

Received 1 September 2016 Accepted 6 September 2016

Edited by A. Van der Lee, Université de Montpellier II, France

Keywords: crystal structure; powder diffraction; sodium hafnium disilicate.

CCDC reference: 1502957

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of Na₂HfSi₂O₇ by Rietveld refinement

Nicolas Massoni^a* and Pierrick Chevreux^{a,b}

^aCEA, DEN, DTCD, Marcoule, BP17171, F-30207 Bagnols sur Ceze, France, and ^bCRPG, CNRS UMR-5873, Université de Lorraine, BP 20, F-54501 Vandoeuvre les Nancy cedex, France. *Correspondence e-mail: nicolas.massoni@cea.fr

The structure of triclinic disodium hafnium disilicate, Na₂HfSi₂O₇, has been determined by laboratory powder X-ray diffraction and refined by the Rietveld refinement. The structure is a framework made of alternate layers of HfO₆ octahedra and SiO₄ tetrahedra linked by common O atoms. Sodium atoms are located in the voids of the framework, aligned into tunnels along the [010] direction. Na₂HfSi₂O₇ is isostructural with the parakeldyshite Na₂ZrSi₂O₇ phase.

1. Chemical context

Laboratory work in order to explore the chemistry of compounds with radioactive elements such as actinides is difficult because of the emission of ionizing radiation. To overcome this problem, these radionuclides are often replaced by a stable element having similar properties as the radioactive element, for instance by using elements with a similar ionic radius or with the same oxidation state. Hence actinides are often replaced by neodymium, zirconium, europium, or hafnium (Ramsey *et al.*, 1995). The reactivity of uranium with an Na–Si–O glass at high temperatures was thus simulated by using hafnium instead of uranium. We have obtained samples with different phases among which was a sodium hafnium disilicate, similar to the sodium zirconium silicate already observed in a similar glass (Plaisted *et al.*, 1999). The structure of the sodium hafnium disilicate is discussed in this paper.

2. Structural commentary

The Na₂HfSi₂O₇ phase is isostructural with the parakeldyshite phase (Voronkov et al., 1970; Fleischer et al., 1979). As reported in Table 1, the cell parameters of the Na₂HfSi₂O₇ phase are slightly smaller than those of parakeldyshite, and the volume of the cell is 0.8% smaller. For the $Na_2HfSi_2O_7$ phase, the Hf1O₆ octahedral and the Si2O₄ tetrahedral volumes are about the same as the analogous Zr octahedral and Si tetrahedral volumes in parakeldyshite. The Si1O₄ tetrahedral volume of the Na2HfSi2O7 phase is about 5% smaller than that in parakeldyshite. It is thus in the latter tetrahedron that the bond lengths differ significantly whereas the other bond lengths are quite similar in both phases. The sodium coordination polyhedral volumes are quite similar in volume for the two phases, about 30.1 \AA^3 . A polyhedral view of the Na₂HfSi₂O₇ structure is given in Fig. 1. The Na₂ZrSi₂O₇ phase is capable of ion exchange on the sodium site thanks to the sufficient dimension of the sodium tunnels in the [010]

Table 1

Cell parameters, selected distances (Å), angles (°) and volumes (Å³) for the title phase compared to parakeldyshite.

Cell parameters of Na₂ZrSi₂O₇ are from Ferreira et al. (2001).

