

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 14 August 2016 Accepted 2 September 2016

Edited by S. Parkin, University of Kentucky, USA

Keywords: crystal structure; metal–organic coordination compounds; two-dimensional polymeric structure; one-dimensional helical chain; (E)-3-[3-(carboxymethoxy)phenyl]acrylic acid.

CCDC reference: 1502210

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of poly[{ μ_3 -(*E*)-3-[3-(carboxylatomethoxy)phenyl]acrylato- $\kappa^3 O, O': O'': O'''$ }[μ_2 -3-(pyridin-4-yl)-1*H*-pyrazole- $\kappa^2 N: N'$]cobalt(II)]

Can Zhao, Xiao-Zong Li, Hong-Lan Kang and Yi-Hang Wen*

Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China. *Correspondence e-mail: wyh@zjnu.edu.cn

The title compound, $[Co(C_{11}H_8O_5)(C_8H_7N_3)]_n$, which is based on (*E*)-3-[3-(carboxymethoxy)phenyl]acrylic acid (H₂*L*) and 3-(pyridin-4-yl)pyrazole (pp) ligands, has been synthesized under solvothermal conditions. The dihedral angle between pyrazole and pyridine rings in the pp ligands is 23.1 (2)°. In the crystal, helical chains formed by pp and *L* ligands connected to the Co^{II} atom propagate parallel to the *c* axis. Co^{II} atoms of adjacent chains are bridged by the acrylic acid groups of *L* ligands into corrugated polymeric sheets in the *ac* plane.

1. Chemical context

The rational design and synthesis of metal-organic frameworks (MOFs) with multi-carboxylate ligands and metal atoms has attracted much attention in coordination chemistry due to the varied topologies and potential applications in catalysis, gas adsorption, photochemistry etc (Fernández et al., 2016). The versatility of metal-organic chemistry offers the opportunity to construct multifunctional materials based on the assembly of molecular building blocks. Much attention has been devoted to the cogitative design and control of selfassembly of infinite coordination networks by careful selection of ligand geometry (Liu et al., 2016; Yoon et al., 2012). In this regard, the use of symmetrical ligands has been a successful paradigm because of their structural predictability (Rosi et al., 2003; Luo et al., 2003). Incorporation of unsymmetrical ligands in such systems, however, is relatively recent (Wang et al., 2004; Chen et al., 2003; Qin et al., 2005). Compared to symmetrical ligands, ligands with two or more coordination sites with differing donor ability can lead to unsymmetrical ligands being assembled around metal atoms in diverse arrangements. This can result in unprecedented structures with novel topological features, such as a clay-like double layer (Pan et al., 2000), large spherical cavities and functional 1D channels (Shin et al., 2003). Although important progress has been made in the construction of coordination polymers by applying a single type of organic ligand, research involving a combination of more than one ligand is an especially attractive target, as it allows the construction of an almost infinite number of frameworks with different crystal structures.

In our work, we use (E)-3-[3-(carboxymethoxy)phenyl]acrylic acid (H_2L) and 3-(pyridin-4-yl)pyrazole (pp) as ligands to construct novel MOFs that are based on the following considerations: (1) the carboxylate group is conjugated with

research communications

the benzene ring through a C=C double bond, which makes the electron density delocalized in the ligand so that it may become more rigid when coordinating to metal ions, and have more coordination modes and conformation changes (Kong *et al.*, 2013; Liu *et al.*, 2010); (2) the presence of a phenolic hydroxyl group and benzene ring in the ligand allows the possibility of hydrogen bonding and π - π stacking interactions in the crystal lattices; (3) the N-donor ligand could enhance structural stability.

We herein report the synthesis and crystal structure of $[Co(C_{11}H_8O_5)(C_8H_7N_3)]_n$ based on these two mixed ligands.

