

Received 10 August 2016 Accepted 13 September 2016

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; *N*-heterocyclic carbene; NHC; 2-chloro imidazolidinium; borate.

CCDC reference: 1504219

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of 2-chloro-1,3-(2,6-diisopropylphenyl)-4,5-dihydro-1*H*-imidazol-3-ium tetrakis-(3,5-trifluoromethylphenyl)borate

Darcie L. Stack and Jason D. Masuda*

The Atlantic Centre for Green Chemistry and the Department of Chemistry, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada. *Correspondence e-mail: jason.masuda@smu.ca

The title compound, $C_{27}H_{38}ClN_2^{+}C_{32}H_{12}BF_{24}^{-}$, was synthesized by reacting the product formed from a previous reaction between 1,3-bis(2,6-diisopropylphenyl)imidazolinium-2-carboxylate (SIPrCO₂), and SOCl₂, with sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (NaBARF). In the cation, the imidazole ring is in a half-chair conformation and the formerly carbene carbon atom is bonded in a distorted trigonal–planar geometry with N–C–Cl angles of 122.96 (16) and 122.21 (16)° and an N–C–N angle of 114.83 (18)°. In the crystal, weak C–H···F hydrogen bonds link the cations and anions, forming a three-dimensional network. In addition, a short Cl···F contact of 3.213 Å and several short F···F contacts less than the sum of the van der Waals radii [1.47 Å + 1.47 Å = 2.94 Å] are observed. The F atoms of two of the CF₃ groups were refined as disordered over four sets of sites.

1. Chemical context

The use of main group elements as a way to stabilize singlet carbenes was first investigated in-depth by Bertrand & Reed (1994), leading to the discovery of the first phosphino silvl carbenes (Igau et al., 1988) followed by other novel singlet carbenes (Lavallo et al., 2005; Frey et al., 2007; Aldeco-Perez et al., 2009). However, the report of the first 'bottleable' crystalline N-heterocyclic carbene (NHC) (Arduengo et al., 1991) initiated a new paradigm in synthetic chemistry (Bourissou et al., 2000). In particular, NHCs are favoured due to their stability and ease of synthesis. The ability of these stable carbenes to activate small molecules and to help stabilize highly reactive intermediates makes this an increasingly desirable area of research. The crystal structure of the compound under investigation incorporates a popular fivemembered saturated NHC (known as SIPr) coordinated with a Cl atom attached at the formally carbene atom as a borate salt.

OPEN 🔂 ACCESS

research communications

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C3-H3A\cdots F15^{i}$	0.99	2.43	3.256 (3)	141
$C12-H12A\cdots F17C^{ii}$	0.98	2.53	3.269 (12)	132
C19−H19···F8D ⁱⁱⁱ	0.95	2.48	3.297 (18)	144
$C29-H29\cdots F9D^{iii}$	0.95	2.35	3.180 (14)	146

Symmetry codes: (i) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (iii) -x + 1, -y + 1, -z + 1.

dihedral angles of 116.0 (2)° (C16/C21/C25/C27) and 112.4 (2)° (C4/C9/C10/C12), relative to the *ipso* carbon atoms C4 and C16 while the isopropyl groups containing C15 and C23 deviate significantly from this bisected geometry with dihedral angles of 26.1 (2)° (C4/C5/C13/C15) and 46.7 (2)° (C16/C17/C22/C23) relative to the *ipso* carbon atoms C4 and C16. The C1–C11 bond length of 1.681 (2) Å is slightly less than the average value of 1.73 Å for a $Csp^2\cdots$ Cl bond length.

The molecular structure of the title compound showing the atom labelling. Fluorine atom labels and hydrogen atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.

2. Structural commentary

Figure 1

The molecular structure of the title salt compound is shown in Fig. 1. The formerly carbene carbon has a distorted trigonalplanar geometry and is flanked by the two sterically bulky *N*diisopropylphenyl groups of the heterocycle. The imidazolidinium ring is in a half-chair conformation having approximate C_2 symmetry. The dihedral angle between the mean planes of the benzene rings is 36.7 (1)°. The isopropyl groups containing C12 and C27 are essentially bisected by the plane of the benzene ring to which they are attached, subtending

3. Supramolecular features

In the crystal, short-contact $H \cdots F$ interactions between the isopropyl groups of the NHC and the trifluoromethyl groups of the anion are observed. These are due to weak $C-H\cdots F$ hydrogen bonds (Table 1), which link the cations and anions, forming a three-dimensional network (Fig. 2). There is one short $Cl1\cdots F20(\frac{3}{2}-x,-\frac{1}{2}+y,\frac{3}{2}-z)$ contact with a distance of

Part of the crystal structure with weak $C-H\cdots F$ hydrogen bonds shown as dashed lines.