Na ₂ HfSi ₂ O ₇		$Na_2ZrSi_2O_7$	
a, b, c	6.6123 (2), 8.7948 (3), 5.41074 (15)	a, b, c	6.6364 (4), 8.8120 (5), 5.4233 (3)
α, β, γ	92.603 (2), 94.084 (2), 71.326 (2)	α, β, γ	92.697 (4), 94.204 (3), 71.355 (3)
V _{cell}	297.25 (2)	$V_{\rm cell}$	299.61 (3)
Hf1 octahedron		Zr octahedron	
O1-O7	4.15 (4)	O1-O7	4.22 (2)
O4-O5	4.28 (3)	O4-O5	4.24 (2)
O3-O6	4.22 (4)	O3-O6	4.18 (2)
Hf1-O7	2.23 (3)	Zr-O7	2.13 (2)
Hf1-O1	1.92 (3)	Zr-O1	2.08 (2)
Hf1-O3	2.30 (3)	Zr-O3	2.11 (2)
Hf1-O4	2.04 (2)	Zr-O4	2.16 (3)
Hf1-O5	2.26 (3)	Zr-O5	2.09 (3)
Hf1-O6	1.93 (2)	Zr-O6	2.03 (2)
Hf1-O7-Si2	116.7 (6)	Zr-O7-Si2	124.0 (4)
Polyhedron volume	12.5	Polyhedron volume	12.4
Si1 tetrahedron		Si1 tetrahedron	
Si1-O2 ⁱ	1.55 (3)	Si1-O2 ⁱ	1.62 (2)
Si1–O3 ⁱ	1.37 (4)	Si1–O3 ⁱ	1.58 (1)
Si1-O4 ⁱ	1.66 (3)	Si1-O4 ⁱ	1.55 (1)
Si1-O1	1.68 (3)	Si1-O1	1.57 (1)
Polyhedron volume	1.94	Polyhedron volume	2.02
Si2 tetrahedron		Si2 tetrahedron	
Si2-O2	1.77 (3)	Si2-O2	1.67 (2)
Si2–O7 ⁱ	1.61 (3)	Si2–O7 ⁱ	1.64 (1)
Si2-O5	1.61 (3)	Si2-O5	1.62 (1)
Si2-O6	1.60 (3)	Si2-O6	1.53 (1)
Polyhedron volume	2.12	Polyhedron volume	2.14
Si1–O–Si2 bridging angle	136.7 (5)	Si1-O-Si2 bridging angle	130.9 (5)

Symmetry code: (i) -x, -y, -z.

direction (Kostov-Kytin *et al.*, 2008). Since these dimensions are the same in both phases, ion exchange should also be possible in the $Na_2HfSi_2O_7$ phase. A numerical comparison of the structures of the parakeldyshite and the $Na_2HfSi_2O_7$ phase

Figure 1

Polyhedral representation of the $Na_2HfSi_2O_7$ phase with SiO₄ units (blue), HfO₆ units (green) and sodium (yellow) with displacement ellipsoids drawn at the 99% probability level.

was performed with *COMPSTRU* (de la Flor *et al.*, 2016). The structures' similarities were estimated by different parameters such as the measure of similarity Δ (Bergerhoff *et al.*, 1999). This parameter was determined to be 0.018 for a maximum distance between paired atoms of 1 Å, indicating that structures are effectively isostructural. Since hafnium simulates uranium, the existence of the Na₂USi₂O₇ phase can also be supposed.

3. Database survey

The crystal chemistry of zirconosilicates can be described in terms of an *MT* framework with *MO*₆ octahedra and *TO*₄ tetrahedra (M = Zr, T = Si; Ilyushin & Blatov, 2002). The voids in the *MT* framework are filled with alkaline or alkaline earth elements coordinated in an eight-vertex polyhedron. The crystal system of sodium zirconosilicates can vary from triclinic (Na₂ZrSi₂O₇) to monoclinic (Na₂ZrSi₄O₁₁) or trigonal (Na₈ZrSi₆O₁₈). If we focus on the chemistry of zirconosilicates with Si₂O₇ diortho groups and their analogs (Pekov *et al.*, 2007), the triclinic phase is privileged such as the parakeldy-shite Na₂ZrSi₂O₇ phase (Ferreira *et al.*, 2001) or the keldyshite (Na,H)₂ZrSi₂O₇ phase (Khalilov *et al.*, 1978). The potassium analogue, however, is monoclinic as in the case of khibinskite K₂ZrSi₂O₇ (Chernov *et al.*, 1970; Nosyrev *et al.*, 1976).

