CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 19 September 2016
Accepted 11 October 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; hydrogen bonding; $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ contacts.

CCDC reference: 1509423

Supporting information: this article has supporting information at journals.iucr.org/e

open 〇 access

Crystal structure of N,N,N-triethylhydroxylammonium chloride

Boris B. Averkiev, ${ }^{\text {a* }}$ Bianca C. Valencia, ${ }^{\text {a }}$ Yulia A. Getmanenko ${ }^{\text {a }}$ and Tatiana V. Timofeeva ${ }^{\text {a,b }}$

${ }^{\text {a }}$ Department of Chemistry, New Mexico Highlands University, Las Vegas, NM 87701, USA, and ${ }^{\text {b }}$ ITMO University, 49 Kronverkskiy Prospekt, Saint Petersburg, 197101, Russian Federation. *Correspondence e-mail: averkiev75@gmail.com

In the title molecular salt, $\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{NO}^{+} \cdot \mathrm{Cl}^{-}$, two of the $\mathrm{C}-\mathrm{C}-\mathrm{N}-\mathrm{O}$ groups in the cation adopt a gauche conformation [torsion angles $=62.86(11)$ and $\left.-54.95(13)^{\circ}\right]$ and one an anti conformation $\left[-177.82(10)^{\circ}\right.$. The cation and anion are linked by an $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond. The extended structure displays $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, resulting in layers lying parallel to the (100) plane: further $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ contacts connect the sheets into a three-dimensional network.

1. Chemical context

Triethylamine is often used to treat silica gel with the goal of reducing the acidity of the stationary phase during column chromatography purification. In a typical procedure, an eluant is mixed with triethylamine ($1-3 \%$), and this solvent mixture is used to prepare the silica gel slurry for manually packed columns. While the effect of the triethylamine on silica gel is known, no specific details could be found about the structural transformation of triethylamine itself. This work presents the result of the column chromatography purification of a di-thiazolo[4,5-a:5', $\left.4^{\prime}-c\right]$ phenazine derivative using a dichloromethane:ethyl acetate mixture as eluant. Unexpectedly, the crystals obtained after slow solvent evaporation from an 'empty' fraction were identified as the title molecular salt, N, N, N-triethylhydroxylammonium chloride, $\mathbf{1}$.

2. Structural commentary

The molecular structure of $\mathbf{1}$ is presented in Fig. 1. The $\mathrm{C}-\mathrm{N}$ bond lengths $[1.5090(13)-1.5148$ (13) \AA] and the $\mathrm{N}-\mathrm{O}$ bond length $[1.4218$ (11) A] are in good agreement with mean reported geometries for 79 entries from the Cambridge Structural Database (CSD; Groom et al., 2016) containing the

Figure 1
The molecular structure of $\mathbf{1}$, with displacement ellipsoids drawn at the 50% probability level. The $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1$ hydrogen bond is shown as a dashed line (see Table 1).
$\mathrm{C}_{3} \mathrm{~N}-\mathrm{O}-R(R=\mathrm{C}, \mathrm{H})$ fragment: $\mathrm{C}-\mathrm{N} 1.51$ (3) \AA and $\mathrm{N}-\mathrm{O}$ 1.42 (2) \AA and comparable to the analogous data in a closely related compound, N, N, N-trimethylhydroxylammonium chloride, 2 (1.488-1.489 \AA for the $\mathrm{N}-\mathrm{C}$ bonds and $1.429 \AA$ for the $\mathrm{N}-\mathrm{O}$ bond) (Jiang et al., 2004; Rérat, 1960; Caron \& Donohue, 1962). The hydroxyl hydrogen atom H1 participates in a strong hydrogen bond with the adjacent chloride anion (Table 1), which is also observed for 2.

3. Supramolecular features

The $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1$ and $\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 1$ hydrogen bonds assemble the constituent ions into spiral chains around 2_{1} axes.