Experimental details	
Crystal data	C II CIN ⁺ C II DE
	$C_{17}\Pi_{38}CIN_2 \cdot C_{32}\Pi_{12}D\Gamma_{24}$
	1289.27
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	125
<i>a</i> , <i>b</i> , <i>c</i> (A)	18.5025 (12), 17.8739 (12), 19.7857 (13)
β (°)	116.428 (1)
$V(Å^3)$	5859.5 (7)
Ζ	4
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.18
Crystal size (mm)	$0.39 \times 0.38 \times 0.08$
Data collection	
Diffractometer	Siemens/Bruker APEXII
Absorption correction	Multi-scan (SADABS; Bruker, 2008)
T_{\min}, T_{\max}	0.660, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	40063, 10921, 8363
R _{int}	0.033
$(\sin \theta / \lambda)_{\max} (\mathring{A}^{-1})$	0.606
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.044, 0.113, 1.02
No. of reflections	10921
No. of parameters	830
No. of restraints	38
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \; ({ m e} \; { m \AA}^{-3})$	0.52, -0.45

Computer programs: APEX2 and SAINT (Bruker, 2008), XS in SHELXTL (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

3.213 (2) Å as well as multiple short $F \cdots F$ contacts with lengths less than 2.94 Å.

4. Database survey

Table 0

A search of the Cambridge Structural Database (CSD; Groom *et al.*, 2016) revealed two hits for structures which are imidazolidinium salts with *N*-methyl groups in place of the *N*diisopropylphenyl groups of the title compound. One of the structures contains a tetrachloronickel counter-anion and the other is that of a chloride [XAMQAE (Kremzow *et al.*, 2005) and SISVUN (Böttcher *et al.*, 2014)]. The CSD also contains two structures of unsaturated five-membered NHC compounds that contain C–Cl bonds in the C2 position [NUXPOL (Arduengo *et al.*, 1997) and XOMMER (Kuhn *et al.*, 2002)].

5. Synthesis and crystallization

In a glovebox, prior to the synthesis of the title compound, SIPrCO₂ (Zhou *et al.*, 2008) was reacted with SOCl₂ in an attempt to synthesize SIPrCOCl₂. The exact composition of the product was unconfirmed; however, the decision was made to take a portion of this product and move forward to test its chemistry. This product is the primary reagent for the synthesis of the title salt. In a vial equipped with a magnetic stirring bar was placed the resulting product from the SIPrCO₂/SOCl₂ reaction (0.0478 g, 9.745 \times 10⁻² mmol), NaBARF (0.0863 g, 9.738×10^{-2} mmol) and 5 mL of dichloromethane. The mixture was left to stir overnight (18 h) after which the insoluble solids were removed by filtering the solution into a pre-weighed vial. This was done using a glass pipette containing a small layer of diatomaceous earth. Volatiles were removed in vacuo, leaving behind a pale-yellow-coloured solid $(0.0596 \text{ g}, 4.623 \times 10^{-2} \text{ mmol})$. The purity of the sample was confirmed using ¹H NMR spectroscopy in deuterated chloroform (CDCl₃). The recrystallization was carried out by evaporation of CDCl₃, followed by cooling in the freezer overnight, to afford colourless needle-shaped crystals. ¹H NMR (300 MHz, 298 K, C₆D₆): δ 1.26 (d, CH(CH₃)₂, 12H), 1.33 (d, CH(CH₃)₂, 12H), 3.84 (sept., CH(CH₃)₂, 4H), 4.52 (s, CH₂, 4H), 7.34 (d, m-Ar-H, 4H), 7.50 (s, p-Ar-H, 4H), 7.56 (t, *p*-Ar-*H*, 2H), 7.68 ppm (t, *m*-Ar-*H*, 8H). ¹⁹F NMR (282.5 MHz, 298 K, C₆D₆): δ -63.1 ppm (s). ¹¹B NMR (96.3 MHz, 298 K, C_6D_6): δ -6.18 ppm (s). Trifluorotoluene was used as an external reference for the ¹⁹F NMR spectrum and boron trifluoride diethyl etherate was used as the external reference for the ¹¹B NMR spectrum.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms were included at geometrically idealized positions and were included in a riding-motion approximation. For the methyl groups, the dihedral angle of the idealized tetrahedral CH_3 fragment was allowed to refine.