research communications

Figure 2

4. Synthesis and crystallization

The synthesis of sodium hafnium disilicate was based on the two-step synthesis protocol of parakeldyshite Na2ZrSi2O7 (Lin et al., 1999; Ferreira et al., 2001). The first step was the synthesis of the Hf-petarasite phase Na₅Zr₂Si₆O₁₈(Cl·OH)₂·-H₂O with zirconium totally substituted by hafnium. Adequate quantities of sodium silicate solution (27% SiO₂, 8% Na₂O), sodium chloride, hafnium chloride, potassium chloride, sodium hydroxide and water were mixed thoroughly in a polytetrafluoroethylene (PTFE) vessel at room temperature for 30 minutes. A gel was obtained with a pH value around 13. The PTFE vessel was put in a Parr digestion apparatus for a hydrothermal synthesis over 10 days at 523 K. The resulting powder was washed, filtered, and dried overnight at 393 K. In spite of the drying process, the powder was still hydrated. Powder X-ray diffraction showed the compound to be isostructural to petarasite. The second step was the calcination of Hf-petarasite over 15 h at 1373 K under air which lead to a white powder. SEM observation of the powder showed large grains with Na, Hf, Si and O and smaller grains with supplementary K. The chemical composition of the major phase was determined by EDS to have the following stoichiometry $Na_{1,7+0,2}Hf_{1,0}Si_{2,3+0,1}O_{7,3+0,9}$ as compared to the theoretical stoichiometry of Na₂HfSi₂O₇. Thus the major phase is very close to the expected one. The sample was analysed by differential thermal analysis to determine its melting point. There was no thermal event indicating a melting until 1623 K and the sample was still in powder form. The Na₂HfSi₂O₇ phase therefore has a higher melting point than parakeldyshite which is below 1523 K (Ferreira et al., 2001).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Observed and calculated intensities for $Na_2HfSi_2O_7$ are shown in Fig. 2 along with the

Table 2Experimental details.	
Crystal data	
Chemical formula	Na ₂ HfSi ₂ O ₇
M _r	392.6
Crystal system, space group	Triclinic, P1
Temperature (K)	293
a, b, c (Å)	6.6123 (2), 8.7948 (3), 5.41074 (15)
$lpha,eta,\gamma(^\circ)$	92.603 (2), 94.0843 (18), 71.3262 (18)
$V(Å^3)$	297.25 (2)
Z	2
Radiation type	Cu $K\alpha_1$, $\lambda = 1.540562$, 1.544390 Å
Specimen shape, size (mm)	Flat sheet, 25×25
Data collection	
Diffractometer	Panalytical XPert MPD Pro
Specimen mounting	Packed powder pellet
Data collection mode	Reflection
Scan method	Step
2θ values (°)	$2\theta_{\min} = 8.013 \ 2\theta_{\max} = 120.013 \ 2\theta_{step} = 0.017$
Refinement	
R factors and goodness of fit	$R_{\rm p} = 0.024, R_{\rm wp} = 0.032,$ $R_{\rm exp} = 0.015, R(F) = 0.024,$ $\chi^2 = 4.973$
No. of parameters	67

Computer programs: X'Pert Data Collector (PANalytical, 2011), JANA2006 (Petříček et al., 2014), VESTA (Momma & Izumi, 2011) and publCIF (Westrip, 2010).

difference pattern. The reliability factors of the refinement were quite poor because of an amorphous bump attributed to the second minor phase. Hence the reliability factors were negatively impacted. The isotropic ADP's of the oxygen atoms were constrained to be equal in volume in order to avoid a slightly negative ADP value on O5. The residual electron density is about 2.4 e Å³, which is less than 10% of the electron density of a Hf atom. The occupancies of all atoms were fixed to unity.

Acknowledgements

NM would like to thank Professor Philippe Deniard (Institut des Matériaux de Nantes) for his continuous support of the Rietveld refinements. The authors gratefully acknowledge AREVA and ANDRA for their financial support of this work.

References

- Bergerhoff, G., Berndt, M., Brandenburg, K. & Degen, T. (1999). *Acta Cryst.* B**55**, 147–156.
- Chernov, A. N., Maksimov, B. A., Ilyukhin, V. V. & Belov, N. V. (1970). Dokl. Akad. Nauk SSSR, 193, 1293–1296.
- Ferreira, P., Ferreira, A., Rocha, J. & Soares, M. R. (2001). Chem. Mater. 13, 355–363.
- Fleischer, M., Chao, G. Y. & Mandarino, J. A. (1979). Am. Mineral. 64, 652–659.
- Flor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653–664.
- Ilyushin, G. D. & Blatov, V. A. (2002). Acta Cryst. B58, 198-218.
- Khalilov, A. D., Khomyakov, A. P. & Makhmudov, S. A. (1978). *Dokl. Akad. Nauk SSSR*, **238**, 573–575.
- Kostov-Kytin, V., Fujiwara, K., Nakayama, N. & Nikolova, R. (2008). Proc. Bulg. Geol. Soc. pp. 13–14.