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 11$	$0.87(2)$	$2.06(2)$	$2.9330(12)$	$175(2)$
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 1^{\mathrm{i}}$	$0.934(18)$	$2.888(19)$	$3.7786(15)$	$159.8(15)$
$\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	$0.955(18)$	$2.943(17)$	$3.6859(16)$	$135.6(14)$
$\mathrm{C} 3-\mathrm{H} 3 B \cdots \mathrm{Cl} 1$	$0.977(19)$	$2.911(19)$	$3.6203(16)$	$130.3(14)$
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{Cl} 1^{\mathrm{i}}$	$0.93(2)$	$2.93(2)$	$3.7740(19)$	$150.7(14)$
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{Cl} 1^{\text {iii }}$	$1.02(4)$	$2.98(4)$	$3.9913(18)$	$172(2)$
$\mathrm{C} 5-\mathrm{H} 5 B \cdots \mathrm{O}^{\text {iv }}$	$0.97(3)$	$2.50(3)$	$3.4359(18)$	$163(2)$

Symmetry codes: (i) $-x+1,-y, z-\frac{1}{2}$; (ii) $x+\frac{1}{2},-y+\frac{1}{2}, z$; (iii) $-x+\frac{1}{2}, y+\frac{1}{2}, z-\frac{1}{2}$; (iv)
$-x+1,-y+1, z-\frac{1}{2}$.

These chains are connected by $\mathrm{C} 5-\mathrm{H} 5 B \cdots \mathrm{O}$ 1 hydrogen bonds into sheets lying parallel to the (100) plane (Fig. 2). There are four weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ contacts in the structure. The $\mathrm{C} 2-\mathrm{H} 3 B \cdots \mathrm{Cl} 1$ contact reinforces the $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond; the $\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{Cl} 1$ hydrogen bond connects molecules within a sheet, while the $\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{Cl} 1$ and $\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{Cl} 1$ contacts connect the ions between the (100) sheets.

For comparison, the crystal packing of $\mathbf{2}$ is rather different. The cations in 2 lie on mirror planes and are arranged into chains along the [100] direction, being linked by $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1$ and $\mathrm{C} 2-\mathrm{H} 5 \cdots \mathrm{Cl} 1$ hydrogen bonds. The molecules in the chain are symmetrically related by a glide plane and $\mathrm{C} 1-\mathrm{H} 2 \cdots \mathrm{Cl} 1$ hydrogen bonds connect the chains into three-dimensional network. It is noteworthy that the oxygen atom does not participate as a proton acceptor in hydrogen bonding.

4. Database survey

A search of the Cambridge Structural Database (Groom et al., 2016) revealed 221 crystal structures containing the $\mathrm{C}_{3} \mathrm{~N}-\mathrm{O}$ fragment: 144 of them contain a $\mathrm{C}_{3} \mathrm{~N}^{+}-\mathrm{O}^{-}$fragment and 79 a $\mathrm{C}_{3} \mathrm{~N}-\mathrm{O}-R$ fragment $(R=\mathrm{C}, \mathrm{H})$. While the additional connection of the oxygen atom increases the $\mathrm{N}-\mathrm{O}$ bond length from 1.393 (18) to 1.42 (2) \AA, the $\mathrm{C}-\mathrm{N}$ bond lengths are not affected and remain at 1.51 (3) \AA value. 31 structures in the CSD are salts of the $\mathrm{C}_{3} \mathrm{~N}^{+}-\mathrm{OH}$ cation. In eight of them,

Figure 2

Layers in the crystal structures of (left) $\mathbf{1}$ and (right) $\mathbf{2}$.

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{NO}^{+} \cdot \mathrm{Cl}^{-}$
M_{r}	153.65
Crystal system, space group	Orthorhombic, Pna 2_{1}
Temperature (K)	215
$a, b, c(\AA)$	$12.816(5), 6.371(3), 10.439(4)$
$V\left(\AA^{3}\right)$	$852.3(6)$
Z	4
Radiation type	Mo K α
$\mu\left(\mathrm{mm}^{-1}\right)$	0.38
Crystal size (mm)	$0.40 \times 0.20 \times 0.05$
Data collection	Bruker APEXII CCD
Diffractometer	Multi-scan $($ SADABS; Bruker,
Absorption correction	$2008)$
	$0.667,0.746$
$T_{\text {min }}, T_{\text {max }}$	$12103,2484,2447$
No. of measured, independent and	
\quad observed $[I>2 \sigma(I)]$ reflections	0.025
$R_{\text {int }}$	0.703
$(\text { sin } \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	
Refinement	$0.021,0.056,1.04$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	2484
No. of reflections	146
No. of parameters	1
No. of restraints	All H-atom parameters refined
H-atom treatment	$0.15,-0.14$
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA \AA^{-3}\right)$	Flack x determined using 1146
Absolute structure	quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$
	$($Parsons et al., 2013$)$
Absolute structure parameter	$0.046(15)$