2. Structural commentary

As shown in Fig. 1, the asymmetric unit of the title compound comprises one Co^{2+} cation, one fully deprotonated L^{2-} anion,

Figure 1

The coordination environment of the Co²⁺ ion in the title complex (omitting all H atoms), showing the atom-numbering scheme for non-H atoms. Displacement ellipsoids are drawn at the 40% probability level. [Symmetry codes: (i) x, y, z - 1; (ii) $x - \frac{1}{4}, \frac{1}{4} - y, z + \frac{3}{4}$; (iii) $x + \frac{1}{4}, \frac{1}{4} - y, z + \frac{1}{4}$.]

and one pp ligand. The Co^{II} atom has a distorted octahedral geometry, coordinated by four O atoms from three L^{2-} ligands, with Co^{II}—O distances of 2.037 (2)–2.252 (2) Å, and two N atoms from two pp ligands with Co^{II}—N distances of 2.130 (2) and 2.158 (3) Å. The L^{2-} ligand adopts two different coordination modes. In this structure, the dihedral angles between the rings in the pp ligands is 23.1 (2)°. The 1D helical chains (Fig. 2) are assembled by Co²⁺ cations, pp ligands and L ligands. Helical chains along the *c* axis are connected to adjacent chains by L ligands that bridge the Co^{III} atoms, forming a two-dimensional polymeric structure in the *ac* plane (Fig. 3).

In the structure, every η^3 -(*E*)-3-[3-(carboxymethoxy)phenyl]acrylic acid ligand is connected to three Co atoms, while every η^3 -3-(pyridin-4-yl)pyrazole is connected to two Co atoms. The Co^{II} atom connects three L^{2-} ligands and two pp ligands, and so can be described as a five-connected node. Thus, the topology of the structure could be given simply as a (2,3,5)-connected network.

Figure 2

The helical chain in the title compound (omitting all H atoms). The yellow rod indicates the direction of propagation of the helix (*i.e.* parallel to the c axis).

Table	1			
Hydrog	gen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$N1-H1A\cdots O5^{i}$	0.86	2.05	2.869 (3)	159

Symmetry code: (i) $x - \frac{1}{4}, -y + \frac{1}{4}, z - \frac{1}{4}$.

3. Supramolecular features

In this structure, L ligands form hydrogen bonds to the pp ligands, thereby enhancing the polymer stability (Table 1 and Fig. 3). The polymer interactions consist of N1(pyrazole)-H1A···O5 $(x - \frac{1}{4}, -y + \frac{1}{4}, z - \frac{1}{4})$ hydrogen bonds where each L ligand makes a hydrogen bond with a neighboring pp ligand.

4. Database survey

The crystal structure of a 2D polymeric Cd-containing compound with (E)-3-(3-carboxymethoxy)phenyl)acrylic acid and 1,3-di-pyridin-4-ylpropane ligands (the Cd-crystal), recently reported by Wang et al. (2014), has a similar structure to the title compound. Both structures include hydrogen bonds, though in the Cd-crystal, these are $O-H \cdots O$ hydrogen bonds rather than $N-H \cdots O$ as in the title compound.

5. Synthesis and crystallization

All of the chemical reagents and solvents are commercially available and used without further purification. Elemental analyses were carried out on a Perkin-Elmer 2400 Series II analyzer.

Synthesis of $[Co(C_{11}H_8O_5)(C_8H_7N_3)]_n$

(1): A mixture of CoCl₂·6H₂O (0.1185 g, 0.5 mmol), H₂L (Zheng et al., 2011; Fu & Wen, 2011) (0.222 g, 1 mmol) and pp

Experimental details.	
Crystal data	
Chemical formula	$[Co(C_{11}H_8O_5)(C_8H_7N_3)]$
M _r	424.27
Crystal system, space group	Orthorhombic, Fdd2
Temperature (K)	296
<i>a</i> , <i>b</i> , <i>c</i> (Å)	35.4631 (11), 40.2873 (12), 4.8423 (1)
$V(Å^3)$	6918.3 (3)
Ζ	16
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	1.03
Crystal size (mm)	$0.24 \times 0.12 \times 0.06$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2014)
T_{\min}, T_{\max}	0.861, 0.943
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	15248, 3915, 3425
R _{int}	0.036
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.651
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.029, 0.061, 1.02
No. of reflections	3915
No. of parameters	253
No. of restraints	1
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm A}^{-3})$	0.18, -0.24
Absolute structure	Flack x determined using 1316 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013)
Absolute structure parameter	0.025 (8)

Computer programs: APEX2 and SAINT-Plus (Bruker, 2014), SHELXS97 and SHELXTL (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and publCIF (Westrip, 2010).