- Lin, Z., Rocha, J., Ferreira, P., Thursfield, A., Agger, J. R. & Anderson, M. W. (1999). J. Phys. Chem. B, 103, 957–963.
- Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.
- Nosyrev, N. A., Treushnikov, E. N. & Voronkov, A. A. (1976). *Dokl. Akad. Nauk SSSR*, **231**, 1351–1353.
- PANalytical (2011). X'Pert Data Collector. PANalytical BV, Almelo, The Netherlands.
- Pekov, I. V., Zubkova, N. V., Pushcharovsky, D. Yu., Kolitsch, U. & Tillmanns, E. (2007). *Crystallogr. Rep.* **52**, 1066–1071.
- Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. Cryst. Mater. 229, 345–352.
- Plaisted, T., Hrma, P., Vienna, J. & Jiricka, A. (1999). Proceedings of MRS 608, 13–14.
- Ramsey, W. G., Bibler, N. E. & Meaker, T. F. (1995). WM Symposia, Waste Management, 95, 23828–23907.
- Voronkov, A. A., Shumyatskaya, N. G. & Pyatenko, Yu. A. (1970). *Zh. Strukt. Khim.* **11**, 932–933.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2016). E72, 1434-1437 [https://doi.org/10.1107/S2056989016014225]

Crystal structure of Na₂HfSi₂O₇ by Rietveld refinement

Nicolas Massoni and Pierrick Chevreux

Computing details

Data collection: *X'Pert Data Collector* (PANalytical, 2011); cell refinement: *JANA2006* (Petříček *et al.*, 2014); data reduction: *JANA2006* (Petříček *et al.*, 2014); program(s) used to solve structure: *JANA2006* (Petříček *et al.*, 2014); program(s) used to refine structure: *JANA2006* (Petříček *et al.*, 2014); molecular graphics: *VESTA* (Momma & Izumi, 2011); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Disodium hafnium disilicate

Crystal data

Na₂HfSi₂O₇ $M_r = 392.6$ Triclinic, *P*1 a = 6.6123 (2) Å b = 8.7948 (3) Å c = 5.41074 (15) Å a = 92.603 (2)° $\beta = 94.0843$ (18)° $\gamma = 71.3262$ (18)° V = 297.25 (2) Å³

Data collection

Panalytical XPert MPD Pro
diffractometer
Radiation source: sealed X-ray tube
Specimen mounting: packed powder pellet

Refinement

 $R_{p} = 0.024$ $R_{wp} = 0.032$ $R_{exp} = 0.015$ R(F) = 0.0246423 data points
Profile function: pseudo-Voigt

Z = 2 F(000) = 356 $D_x = 4.387 \text{ Mg m}^{-3}$ Cu Ka₁ radiation, $\lambda = 1.540562$, 1.544390 Å T = 293 KParticle morphology: plate-like white flat_sheet, 25 × 25 mm Specimen preparation: Prepared at 1393 K and 100 kPa

Data collection mode: reflection Scan method: step $2\theta_{\min} = 8.013^{\circ}, 2\theta_{\max} = 120.013^{\circ}, 2\theta_{step} = 0.017^{\circ}$

67 parameters 0 restraints 6 constraints Weighting scheme based on measured s.u.'s $(\Delta/\sigma)_{max} = 0.005$ Background function: Legendre polynoms

	Fractional aton	<i>iic coordinates</i>	and isotropic	c or equivalent	isotropic dis	placement	parameters ($(Å^2)$
--	-----------------	------------------------	---------------	-----------------	---------------	-----------	--------------	---------

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Na1	0.8823 (15)	0.0970 (12)	0.2630 (18)	0.035 (4)*	
Na2	0.3456 (14)	0.5024 (10)	0.7608 (18)	0.011 (3)*	
Hf1	0.2880 (3)	0.2710 (2)	0.2201 (3)	0.0158 (7)	
Si1	0.6528 (13)	0.1435 (9)	0.7769 (13)	0.010 (3)*	

supporting information

Si2	0.9381 (12)	0.3380 (8)	0.6861 (15)	0.006 (2)*	
01	0.307 (2)	0.0382 (17)	0.172 (3)	0.0030 (15)*	
O2	0.865 (2)	0.1777 (14)	0.727 (2)	0.0030 (15)*	
03	0.494 (2)	0.2081 (15)	0.530 (3)	0.0030 (15)*	
O4	0.562 (2)	0.2522 (15)	0.020 (3)	0.0030 (15)*	
05	-0.003 (2)	0.3116 (14)	0.401 (3)	0.0030 (15)*	
06	0.120 (2)	0.3300 (14)	0.872 (3)	0.0030 (15)*	
07	0.284 (2)	0.5148 (14)	0.288 (3)	0.0030 (15)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U ²³
Hf1	0.0148 (10)	0.0177 (11)	0.0126 (10)	0.0003 (7)	0.0035 (7)	0.0111 (8)