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS97 and SHELXTL((Sheldrick, 2008) and SHELXL2014 (Sheldrick, 2015).
the anion is Cl^{-}, of which seven feature an $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond (the $\mathrm{O} \cdots \mathrm{Cl}$ distance varies from 2.872 to $3.010 \AA$). The exception is the crystal structure of $(1 S, 5 S)$ geneseroline hydrochloride monohydrate (refcode VAVZUN), in which the solvent water molecule accepts an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond from the $\mathrm{C}_{3} \mathrm{~N}^{+}-\mathrm{OH}$ group.

5. Synthesis and crystallization

During the column chromatography purification of the di-thiazolo[4,5-a:5 $\left.{ }^{\prime}, 4^{\prime}-c\right]$ phenazine derivative using dichloro-methane-ethyl acetate as eluant and Alfa-Aesar silica gel (stock \# 42570; lot \# K03T015; case \# 632131-67-4) treated with triethylamine, a fraction containing a trace amount of the desired product was left over several days until compete evaporation of the solvents led to the formation of colourless plates of the title compound. Unexpectedly, the crystals were identified as $\mathrm{N}, \mathrm{N}, \mathrm{N}$-triethylhydroxylammonium chloride; dichloromethane was probably the source of the chloride anion.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table $2 . \mathrm{H}$ atoms were all located in difference Fourier map and refined isotropically.

Acknowledgements

This work had been supported by NSF via DMR-0934212 and DMR-1523611 (PREM) and IIA-130134.

References

Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Caron, A. \& Donohue, J. (1962). Acta Cryst. 15, 1052-1053.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Jiang, A. J., Doerrer, L. H. \& Yap, G. P. A. (2004). Private communication (refcode TMOHCL02). CCDC, Cambridge, England.
Parsons, S., Flack, H. D. \& Wagner, T. (2013). Acta Cryst. B69, 249259.

Rérat, C. (1960). Acta Cryst. 13, 63-71.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

supporting information

Acta Cryst. (2016). E72, 1607-1609 [https://doi.org/10.1107/S2056989016016169]

Crystal structure of $\mathrm{N}, \mathrm{N}, \mathrm{N}$-triethylhydroxylammonium chloride

Boris B. Averkiev, Bianca C. Valencia, Yulia A. Getmanenko and Tatiana V. Timofeeva

Computing details

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

N,N,N-Triethylhydroxylammonium chloride

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{NO}^{+} \cdot \mathrm{Cl}^{-}$
$M_{r}=153.65$
Orthorhombic, $\mathrm{Pna2}_{1}$
$a=12.816$ (5) \AA
$b=6.371$ (3) \AA
$c=10.439(4) \AA$
$V=852.3(6) \AA^{3}$
$Z=4$
$F(000)=336$

Data collection

Bruker APEXII CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\min }=0.667, T_{\text {max }}=0.746$
12103 measured reflections

$$
D_{\mathrm{x}}=1.197 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2230 reflections
$\theta=3.6-32.3^{\circ}$
$\mu=0.38 \mathrm{~mm}^{-1}$
$T=215 \mathrm{~K}$
Plate, colorless
$0.40 \times 0.20 \times 0.05 \mathrm{~mm}$