Prior to final refinement, there was significant disorder associated with one of the CF₃ groups attached to each of C34 and C58. After trying to assess whether the groups had two components of a disorder, it became clear that each of these CF₃ groups actually had four components of disorder that needed to be resolved. In order to do this, the SUMP command was applied to all of the fluorine atoms involved. This involved grouping the four components into PART 1, PART 2, PART 3, and PART 4, respectively, and assigning a free variable to each of the individual parts, where the weighted sum of the free variables was set to equal 1.0 (C58: 0.5: 0.3: 0.1: 0.1 and C34: 0.4: 0.3: 0.2: 0.1). Following refinement using the SUMP command, the EADP command was applied, which allowed for all of the anisotropic parameters of the fluorine ellipsoids to be similar in size. Lastly, the SADI command was applied to each of the affected C-F bonds in the disordered CF₃ groups in order to have similar bond lengths for each of the disordered F atoms (i.e. the bond lengths were approximately equal for C58-F16A-D, C58-F17A-D, etc). The combination of these commands allowed for complete refinement of the CF₃ disorder.

Acknowledgements

We thank the Natural Sciences and Engineering Research Council of Canada (through the Discovery Grants Program to JDM). JDM acknowledges support from the Canadian Foundation for Innovation, the Nova Scotia Research and Innovation Trust Fund and Saint Mary's University.

References

- Aldeco-Perez, E., Rosenthal, A. J., Donnadieu, B., Parameswaran, P., Frenking, G. & Bertrand, G. (2009). *Science*, **326**, 556–559.
- Arduengo, A. J., Davidson, F., Dias, H. V. R., Goerlich, J. R., Khasnis, D., Marshall, W. J. & Prakasha, T. K. (1997). J. Am. Chem. Soc. 119, 12742–12749.
- Arduengo, A. J., Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361–363.

Bertrand, G. & Reed, R. (1994). Coord. Chem. Rev. 137, 323-355.

- Böttcher, T., Steinhauer, S., Allefeld, N., Hoge, B., Neumann, B., Stammler, H. G., Bassil, B. S., Winter, M., Mitzel, N. W. & Röschenthaler, G. V. (2014). *Dalton Trans.* 43, 2979–2987.
- Bourissou, D., Guerret, O., Gabbaï, F. P. & Bertrand, G. (2000). Chem. Rev. 100, 39–92.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Frey, G. D., Lavallo, V., Donnadieu, B., Schoeller, W. W. & Bertrand, G. (2007). Science, **316**, 439–441.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Igau, A., Grutzmacher, H., Baceiredo, A. & Bertrand, G. (1988). J. Am. Chem. Soc. 110, 6463–6466.
- Kremzow, D., Seidel, G., Lehmann, C. W. & Fürstner, A. (2005). *Chem. Eur. J.* 11, 1833–1853.
- Kuhn, N., Abu-Rayyan, A., Göhner, M. & Steimann, M. (2002). Z. Anorg. Allg. Chem. 628, 1721–1723.
- Lavallo, V., Canac, Y., Präsang, C., Donnadieu, B. & Bertrand, G. (2005). Angew. Chem. 117, 5851–5855.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zhou, H., Zhang, W. Z., Liu, C. H., Qu, J. P. & Lu, X. B. (2008). J. Org. Chem. 73, 8039–8044.

supporting information

Acta Cryst. (2016). E72, 1471-1474 [https://doi.org/10.1107/S2056989016014584]

Crystal structure of 2-chloro-1,3-(2,6-diisopropylphenyl)-4,5-dihydro-1Himidazol-3-ium tetrakis(3,5-trifluoromethylphenyl)borate

Darcie L. Stack and Jason D. Masuda

Computing details

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: XS in SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: *publCIF* (Westrip, 2010).