(0.1451 g, 1 mmol) were dissolved in 22 mL $H_2O/CH_3OH(v/v,$ 10:1) mixed solvent. The pH value was adjusted to 7 by adding to a few drops of an aqueous NaOH solution (2.0 mol L^{-1}). It

Table 2

Figure 3

The two-dimensional packing of the title compound. Hydrogen bonds are depicted as dashed lines.

research communications

was then sealed in a 25 mL stainless steel reactor and heated to 433 K for three days. The mixture was then cooled to room temperature at a rate of 5 K h^{-1} , and red block-shaped crystals were obtained (yield: 62% based on Co). Analysis calculated (%) for C₁₉H₁₅CoN₃O₅ (424.27): C 53.81, H 3.62, N 9.85; found (%): C 53.79, H 3.56, N 9.90. IR data (KBr, cm⁻¹): 3432, 1649, 1501, 1407, 1274, 1206, 1180, 1086, 978, 844, 724, 603.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms attached to carbon atoms were refined using a riding-model approximation, with $U_{iso}(H) = 1.2U_{eq}(C)$ and C-H = 0.93 Å (aromatic and carbene) and 0.97 Å (methylene). Other hydrogen atoms were located in difference electron-density maps and refined freely.

Acknowledgements

This work was supported financially by the Open Research Fund of Top Key Discipline of Chemistry in Zhejiang Provincial Colleges and the Key Laboratory of the Ministry of Education for Advanced Catalysis Materials (ZJHX201515).

References

Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Chen, W., Yue, Q., Chen, C., Yuan, H. M., Xu, W., Chen, J. S. & Wang, S. N. (2003). *Dalton Trans.* pp. 28–30.
- Fernández, B., Beobide, G., Sánchez, I., Carrasco-Marín, F., Seco, J. M., Calahorro, A. J., Cepeda, J. & Rodríguez-Diéguez, A. (2016). *CrystEngComm*, 18, 1282–1294.
- Fu, J.-D. & Wen, Y.-H. (2011). Acta Cryst. E67, 0167.
- Kong, G. Q., Han, Z. D., He, Y. B., Ou, S., Zhou, W., Yildirim, T., Krishna, R., Zou, C., Chen, B. & Wu, C. D. (2013). *Chem. Eur. J.* 19, 14886–14894.
- Liu, X. B., Lin, H., Xiao, Z. Y., Fan, W. D., Huang, A., Wang, R. M., Zhang, L. L. & Sun, D. F. (2016). *Dalton Trans.* **45**, 3743–3749.
- Liu, D. M., Xie, Z. G., Ma, L. Q. & Lin, W. B. (2010). *Inorg. Chem.* 49, 9107–9109.
- Luo, J. H., Hong, M. C., Wang, R. H., Cao, R., Han, L., Yuan, D. Q., Lin, Z. Z. & Zhou, Y. F. (2003). *Inorg. Chem.* 42, 4486–4488.
- Pan, L., Huang, X. Y., Li, J., Wu, Y. G. & Zheng, N. W. (2000). Angew. Chem. 112, 537–540.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249– 259.
- Qin, C., Wang, X. L., Li, Y. G., Wang, E. B., Su, Z. M., Xu, L. & Clérac, R. (2005). *Dalton Trans.* pp. 2609–2614.
- Rosi, N. L., Eckert, J., Eddaoudi, M., Vodak, M. T., Kim, J., O'Keeffe, M. & Yaghi, O. M. (2003). *Science*, **300**, 1127–1129.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Shin, D. M., Lee, I. S., Chung, Y. K. & Lah, M. S. (2003). *Inorg. Chem.* 42, 5459–5461.
- Wang, X. L., Qin, C., Wang, E. B., Li, Y. G., Hao, N., Hu, C. & Xu, L. (2004). *Inorg. Chem.* 43, 1850–1856.
- Wang, G. X., Zhang, Q. W. & Wen, Y. H. (2014). Chinese J. Inorg. Chem. 30, 2571–2576.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yoon, M., Srirambalaji, R. & Kim, K. (2012). Chem. Rev. 112, 1196– 1231.
- Zheng, X. Y., Ye, L. & Wen, Y. H. (2011). J. Mol. Struct. 987, 132-137.