2484 independent reflections
2447 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=30.0^{\circ}, \theta_{\text {min }}=3.2^{\circ}$
$h=-18 \rightarrow 18$
$k=-8 \rightarrow 8$
$l=-14 \rightarrow 14$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.056$
$S=1.04$
2484 reflections
146 parameters
1 restraint
Hydrogen site location: difference Fourier map
All H-atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0429 P)^{2}+0.0129 P\right]$
\quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.034$
$\Delta \rho_{\max }=0.15 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.14 \mathrm{e} \AA^{-3}$
Absolute structure: Flack x determined using
$\quad 1146$ quotients $\left[\left(I^{+}\right)-\left(I^{\prime}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$(Parsons et
al., 2013)
Absolute structure parameter: 0.046 (15)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
C11	$0.35543(2)$	$-0.08505(4)$	$0.50629(5)$	$0.03438(9)$
O1	$0.47318(6)$	$0.30749(12)$	$0.48070(7)$	$0.02789(17)$
H1	$0.4399(16)$	$0.188(4)$	$0.484(3)$	$0.060(6)^{*}$
N1	$0.53046(7)$	$0.29675(12)$	$0.36425(9)$	$0.02182(16)$
C1	$0.45457(9)$	$0.28944(18)$	$0.25337(10)$	$0.0299(2)$
H1B	$0.4138(19)$	$0.155(4)$	$0.269(2)$	$0.054(5)^{*}$
H1A	$0.4948(15)$	$0.269(3)$	$0.1798(16)$	$0.031(4)^{*}$
C2	$0.59511(9)$	$0.49467(16)$	$0.36668(10)$	$0.0269(2)$
H2B	$0.5464(16)$	$0.599(3)$	$0.380(2)$	$0.038(5)^{*}$
H2A	$0.6374(13)$	$0.486(3)$	$0.4418(18)$	$0.028(4)^{*}$
C3	$0.59581(10)$	$0.09863(15)$	$0.36273(11)$	$0.0278(2)$
H3B	$0.5446(14)$	$-0.015(3)$	$0.358(2)$	$0.038(4)^{*}$
H3A	$0.6338(13)$	$0.106(3)$	$0.287(2)$	$0.030(4)^{*}$
C4	$0.38747(11)$	$0.4836(3)$	$0.24189(13)$	$0.0404(3)$
H4C	$0.3582(16)$	$0.529(4)$	$0.320(2)$	$0.049(6)^{*}$
H4B	$0.4278(16)$	$0.602(3)$	$0.207(2)$	$0.040(5)^{*}$
H4A	$0.328(3)$	$0.450(5)$	$0.181(4)$	$0.086(10)^{*}$
C5	$0.66019(11)$	$0.5267(2)$	$0.24769(13)$	$0.0347(2)$
H5C	$0.712(2)$	$0.420(4)$	$0.240(3)$	$0.077(8)^{*}$
H5B	$0.616(2)$	$0.543(4)$	$0.173(3)$	$0.064(7)^{*}$
H5A	$0.6950(19)$	$0.650(4)$	$0.252(2)$	$0.060(6)^{*}$
C6	$0.66688(14)$	$0.0771(2)$	$0.47737(14)$	$0.0392(3)$
H6C	$0.7011(19)$	$-0.051(4)$	$0.471(2)$	$0.054(6)^{*}$
H6B	$0.7175(18)$	$0.182(4)$	$0.478(3)$	$0.066(7)^{*}$
H6A	$0.6251(18)$	$0.078(3)$	$0.562(3)$	$0.044(6)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.03250(14)$	$0.03626(14)$	$0.03439(14)$	$-0.00604(8)$	$-0.00249(12)$	$0.00905(11)$
O1	$0.0323(4)$	$0.0302(4)$	$0.0212(4)$	$-0.0008(3)$	$0.0078(3)$	$-0.0021(2)$
N1	$0.0231(4)$	$0.0232(3)$	$0.0192(3)$	$-0.0007(3)$	$0.0026(3)$	$-0.0014(3)$
C1	$0.0257(4)$	$0.0417(6)$	$0.0222(4)$	$-0.0034(4)$	$-0.0018(4)$	$-0.0025(4)$
C2	$0.0306(5)$	$0.0230(4)$	$0.0269(5)$	$-0.0050(3)$	$-0.0005(4)$	$-0.0003(4)$
C3	$0.0302(5)$	$0.0236(4)$	$0.0296(5)$	$0.0037(3)$	$0.0035(4)$	$-0.0019(4)$
C4	$0.0291(6)$	$0.0589(8)$	$0.0333(6)$	$0.0091(5)$	$-0.0011(5)$	$0.0093(6)$
C5	$0.0330(6)$	$0.0403(6)$	$0.0310(6)$	$-0.0095(5)$	$0.0017(5)$	$0.0058(5)$
C6	$0.0396(6)$	$0.0409(7)$	$0.0371(8)$	$0.0117(5)$	$-0.0027(5)$	$0.0067(5)$

Geometric parameters ($A,{ }^{\circ}$)