2-Chloro-1,3-(2,6-diisopropylphenyl)-4,5-dihydro-1H-imidazol-3-ium tetrakis(3,5-trifluoromethylphenyl)borate

Crystal data	
$C_{17}H_{38}ClN_2^+ \cdot C_{32}H_{12}BF_{24}$	F(000) = 2624
$M_r = 1289.27$	$D_{\rm x} = 1.461 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 18.5025 (12) Å	Cell parameters from 9997 reflections
b = 17.8739 (12) Å	$\theta = 2.3 - 27.8^{\circ}$
c = 19.7857 (13) Å	$\mu = 0.18 \text{ mm}^{-1}$
$\beta = 116.428 \ (1)^{\circ}$	T = 125 K
$V = 5859.5 (7) \text{ Å}^3$	Needle, colourless
Z = 4	$0.39 \times 0.38 \times 0.08 \text{ mm}$
Data collection	
Siemens/Bruker APEXII	10921 independent reflections
diffractometer	8363 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.033$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.5^\circ, \ \theta_{\rm min} = 2.0^\circ$
(SADABS; Bruker, 2008)	$h = -22 \rightarrow 22$
$T_{\min} = 0.660, \ T_{\max} = 0.746$	$k = -21 \rightarrow 21$
40063 measured reflections	$l = -23 \rightarrow 23$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0464P)^2 + 4.6564P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.52 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.45 \ {\rm e} \ {\rm \AA}^{-3}$

