 21$	126.61 (11)
N22-C21-N21	124.75 (10)
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{N} 23$	107.62 (10)
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{H} 22 \mathrm{~A}$	126.2
$\mathrm{N} 23-\mathrm{C} 22-\mathrm{H} 22 \mathrm{~A}$	126.2
N23-C23-N22	110.69 (10)
N23-C23-C25	125.06 (10)
N22-C23-C25	124.23 (11)
N22-C24-H24A	109.5
N22-C24-H24B	109.5
H24A-C24-H24B	109.5
N22-C24-H24C	109.5
$\mathrm{H} 24 \mathrm{~A}-\mathrm{C} 24-\mathrm{H} 24 \mathrm{C}$	109.5
H24B-C24-H24C	109.5
C23-C25-H25A	109.5
C23-C25-H25B	109.5
H25A-C25-H25B	109.5
C23-C25-H25C	109.5
H25A-C25-H25C	109.5
H25B-C25-H25C	109.5
C11-N12-C13-C15	-178.76 (11)
C14-N12-C13-C15	0.78 (19)
C23-N22-C21-C22	-1.06 (13)
C24-N22-C21-C22	179.19 (11)
C23-N22-C21-N21	-175.98 (11)
C24-N22-C21-N21	4.28 (19)

$\mathrm{C} 14-\mathrm{N} 12-\mathrm{C} 11-\mathrm{N} 11$	$2.2(2)$	$\mathrm{O} 21-\mathrm{N} 21-\mathrm{C} 21-\mathrm{C} 22$	$-160.72(12)$
$\mathrm{O} 11-\mathrm{N} 11-\mathrm{C} 11-\mathrm{C} 12$	$6.01(19)$	$\mathrm{O} 22-\mathrm{N} 21-\mathrm{C} 21-\mathrm{C} 22$	$16.86(18)$
$\mathrm{O} 12-\mathrm{N} 11-\mathrm{C} 11-\mathrm{C} 12$	$-172.94(12)$	$\mathrm{O} 21-\mathrm{N} 21-\mathrm{C} 21-\mathrm{N} 22$	$13.27(17)$
$\mathrm{O} 122^{\mathrm{ii}} \mathrm{N} 11-\mathrm{C} 11-\mathrm{C} 12$	$-83.60(13)$	$\mathrm{O} 22-\mathrm{N} 21-\mathrm{C} 21-\mathrm{N} 22$	$-169.15(11)$
$\mathrm{O} 11-\mathrm{N} 11-\mathrm{C} 11-\mathrm{N} 12$	$-175.55(12)$	$\mathrm{N} 22-\mathrm{C} 21-\mathrm{C} 22-\mathrm{N} 23$	$0.11(13)$
$\mathrm{O} 12-\mathrm{N} 11-\mathrm{C} 11-\mathrm{N} 12$	$5.50(18)$	$\mathrm{N} 21-\mathrm{C} 21-\mathrm{C} 22-\mathrm{N} 23$	$174.90(11)$
$\mathrm{O} 12 \mathrm{ii}-\mathrm{N} 11-\mathrm{C} 11-\mathrm{N} 12$	$94.84(12)$	$\mathrm{C} 23-\mathrm{N} 23-\mathrm{C} 22-\mathrm{C} 21$	$0.90(13)$
$\mathrm{N} 12-\mathrm{C} 11-\mathrm{C} 12-\mathrm{N} 13$	$-0.50(13)$	$\mathrm{Cu}-\mathrm{N} 23-\mathrm{C} 22-\mathrm{C} 21$	$-171.07(8)$
$\mathrm{N} 11-\mathrm{C} 11-\mathrm{C} 12-\mathrm{N} 13$	$178.15(11)$	$\mathrm{C} 22-\mathrm{N} 23-\mathrm{C} 23-\mathrm{N} 22$	$-1.62(13)$
$\mathrm{C} 13-\mathrm{N} 13-\mathrm{C} 12-\mathrm{C} 11$	$0.40(13)$	$\mathrm{Cu}-\mathrm{N} 23-\mathrm{C} 23-\mathrm{N} 22$	$170.52(7)$
$\mathrm{Cu}-\mathrm{N} 13-\mathrm{C} 12-\mathrm{C} 11$	$-168.81(8)$	$\mathrm{Cu}-\mathrm{N} 23-\mathrm{C} 23-\mathrm{C} 23-\mathrm{C} 25$	$176.82(11)$
$\mathrm{C} 12-\mathrm{N} 13-\mathrm{C} 13-\mathrm{N} 12$	$\mathrm{C} 21-\mathrm{N} 22-\mathrm{C} 23-\mathrm{N} 23$	$-11.04(16)$	
$\mathrm{Cu}-\mathrm{N} 13-\mathrm{C} 13-\mathrm{N} 12$	$\mathrm{C} 24-\mathrm{N} 22-\mathrm{C} 23-\mathrm{N} 23$	$1.66(13)$	
$\mathrm{C} 12-\mathrm{N} 13-\mathrm{C} 13-\mathrm{C} 15$	$\mathrm{C} 21-\mathrm{N} 22-\mathrm{C} 23-\mathrm{C} 25$	$-178.59(11)$	
$\mathrm{Cu}-\mathrm{N} 13-\mathrm{C} 13-\mathrm{C} 15$	$\mathrm{C} 24-\mathrm{N} 22-\mathrm{C} 23-\mathrm{C} 25$	$-176.79(11)$	
$\mathrm{C} 11-\mathrm{N} 12-\mathrm{C} 13-\mathrm{N} 13$		$2.96(19)$	
$\mathrm{C} 14-\mathrm{N} 12-\mathrm{C} 13-\mathrm{N} 13$	$-12.36(17)$	$-0.16(13)$	$179.38(11)$

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x,-y+1,-z+1$.

Hydrogen-bond geometry ($\AA,{ }^{o}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 25 — \mathrm{H} 25 C \cdots \mathrm{O} 22^{\mathrm{iii}}$	0.98	2.39	$3.2804(17)$	150
$\mathrm{C} 15 — \mathrm{H} 15 B \cdots \mathrm{Cl} 2^{\mathrm{iii}}$	0.98	2.73	$3.6737(13)$	163
$\mathrm{C} 12 — \mathrm{H} 12 A \cdots \mathrm{O} 22^{\mathrm{iv}}$	0.95	2.51	$3.4029(16)$	156
$\mathrm{C} 22 — \mathrm{H} 22 A \cdots \mathrm{Cl} 2^{\mathrm{iv}}$	0.95	2.75	$3.6828(12)$	167
$\mathrm{C} 24 — \mathrm{H} 24 C \cdots \mathrm{Cl1}$		0.98	2.84	$3.7555(13)$

Symmetry codes: (iii) $x, y+1, z$; (iv) $-x+1,-y,-z+1$; (v) $-x+1, y+1 / 2,-z+1 / 2$.