Geometric parameters (Å, °)

O1—Hfl	2.017 (15)	Na1—Na1 ^{vii}	3.169 (13)
O1—Si1 ⁱ	1.568 (17)	Na1—Na2 ^v	3.363 (13)
O2—Si1	1.567 (18)	Na1—Hf1 ^{viii}	3.513 (12)
O2—Si2	1.660 (17)	Na1—Si1 ⁱⁱ	2.919 (12)
O3—Hf1	2.060 (13)	Nal—Sil	3.210 (13)
O3—Si1	1.644 (15)	Na1—Si1 ^{vii}	3.140 (11)
O4—Na1	2.450 (15)	Na1—Si2	3.132 (13)
O4—Si1 ⁱⁱ	1.622 (15)	Na2—Na2 ^v	3.590 (14)
O5—Na1 ⁱⁱⁱ	2.323 (18)	Na2—Na2 ^{ix}	3.174 (13)
O5—Si2 ⁱⁱⁱ	1.605 (16)	Na2—Hf1	3.556 (9)
O6—Hfl ^{iv}	2.115 (13)	Na2—Hf1 ^{iv}	3.399 (10)
O6—Si2 ⁱⁱⁱ	1.497 (16)	Na2—Hfl ^v	3.590 (10)
O7—Na2 ^v	2.441 (18)	Na2—Si1	3.161 (10)
O7—Si2 ^v	1.625 (13)	Na2—Si2 ^v	3.052 (11)
Na1—Na1 ^{vi}	3.453 (14)		
Hf1—O1—Si1 ⁱ	161.7 (9)	Na2 ^{ix} —Na2—Si1	76.2 (3)
Si1—O2—Si2	136.8 (8)	Na2 ^{ix} —Na2—Si2 ^v	153.7 (4)
Hf1—O3—Si1	175.1 (10)	Hf1—Na2—Hf1 ^{iv}	102.1 (3)
Na1—O4—Si1 ⁱⁱ	89.2 (6)	Hfl—Na2—Hfl ^v	119.7 (3)
Na1 ⁱⁱⁱ —O5—Si2 ⁱⁱⁱ	104.3 (9)	Hf1—Na2—Si1	66.6 (2)
Hfl ^{iv} —O6—Si2 ⁱⁱⁱ	153.3 (10)	Hfl—Na2—Si2 ^v	59.6 (2)
Na2 ^v —O7—Si2 ^v	134.4 (9)	Hfl ^{iv} —Na2—Hfl ^v	126.1 (3)
O4—Na1—O5 ^{viii}	97.2 (6)	Hfl ^{iv} —Na2—Si1	62.6 (2)
O4—Na1—Na1 ^{vi}	91.7 (4)	Hf1 ^{iv} —Na2—Si2 ^v	134.1 (4)
O4—Na1—Na1 ^{vii}	152.6 (6)	Hf1 ^v —Na2—Si1	102.9 (3)
O4—Na1—Na2 ^v	51.1 (4)	Hf1 ^v —Na2—Si2 ^v	97.7 (3)
O4—Na1—Hf1 ^{viii}	109.2 (5)	Si1—Na2—Si2 ^v	125.7 (4)
O4—Na1—Si1 ⁱⁱ	33.8 (4)	O1—Hf1—O3	88.5 (5)
O4—Na1—Si1	95.1 (5)	O1—Hf1—O6 ⁱⁱ	91.8 (5)
O4—Na1—Si1 ^{vii}	143.7 (5)	O1—Hf1—Na1 ⁱⁱⁱ	51.7 (4)
O4—Na1—Si2	103.7 (5)	O1—Hf1—Na2 ⁱⁱ	123.8 (4)