Acta Cryst. (2016). E72, 1425-1428 [https://doi.org/10.1107/S205698901601402X]

Crystal structure of poly[{ μ_3 -(*E*)-3-[3-(carboxylatomethoxy)phenyl]acrylato- $\kappa^3 O, O': O'': O'''$ }[μ_2 -3-(pyridin-4-yl)-1*H*-pyrazole- $\kappa^2 N: N'$]cobalt(II)]

Can Zhao, Xiao-Zong Li, Hong-Lan Kang and Yi-Hang Wen

Computing details

Data collection: *APEX2* (Bruker, 2014); cell refinement: *SAINT-Plus* (Bruker, 2014); data reduction: *SAINT-Plus* (Bruker, 2014); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

 $\label{eq:poly1} Poly[\{\mu_3-(E)-3-[3-(carboxylatomethoxy)phenyl]acrylato-\kappa^3O,O':O'':O'''\}[\mu_2-3-(pyridin-4-yl)-1H-pyrazole-\kappa^2N:N'] cobalt(II)]$

Crystal data	
$[Co(C_{11}H_8O_5)(C_8H_7N_3)]$ $M_r = 424.27$ Orthorhombic, <i>Fdd2</i> a = 35.4631 (11) Å b = 40.2873 (12) Å c = 4.8423 (1) Å $V = 6918.3 (3) Å^3$ Z = 16 F(000) = 3472	$D_x = 1.629 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4631 reflections $\theta = 1.5-27.6^{\circ}$ $\mu = 1.03 \text{ mm}^{-1}$ T = 296 K Block, red $0.24 \times 0.12 \times 0.06 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer ω and φ scans Absorption correction: multi-scan (SADABS; Bruker, 2014) $T_{\min} = 0.861, T_{\max} = 0.943$ 15248 measured reflections	3915 independent reflections 3425 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{max} = 27.6^{\circ}, \theta_{min} = 1.5^{\circ}$ $h = -46 \rightarrow 40$ $k = -48 \rightarrow 52$ $l = -6 \rightarrow 6$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.061$ S = 1.02 3915 reflections 253 parameters 1 restraint Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0282P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.18 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.24 \text{ e } \text{Å}^{-3}$