N1-O1	1.4218 (11)	C3-H3B	0.977 (19)
O1-H1	0.87 (2)	C3-H3A	0.93 (2)
N1-C2	1.5090 (13)	C4-H4C	0.94 (3)
N1-C1	1.5126 (14)	C4-H4B	0.987 (19)
N1-C3	1.5148 (13)	C4-H4A	1.02 (4)
C1-C4	1.5113 (19)	C5-H5C	0.96 (3)
C1-H1B	1.01 (2)	C5-H5B	0.97 (3)
C1-H1A	0.934 (18)	C5-H5A	0.91 (3)
C2-C5	1.5101 (18)	C6-H6C	0.93 (2)
C2-H2B	0.921 (19)	C6-H6B	0.93 (2)
C2-H2A	0.955 (18)	C6-H6A	1.03 (3)
C3-C6	1.5103 (19)		
N1-O1-H1	104.2 (17)	C6-C3-H3A	111.4 (11)
O1-N1-C2	103.23 (7)	N1-C3-H3A	104.8 (11)
O1-N1-C1	108.89 (8)	H3B-C3-H3A	110.2 (16)
C2-N1-C1	113.06 (8)	C1-C4-H4C	114.1 (16)
O1-N1-C3	109.55 (8)	C1-C4-H4B	111.0 (11)
C2-N1-C3	113.13 (8)	H4C-C4-H4B	107 (2)
C1-N1-C3	108.77 (8)	$\mathrm{C} 1-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	107.6 (18)
C4-C1-N1	113.66 (10)	H4C-C4-H4A	108 (3)
C4- $\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	114.1 (13)	H4B-C4-H4A	109 (2)
N1-C1-H1B	103.7 (14)	C2-C5-H5C	111 (2)
C4-C1-H1A	111.2 (12)	C2-C5-H5B	110.9 (18)
N1-C1-H1A	106.2 (12)	H5C-C5-H5B	115 (3)
H1B-C1-H1A	107.3 (17)	C2-C5-H5A	110.5 (16)
N1-C2-C5	113.73 (9)	H5C-C5-H5A	106 (2)
N1-C2-H2B	103.4 (11)	H5B-C5-H5A	103 (2)
C5-C2-H2B	113.7 (12)	C3-C6-H6C	107.9 (16)
N1-C2-H2A	106.1 (12)	C3-C6-H6B	111.1 (16)
C5-C2-H2A	111.7 (10)	H6C-C6-H6B	108 (2)
H2B-C2-H2A	107.5 (17)	C3-C6-H6A	111.4 (14)
C6-C3-N1	113.62 (9)	H6C-C6-H6A	108.0 (19)
C6-C3-H3B	112.2 (12)	H6B-C6-H6A	111 (2)
N1-C3-H3B	104.2 (11)		
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 4$	62.86 (11)	C3-N1-C2-C5	64.73 (12)
C2-N1-C1-C4	-51.26 (13)	O1-N1-C3-C6	-54.95 (13)
C3-N1-C1-C4	-177.82 (10)	C2-N1-C3-C6	59.62 (13)
O1-N1-C2-C5	-176.96 (9)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 6$	-173.87 (10)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 5$	-59.47 (12)		

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{Cl1}$	$0.87(2)$	$2.06(2)$	$2.9330(12)$	$175(2)$

$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 1^{\mathrm{i}}$	0.934 (18)	2.888 (19)	3.7786 (15)	159.8 (15)
$\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{Cl} 1^{\text {ii }}$	0.955 (18)	2.943 (17)	3.6859 (16)	135.6 (14)
$\mathrm{C} 3-\mathrm{H} 3 B \cdots \mathrm{Cl} 1$	0.977 (19)	2.911 (19)	3.6203 (16)	130.3 (14)
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{Cl} 1^{\mathrm{i}}$	0.93 (2)	2.93 (2)	3.7740 (19)	150.7 (14)
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{Cl} 1^{\text {iii }}$	1.02 (4)	2.98 (4)	3.9913 (18)	172 (2)
C5-H5B $\cdots \mathrm{O} 1^{\text {iv }}$	0.97 (3)	2.50 (3)	3.4359 (18)	163 (2)

Symmetry codes: (i) $-x+1,-y, z-1 / 2$; (ii) $x+1 / 2,-y+1 / 2, z$; (iii) $-x+1 / 2, y+1 / 2, z-1 / 2$; (iv) $-x+1,-y+1, z-1 / 2$.