O5 ^{vm} —Na1—Na1 ^{vi}	114.1 (6)	O1—Hf1—Na2	131.8 (4)
O5 ^{viii} —Na1—Na1 ^{vii}	89.9 (5)	O1—Hf1—Na2 ^v	136.4 (4)
O5 ^{viii} —Na1—Na2 ^v	46.9 (4)	O3—Hf1—O6 ⁱⁱ	171.1 (6)
O5 ^{viii} —Na1—Hf1 ^{viii}	36.4 (4)	O3—Hf1—Na1 ⁱⁱⁱ	107.6 (5)
O5 ^{viii} —Na1—Si1 ⁱⁱ	113.7 (5)	O3—Hf1—Na2 ⁱⁱ	124.6 (5)
O5 ^{viii} —Na1—Si1	85.7 (5)	O3—Hf1—Na2	50.0 (4)
O5 ^{viii} —Na1—Si1 ^{vii}	94.3 (5)	O3—Hf1—Na2 ^v	71.4 (5)
O5 ^{viii} —Na1—Si2	29.8 (4)	O6 ⁱⁱ —Hf1—Na1 ⁱⁱⁱ	79.4 (4)
$Na1^{vi}$ $Na1$ $Na1^{vii}$	109 5 (3)	$O6^{ii}$ —Hf1—Na ²ⁱⁱ	48 7 (4)
$Na1^{vi}$ Na1 Na2 v	116.9 (4)	$O6^{ii}$ —Hf1—Na2	133.2(3)
Nalvi Nal Hflyiii	70 2 (3)	$O6^{ii}$ Hfl N ₂ 2 ^v	102.6(4)
$Na1^{vi}$ Na1 Si1 ⁱⁱ	58 3 (3)	$N_{2}1^{iii}$ Hf1 $N_{2}2^{ii}$	102.0(4) 127.8(2)
Nalvi Nal Sil	158.2(4)	$N_0 1$ $H_1 N_0 2$	127.0(2)
Nal — Nal — Sil	136.2(4)	$\frac{1}{100} \frac{1}{100} \frac{1}$	111.9(2)
Nal ¹ -Nal-Sll ¹	32.3(2)	$Na1^{} \Pi I I - Ma2^{}$	1/1.0(2)
$Na1^{4}$ $Na1$ $S12$	141.2 (4)	Na2 ^m —Hfl—Na2	102.1 (2)
$Na1^{vn}$ — $Na1$ — $Na2^{v}$	125.8 (4)	Na2 ⁿ —Hf1—Na2 ^v	53.9 (2)
Nal ^{vn} —Nal—Hfl ^{vm}	92.0 (3)	Na2—Hf1—Na2 ^v	60.3 (2)
Na1 ^{vii} —Na1—Si1 ⁱⁱ	156.1 (5)	Ol ⁱ —Sil—O2	111.9 (8)
Na1 ^{vii} —Na1—Si1	59.0 (3)	$O1^{i}$ —Si1—O3	113.6 (9)
Na1 ^{vii} —Na1—Si1 ^{vii}	61.2 (3)	O1 ⁱ —Si1—O4 ^{iv}	109.9 (9)
Na1 ^{vii} —Na1—Si2	70.6 (3)	Ol ⁱ —Sil—Nal	97.9 (6)
Na2 ^v —Na1—Hf1 ^{viii}	71.7 (3)	O1 ⁱ —Si1—Na1 ^{iv}	76.2 (6)
Na2 ^v —Na1—Si1 ⁱⁱ	76.5 (3)	O1 ⁱ —Si1—Na1 ^{vii}	61.5 (6)
Na2 ^v —Na1—Si1	83.1 (3)	O1 ⁱ —Si1—Na2	150.4 (7)
Na2 ^v —Na1—Si1 ^{vii}	135.6 (5)	O2—Si1—O3	104.6 (8)
Na2 ^v —Na1—Si2	55.9 (3)	O2—Si1—O4 ^{iv}	105.7 (9)
Hfl ^{viii} —Na1—Si1 ⁱⁱ	104.5 (4)	O2—Si1—Na1	52.6 (6)
Hfl ^{viii} —Na1—Si1	117.6 (3)	O2—Si1—Na1 ^{iv}	77.6 (6)
Hf1 ^{viii} —Na1—Si1 ^{vii}	64.0 (3)	O2—Si1—Na1 ^{vii}	50.5 (5)
Hfl ^{viii} —Na1—Si2	62.2 (3)	Ω_{2} Si1—Na2	97.4 (6)
$Si1^{ii}$ Na1 Si1	123.9(4)	03 —Si1— 04^{iv}	110.8(7)
$Si1^{ii}$ Na1 $Si1^{vii}$	110.6 (4)	O3—Si1—Na1	643(6)
$Si1^{ii}$ Na1 $Si2$	1324(4)	03 Sil Naliv	167.4 (6)
Sil No1 Sil ii	132.4(4) 1201(3)	$O_3 = S_{11} = N_{21} V_{11}$	107.4(0) 121.8(6)
$S_{11} = Na_{11} = S_{11}$	120.1(3)	$O_3 = S_{11} = Na_1$	121.8(0)
SII - INaI - SIZ	50.5(5)	Odiv Sil No1	39.9(3)
$S11^{}Na1-S12$	103.3(3)	$O4^{*}$ S11 Na1	150.5 (8)
0/ Na2-Na1	99.3 (5)	04^{*} S11 Na1*	57.1 (5)
$O/^{v}$ —Na2—Na2 ^v	45.5 (4)	04^{1} S11 Nal	125.7 (6)
O/v—Na2—Na2 ^{IX}	60.6 (4)	04 ^w —S11—Na2	55.6 (5)
O7 ^v —Na2—Hf1	96.4 (4)	Nal—Sil—Nal ¹	123.9 (4)
O7 ^v —Na2—Hf1 ^{iv}	113.5 (4)	Na1—Si1—Na1 ^{vii}	59.9 (3)
O7 ^v —Na2—Hf1 ^v	35.8 (3)	Na1—Si1—Na2	103.3 (3)
O7 ^v —Na2—Si1	68.4 (4)	Na1 ^{iv} —Si1—Na1 ^{vii}	69.4 (3)
O7 ^v —Na2—Si2 ^v	110.4 (5)	Na1 ^{iv} —Si1—Na2	107.6 (3)
Na1 ^v —Na2—Na2 ^v	91.8 (3)	Na1 ^{vii} —Si1—Na2	147.9 (4)
Na1 ^v —Na2—Na2 ^{ix}	97.3 (3)	O2—Si2—O5 ^{viii}	100.7 (8)
Na1 ^v —Na2—Hfl	117.5 (3)	O2—Si2—O6 ^{viii}	106.7 (8)
Na1 ^v —Na2—Hf1 ^{iv}	124.7 (3)	O2—Si2—O7 ^v	102.8 (8)