Absolute structure: Flack *x* determined using 1316 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, 2013) Absolute structure parameter: 0.025 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
Col	0.43282 (2)	0.10099 (2)	0.42130 (8)	0.02757 (11)
N1	0.25519 (6)	0.16432 (6)	0.8665 (5)	0.0315 (6)
H1A	0.2498	0.1481	0.7576	0.038*
N2	0.23011 (7)	0.17869 (6)	1.0382 (6)	0.0344 (6)
N3	0.38578 (7)	0.13040 (6)	0.5432 (5)	0.0302 (6)
01	0.65789 (6)	0.15999 (5)	1.3036 (4)	0.0351 (5)
O2	0.66654 (5)	0.18826 (5)	0.9144 (4)	0.0334 (5)
03	0.63324 (6)	0.24391 (5)	1.1390 (5)	0.0379 (5)
O4	0.45839 (6)	0.14604 (5)	0.2794 (4)	0.0361 (5)
05	0.47664 (6)	0.12681 (5)	0.6803 (5)	0.0359 (5)
C1	0.54127 (9)	0.24388 (8)	0.6113 (6)	0.0388 (8)
H1B	0.5214	0.2445	0.4858	0.047*
C2	0.54793 (8)	0.21527 (7)	0.7657 (6)	0.0317 (7)
C3	0.64159 (9)	0.21627 (7)	1.3104 (6)	0.0353 (7)
H3A	0.6188	0.2100	1.4085	0.042*
H3B	0.6600	0.2231	1.4470	0.042*
C4	0.59389 (9)	0.27054 (8)	0.8261 (7)	0.0376 (8)
H4A	0.6088	0.2893	0.8492	0.045*
C5	0.56410 (9)	0.27116 (8)	0.6447 (8)	0.0418 (8)
H5A	0.5593	0.2903	0.5432	0.050*
C6	0.60175 (8)	0.24195 (7)	0.9746 (6)	0.0307 (7)
C7	0.57842 (8)	0.21459 (7)	0.9493 (7)	0.0319 (7)
H7A	0.5830	0.1957	1.0545	0.038*
C8	0.65663 (7)	0.18596 (7)	1.1621 (7)	0.0280 (6)
C9	0.28655 (9)	0.20335 (8)	1.0763 (8)	0.0433 (9)
H9A	0.3054	0.2178	1.1346	0.052*
C10	0.24921 (9)	0.20257 (8)	1.1639 (8)	0.0421 (8)
H10A	0.2390	0.2170	1.2940	0.050*
C11	0.35849 (9)	0.17039 (8)	0.8458 (7)	0.0374 (8)
H11A	0.3621	0.1865	0.9809	0.045*
C12	0.28963 (8)	0.17826 (7)	0.8854 (7)	0.0319 (7)
C13	0.35135 (8)	0.12506 (8)	0.4394 (7)	0.0362 (7)
H13A	0.3488	0.1099	0.2961	0.043*
C14	0.50252 (9)	0.17858 (8)	0.5230 (7)	0.0370 (7)
H14A	0.5028	0.1935	0.3763	0.044*

C15	0.52392 (8)	0.18555 (8)	0.7372 (6)	0.0342 (8)	
H15A	0.5239	0.1705	0.8827	0.041*	
C16	0.38898 (9)	0.15306 (7)	0.7424 (6)	0.0352 (8)	
H16A	0.4128	0.1574	0.8150	0.042*	
C17	0.31952 (9)	0.14106 (8)	0.5349 (7)	0.0363 (8)	
H17A	0.2961	0.1366	0.4568	0.044*	
C18	0.47794 (8)	0.14901 (8)	0.4955 (6)	0.0313 (7)	
C19	0.32276 (8)	0.16387 (8)	0.7491 (6)	0.0309 (7)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	0.02385 (19)	0.0318 (2)	0.02701 (18)	-0.00149 (18)	0.00226 (17)	0.00073 (18)