Acta Cryst. (2016). E72, 1471-1474

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.044$

 $wR(F^2) = 0.113$

10921 reflections

830 parameters

38 restraints

S = 1.02

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cl1	0.57779 (3)	0.07669 (3)	0.80176 (3)	0.03051 (14)	
F1	0.71125 (9)	0.20864 (8)	0.39608 (8)	0.0499 (4)	
F2	0.76498 (9)	0.31577 (9)	0.43499 (10)	0.0592 (5)	
F3	0.71913 (9)	0.25293 (9)	0.49856 (8)	0.0469 (4)	
F4	0.38941 (10)	0.28263 (11)	0.39231 (9)	0.0641 (5)	
F5	0.41659 (10)	0.18771 (9)	0.34260 (12)	0.0690 (5)	
F6	0.34175 (9)	0.27432 (9)	0.27269 (8)	0.0507 (4)	
F10	0.33308 (9)	0.78402 (7)	0.23647 (8)	0.0459 (4)	
F11	0.26822 (9)	0.70653 (8)	0.14865 (9)	0.0537 (4)	
F12	0.38410 (10)	0.74577 (8)	0.16469 (9)	0.0497 (4)	
F13	0.25354 (8)	0.41455 (8)	0.01425 (8)	0.0445 (4)	
F14	0.27430 (8)	0.52975 (8)	0.00069 (8)	0.0385 (3)	
F15	0.28655 (8)	0.44738 (9)	-0.07256 (7)	0.0470 (4)	
F19	0.82744 (9)	0.65439 (9)	0.51987 (8)	0.0488 (4)	
F20	0.81541 (11)	0.53617 (9)	0.52327 (8)	0.0657 (5)	
F21	0.72766 (10)	0.60866 (10)	0.53192 (8)	0.0561 (5)	
F22	0.67492 (8)	0.67563 (8)	0.16727 (7)	0.0426 (4)	
F23	0.75829 (10)	0.73793 (8)	0.26143 (9)	0.0490 (4)	
F24	0.79387 (9)	0.63343 (9)	0.23298 (9)	0.0492 (4)	
N1	0.49006 (10)	0.03298 (9)	0.66179 (9)	0.0219 (4)	
N2	0.47084 (10)	-0.03195 (9)	0.74765 (9)	0.0225 (4)	
C1	0.50909 (12)	0.02306 (11)	0.73361 (11)	0.0219 (4)	
C2	0.43398 (13)	-0.02710 (12)	0.61751 (12)	0.0273 (5)	
H2A	0.4616	-0.0647	0.6004	0.033*	
H2B	0.3871	-0.0066	0.5731	0.033*	
C3	0.40817 (13)	-0.06074 (13)	0.67455 (11)	0.0275 (5)	
H3A	0.3537	-0.0433	0.6651	0.033*	
H3B	0.4085	-0.1161	0.6731	0.033*	
C4	0.46845 (12)	-0.04819 (12)	0.81830 (11)	0.0239 (5)	
C5	0.50674 (13)	-0.11362 (12)	0.85634 (12)	0.0262 (5)	
C6	0.49935 (14)	-0.13078 (13)	0.92158 (12)	0.0308 (5)	
H6	0.5246	-0.1745	0.9493	0.037*	
C7	0.45600 (14)	-0.08535 (13)	0.94660 (12)	0.0317 (5)	
H7	0.4515	-0.0984	0.9911	0.038*	
C8	0.41908 (14)	-0.02121 (13)	0.90777 (12)	0.0311 (5)	
H8	0.3898	0.0095	0.9261	0.037*	
C9	0.42415 (13)	-0.00086 (12)	0.84220 (12)	0.0261 (5)	
C10	0.38168 (13)	0.06998 (13)	0.80057 (13)	0.0304 (5)	
H10	0.3933	0.0762	0.7561	0.037*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C11	0.41371 (15)	0.13920 (13)	0.85073 (14)	0.0378 (6)
H11A	0.3886	0.1842	0.8213	0.057*
H11B	0.4724	0.1421	0.8695	0.057*
H11C	0.4006	0.1356	0.8935	0.057*
C12	0.29009 (14)	0.06342 (15)	0.77105 (15)	0.0431 (6)
H12A	0.2643	0.1097	0.7450	0.065*
H12B	0.2773	0.0550	0.8135	0.065*
H12C	0.2701	0.0213	0.7358	0.065*
C13	0.55597 (14)	-0.16215 (13)	0.82903 (13)	0.0312 (5)
H13	0.5292	-0.1605	0.7726	0.037*
C14	0.64129 (15)	-0.13026(15)	0.85628 (15)	0.0419 (6)
H14A	0.6718	-0.1614	0.8372	0.063*
H14B	0.6686	-0.1300	0.9116	0.063*
H14C	0.6380	-0.0790	0.8375	0.063*
C15	0 56033 (19)	-0.24404(14)	0.85261 (16)	0.0466(7)
H15A	0.5056	-0.2642	0.8343	0.070*
H15B	0.5883	-0.2477	0.9078	0.070*
H15C	0.5900	-0.2728	0.8309	0.070*
C16	0.52057 (13)	0.2720 0.08945 (11)	0.62913(11)	0.070
C17	0.32037(13) 0.47416(13)	0.15411(12)	0.62913(11) 0.60097(11)	0.0220(1) 0.0252(5)
C18	0.50294 (15)	0.10111(12) 0.20684(12)	0.56719(12)	0.0232(5) 0.0313(5)
H18	0.4733	0.2516	0.5476	0.038*
C19	0.57381 (15)	0 19514 (13)	0.56161 (13)	0.0335(5)
H19	0.5922	0.2317	0.5380	0.0555 (5)
C20	0.5922 0.61821 (14)	0.2317 0.13085 (13)	0.59001 (12)	0.040 0.0307(5)
H20	0.6669	0.1238	0.5958	0.0307 (5)
C21	0.59283(13)	0.07586 (12)	0.62487(11)	0.037 0.0253(5)
C21	0.39203(13) 0.39771(14)	0.16936 (12)	0.60966 (13)	0.0233(5) 0.0310(5)
H22	0.3813	0.1213	0.6247	0.037*
C23	0.3015 0.32750(15)	0.1213	0.53670 (14)	0.037
H23A	0.3406	0.2439	0.5219	0.066*
H23B	0.2790	0.2002	0.5445	0.066*
H23C	0.3178	0.1586	0.4968	0.066*
C24	0.41498 (16)	0.22592 (16)	0.67338 (14)	0.0432 (6)
H24A	0.4300	0.2742	0.6597	0.065*
H24B	0.4594	0.2075	0.7200	0.065*
H24C	0.3666	0.2322	0.6811	0.065*
C25	0.64282(14)	0.00569(13)	0.65617(13)	0.0318(5)
H25	0.6175	-0.0237	0.6830	0.0318 (0)
C26	0 72921 (16)	0.02464(17)	0.71340(17)	0.0543 (8)
H26A	0 7561	0.0522	0.6881	0.081*
H26B	0.7589	-0.0217	0.7349	0.081*
H26C	0.7280	0.0556	0.7538	0.081*
C27	0.64207 (18)	-0.04305(14)	0.59237 (15)	0.0442(7)
H27A	0.5862	-0.0555	0.5573	0.066*
H27B	0.6724	-0.0892	0.6135	0.066*
H27C	0.6671	-0.0157	0.5653	0.066*
C28	0.46452(12)	0.54706 (11)	0.28500 (11)	0.0214 (4)
		()		··· · · · · · · /