supporting information

Na1 ^v —Na2—Hf1 ^v	64.7 (3)	O2—Si2—Na1	55.3 (5)
Na1 ^v —Na2—Si1	167.6 (4)	O2—Si2—Na2 ^v	103.7 (6)
Na1 ^v —Na2—Si2 ^v	58.2 (3)	O5 ^{viii} —Si2—O6 ^{viii}	116.1 (9)
Na2 ^v —Na2—Na2 ^{ix}	106.1 (3)	O5 ^{viii} —Si2—O7 ^v	109.8 (8)
Na2 ^v —Na2—Hfl	60.3 (2)	O5 ^{viii} —Si2—Na1	46.0 (6)
Na2 ^v —Na2—Hf1 ^{iv}	142.8 (3)	O5 ^{viii} —Si2—Na2 ^v	53.3 (5)
Na2 ^v —Na2—Hf1 ^v	59.4 (2)	O6 ^{viii} —Si2—O7 ^v	118.2 (8)
Na2 ^v —Na2—Si1	80.2 (3)	O6 ^{viii} —Si2—Na1	131.2 (6)
Na2 ^v —Na2—Si2 ^v	68.4 (3)	O6 ^{viii} —Si2—Na2 ^v	149.4 (8)
Na2 ^{ix} —Na2—Hf1	141.7 (3)	O7 ^v —Si2—Na1	110.3 (6)
Na2 ^{ix} —Na2—Hf1 ^{iv}	66.1 (3)	O7 ^v —Si2—Na2 ^v	57.1 (6)
Na2 ^{ix} —Na2—Hf1 ^v	60.0 (3)	Na1—Si2—Na2 ^v	65.9 (3)

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) *x*, *y*, *z*-1; (iii) *x*-1, *y*, *z*; (iv) *x*, *y*, *z*+1; (v) -*x*+1, -*y*+1, -*z*+1; (vi) -*x*+2, -*y*, -*z*; (vii) -*x*+2, -*y*, -*z*+1; (viii) *x*+1, *y*, *z*; (ix) -*x*+1, -*y*+1, -*z*+2.