N1	0.0247 (13)	0.0366 (15)	0.0333 (15)	-0.0018 (11)	0.0050 (10)	-0.0072 (11)
N2	0.0285 (14)	0.0358 (15)	0.0387 (14)	0.0004 (12)	0.0066 (12)	-0.0056 (12)
N3	0.0253 (14)	0.0347 (14)	0.0306 (12)	-0.0022 (12)	0.0030 (11)	0.0001 (11)
01	0.0423 (13)	0.0337 (12)	0.0295 (10)	0.0020 (10)	-0.0026 (10)	0.0017 (10)
O2	0.0352 (11)	0.0390 (12)	0.0260 (10)	0.0035 (9)	0.0074 (10)	-0.0010 (10)
03	0.0402 (12)	0.0299 (11)	0.0436 (13)	-0.0026 (9)	-0.0066 (11)	-0.0044 (10)
O4	0.0354 (13)	0.0376 (13)	0.0353 (11)	-0.0051 (10)	-0.0053 (10)	0.0027 (10)
05	0.0340 (12)	0.0394 (12)	0.0344 (11)	-0.0054 (9)	0.0011 (10)	0.0060 (11)
C1	0.0398 (19)	0.0368 (19)	0.040 (2)	0.0030 (15)	-0.0050 (14)	0.0001 (14)
C2	0.0291 (17)	0.0310 (17)	0.0350 (16)	0.0008 (14)	0.0033 (12)	-0.0033 (13)
C3	0.0378 (18)	0.0386 (19)	0.0296 (15)	0.0037 (15)	-0.0030 (14)	-0.0058 (14)
C4	0.044 (2)	0.0277 (17)	0.0409 (19)	-0.0048 (15)	0.0034 (15)	-0.0002 (13)
C5	0.051 (2)	0.0308 (17)	0.0437 (19)	0.0012 (15)	-0.0009 (17)	0.0048 (16)
C6	0.0306 (17)	0.0311 (16)	0.0304 (17)	0.0005 (14)	0.0024 (11)	-0.0074 (12)
C7	0.0356 (17)	0.0272 (15)	0.0328 (16)	0.0013 (12)	0.0008 (14)	-0.0012 (13)
C8	0.0219 (14)	0.0351 (16)	0.0268 (14)	-0.0016 (12)	-0.0028 (13)	-0.0022 (14)
C9	0.0301 (19)	0.0379 (19)	0.062 (2)	-0.0087 (15)	0.0071 (16)	-0.0138 (16)
C10	0.0426 (19)	0.0348 (17)	0.0488 (18)	0.0030 (15)	0.0095 (18)	-0.0110 (18)
C11	0.0329 (18)	0.0360 (18)	0.043 (2)	-0.0054 (15)	0.0019 (13)	-0.0144 (14)
C12	0.0243 (16)	0.0316 (16)	0.0399 (18)	-0.0013 (13)	0.0045 (13)	-0.0033 (14)
C13	0.0281 (17)	0.0462 (18)	0.0343 (16)	-0.0019 (14)	-0.0006 (14)	-0.0098 (16)
C14	0.0370 (18)	0.0350 (18)	0.0388 (17)	-0.0061 (15)	0.0014 (14)	0.0035 (14)
C15	0.0313 (17)	0.0331 (18)	0.0383 (19)	0.0017 (14)	0.0015 (13)	-0.0001 (13)
C16	0.0264 (17)	0.0401 (19)	0.039 (2)	-0.0046 (14)	0.0011 (12)	-0.0058 (13)
C17	0.0238 (17)	0.043 (2)	0.0422 (17)	0.0014 (14)	-0.0007 (13)	-0.0082 (16)
C18	0.0239 (16)	0.0350 (18)	0.0351 (18)	0.0007 (14)	0.0046 (12)	-0.0021 (13)
C19	0.0251 (16)	0.0315 (17)	0.0362 (18)	-0.0001 (14)	0.0040 (11)	0.0005 (13)

Geometric parameters (Å, °)

Co1–O1 ⁱ	2.037 (2)	C3—C8	1.514 (4)	
Co1—O2 ⁱⁱ	2.054 (2)	С3—НЗА	0.9700	
Co1—N3	2.130 (2)	C3—H3B	0.9700	
Co1—O4	2.142 (2)	C4—C5	1.374 (4)	
Co1—N2 ⁱⁱⁱ	2.158 (3)	C4—C6	1.386 (4)	

Co1—O5	2.252 (2)	C4—H4A	0.9300
N1—C12	1.347 (4)	С5—Н5А	0.9300
N1—N2	1.348 (3)	C6—C7	1.384 (4)
N1—H1A	0.8600	С7—Н7А	0.9300
N2—C10	1.325 (4)	C9—C12	1.374 (4)
N2—Co1 ^{iv}	2.158 (3)	C9—C10	1.391 (4)
N3—C16	1.333 (4)	С9—Н9А	0.9300
N3—C13	1.338 (4)	C10—H10A	0.9300
O1—C8	1.251 (3)	C11—C19	1.376 (4)
O1—Co1 ^v	2.037 (2)	C11—C16	1.381 (4)
O2—C8	1.253 (4)	C11—H11A	0.9300
O2—Co1 ^{vi}	2.054 (2)	C12—C19	1.467 (4)
O3—C6	1.374 (3)	C13—C17	1.380 (4)
O3—C3	1.420 (3)	С13—Н13А	0.9300
O4—C18	1.261 (4)	C14—C15	1.316 (4)
O5—C18	1.266 (3)	C14—C18	1.482 (4)
C1—C5	1.375 (4)	C14—H14A	0.9300
C1—C2	1.394 (4)	C15—H15A	0.9300
C1—H1B	0.9300	C16—H16A	0.9300
C2—C7	1.400 (4)	C17—C19	1.390 (4)
C2—C15	1.476 (4)	C17—H17A	0.9300
O1 ⁱ —Co1—O2 ⁱⁱ	102.24 (8)	C4—C5—H5A	119.5
O1 ⁱ —Co1—N3	91.33 (9)	C1—C5—H5A	119.5
O2 ⁱⁱ —Co1—N3	92.82 (9)	O3—C6—C7	125.7 (3)
O1 ⁱ —Co1—O4	95.01 (8)	O3—C6—C4	114.6 (3)
O2 ⁱⁱ —Co1—O4	162.75 (8)	C7—C6—C4	119.7 (3)
N3—Co1—O4	87.08 (9)	C6—C7—C2	120.1 (3)
O1 ⁱ —Co1—N2 ⁱⁱⁱ	87.48 (10)	С6—С7—Н7А	119.9
O2 ⁱⁱ —Co1—N2 ⁱⁱⁱ	87.89 (9)	C2—C7—H7A	119.9
N3—Co1—N2 ⁱⁱⁱ	178.72 (11)	01—C8—O2	125.2 (3)
O4—Co1—N2 ⁱⁱⁱ	92.56 (9)	O1—C8—C3	115.3 (3)
O1 ⁱ —Co1—O5	152.48 (8)	O2—C8—C3	119.5 (3)
O2 ⁱⁱ —Co1—O5	103.33 (8)	C12—C9—C10	105.3 (3)
N3—Co1—O5	97.42 (9)	C12—C9—H9A	127.3
04—Co1—O5	59.66 (8)	C10—C9—H9A	127.3
$N2^{iii}$ —Co1—O5	83.45 (9)	N2—C10—C9	111.3 (3)
C12— $N1$ — $N2$	112.2 (2)	N2-C10-H10A	124.4
C12—N1—H1A	123.9	C9—C10—H10A	124.4
N2—N1—H1A	123.9	C19—C11—C16	120.1 (3)
C10-N2-N1	104.9(2)	C19—C11—H11A	120.0
$C10 - N2 - Co1^{iv}$	131.5(2)	C16—C11—H11A	120.0
$N1 - N2 - Co1^{iv}$	117.32 (19)	N1-C12-C9	106.3 (3)
C16 - N3 - C13	117.4 (3)	N1-C12-C19	122.1(3)
C16-N3-Co1	121.0 (2)	C9-C12-C19	131.1(3)
C13—N3—Co1	121.4 (2)	N3-C13-C17	123.1 (3)
$C8-O1-Co1^{v}$	132.5 (2)	N3—C13—H13A	118.5
C8—O2—Co1 ^{vi}	124.8 (2)	C17—C13—H13A	118.5

C6 O3 C3	117.6(2)	C15 C14 C18	125.6(3)
$C_{0} = 0.5 = 0.5$	117.0(2) 02 70(18)	C15 - C14 - C18	123.0 (3)
$C_{18} = 05 = C_{01}$	92.70 (18) 87.50 (18)	C13 - C14 - H14A	117.2
$C_{10} = 05 = 001$	(10)	C14 $C15$ $C2$	117.2 125 $A(3)$
C_{5} C_{1} H_{1} H_{2}	119.9 (5)	C14 - C15 - C2	123.4 (3)
C_{2} C_{1} H_{1} D_{2}	120.1	$C_1 = C_1 = H_1 = H_1 = A$	117.3
$C_2 = C_1 = H_1 B$	120.1	$C_2 = C_{13} = H_{13}A$	117.5
C1 = C2 = C7	119.2 (3)	N_{3} C_{10} U_{10}	122.8 (5)
C1 = C2 = C15	121.5 (3)	$N_3 - C_{10} - H_{10}A$	118.6
0/02015	119.3 (3)	C11—C16—H16A	118.6
03-03-08	115.4 (3)	C13-C17-C19	119.4 (3)
03—C3—H3A	108.4	C13—C17—H17A	120.3
С8—С3—НЗА	108.4	C19—C17—H17A	120.3
O3—C3—H3B	108.4	O4—C18—O5	120.0 (3)
С8—С3—Н3В	108.4	O4—C18—C14	118.3 (3)
НЗА—СЗ—НЗВ	107.5	O5—C18—C14	121.7 (3)
C5—C4—C6	120.1 (3)	C11—C19—C17	117.1 (3)
C5—C4—H4A	120.0	C11—C19—C12	120.6 (3)
C6—C4—H4A	120.0	C17—C19—C12	122.0 (3)
C4—C5—C1	120.9 (3)		
C12—N1—N2—C10	1.1 (3)	C10-C9-C12-N1	0.5 (4)
C12—N1—N2—Co1 ^{iv}	-154.4 (2)	C10-C9-C12-C19	-170.5 (3)
C5—C1—C2—C7	-1.3 (5)	C16—N3—C13—C17	-2.1 (5)
C5—C1—C2—C15	179.6 (3)	Co1—N3—C13—C17	172.6 (3)
C6—O3—C3—C8	73.1 (3)	C18—C14—C15—C2	-179.0 (3)
C6—C4—C5—C1	1.2 (5)	C1—C2—C15—C14	21.2 (5)
C2—C1—C5—C4	0.9 (5)	C7—C2—C15—C14	-157.9 (3)
C3—O3—C6—C7	-3.8 (4)	C13—N3—C16—C11	1.1 (4)
C3—O3—C6—C4	176.1 (3)	Co1—N3—C16—C11	-173.7 (2)
C5—C4—C6—O3	177.0 (3)	C19—C11—C16—N3	2.0 (5)
C5—C4—C6—C7	-3.1 (5)	N3—C13—C17—C19	0.0 (5)
O3—C6—C7—C2	-177.4(3)	Co1-04-C18-05	3.0 (3)
C4—C6—C7—C2	2.7 (4)	Co1-O4-C18-C14	-178.0 (2)
C1—C2—C7—C6	-0.5 (4)	Co1—O5—C18—O4	-2.8(3)
C15—C2—C7—C6	178.6 (3)	Co1	178.2 (3)
Co1 ^v —O1—C8—O2	124.6 (3)	C15—C14—C18—O4	178.6 (3)
$Co1^{v} - O1 - C8 - C3$	-55.7(3)	C15-C14-C18-O5	-2.4(5)
$Co1^{vi}$ — $O2$ — $C8$ — $O1$	5.7 (4)	C16—C11—C19—C17	-4.0(5)
$C_01^{vi} - O2 - C8 - C3$	-174.00(19)	C_{16} $-C_{11}$ $-C_{19}$ $-C_{12}$	170.6 (3)
03-C3-C8-01	-168.3(2)	C13-C17-C19-C11	3.0 (5)
03-C3-C8-02	11.4 (4)	C_{13} C_{17} C_{19} C_{12}	-1714(3)
N1 - N2 - C10 - C9	-0.7(4)	N1-C12-C19-C11	-1561(3)
$C_{01}^{iv} = N^{2} = C_{10}^{iv} = C_{9}^{iv}$	149 7 (3)	C9-C12-C19-C11	137(5)
$C_{12} - C_{9} - C_{10} - N_{2}^{2}$	0.2 (4)	N1-C12-C19-C17	18.2 (5)
	··- (· /		

N2—N1—C12—C9	-1.0 (4)	C9—C12—C19—C17	-172.0 (3)
N2—N1—C12—C19	171.0 (3)		

Symmetry codes: (i) x-1/4, -y+1/4, z-5/4; (ii) x-1/4, -y+1/4, z-1/4; (iii) x+1/4, -y+1/4, z-3/4; (iv) x-1/4, -y+1/4, z+3/4; (v) x+1/4, -y+1/4, z+5/4; (vi) x+1/4, -y+1/4, z+1/4.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
N1—H1A…O5 ⁱⁱ	0.86	2.05	2.869 (3)	159

Symmetry code: (ii) x-1/4, -y+1/4, z-1/4.