C29	0.44991 (12)	0.54002 (12)	0.34834 (11)	0.0236 (4)	
H29	0.4736	0.4994	0.3819	0.028*	
C30	0.40201 (13)	0.59036 (12)	0.36383 (12)	0.0251 (5)	
C31	0.36629 (13)	0.65038 (12)	0.31637 (12)	0.0271 (5)	
H31	0.3326	0.6843	0.3263	0.033*	
C32	0.38103 (12)	0.65968 (12)	0.25381 (12)	0.0240 (5)	
C33	0.42937 (12)	0.60951 (11)	0.23918 (12)	0.0228 (4)	
H33	0.4391	0.6177	0.1965	0.027*	
C34	0.39268 (15)	0.58098 (14)	0.43418 (14)	0.0357 (6)	
C35	0.34218 (14)	0.72339 (13)	0.20124 (13)	0.0305 (5)	
C36	0.53982 (12)	0.41235 (11)	0.31391 (11)	0.0215 (4)	
C37	0.47298 (13)	0.37166 (12)	0.30880 (11)	0.0248 (5)	
H37	0.4207	0.3928	0.2823	0.030*	
C38	0.48060 (13)	0.30127 (12)	0.34134 (12)	0.0274 (5)	
C39	0.55582 (13)	0.26877 (12)	0.38019 (12)	0.0270 (5)	
H39	0.5612	0.2208	0.4026	0.032*	
C40	0.62297 (13)	0.30745 (12)	0.38578 (11)	0.0243 (5)	
C41	0.61488 (13)	0.37765 (12)	0.35287 (11)	0.0230 (4)	
H41	0.6619	0.4028	0.3570	0.028*	
C42	0.70419 (14)	0.27203 (12)	0.42822 (13)	0.0299 (5)	
C43	0.40729 (15)	0.26223 (14)	0.33705 (14)	0.0367 (6)	
C44	0.61133 (12)	0.54189 (11)	0.30350 (11)	0.0207 (4)	
C45	0.65695 (13)	0.55098 (12)	0.38128 (12)	0.0235 (4)	
H45	0.6407	0.5253	0.4143	0.028*	
C46	0.72526 (13)	0.59620 (12)	0.41220 (12)	0.0249 (5)	
C47	0.75007 (13)	0.63552 (12)	0.36600 (12)	0.0252 (5)	
H47	0.7966	0.6665	0.3867	0.030*	
C48	0.70505 (12)	0.62841 (11)	0.28859 (12)	0.0226 (4)	
C49	0.63740 (12)	0.58233 (11)	0.25804 (11)	0.0220 (4)	
H49	0.6081	0.5783	0.2047	0.026*	
C50	0.77279 (15)	0.59941 (14)	0.49580 (13)	0.0351 (6)	
C51	0.73266 (13)	0.66856 (12)	0.23798 (12)	0.0267 (5)	
C52	0.49542 (12)	0.46987 (11)	0.18099 (11)	0.0215 (4)	
C53	0.54765 (12)	0.43508 (12)	0.15634 (12)	0.0235 (4)	
H53	0.6028	0.4289	0.1912	0.028*	
C54	0.52144 (13)	0.40933 (12)	0.08269 (12)	0.0248 (5)	
C55	0.44147 (13)	0.41754 (12)	0.03016 (12)	0.0259 (5)	
H55	0.4233	0.4004	-0.0202	0.031*	
C56	0.38899 (13)	0.45129 (11)	0.05310 (11)	0.0233 (4)	
C57	0.41534 (12)	0.47617 (11)	0.12721 (11)	0.0224 (4)	
H57	0.3774	0.4981	0.1414	0.027*	
C59	0.30216 (14)	0.46077 (13)	-0.00085 (12)	0.0305 (5)	
B1	0.52749 (14)	0.49284 (13)	0.27032 (13)	0.0212 (5)	
C58	0.57881 (14)	0.36974 (13)	0.06062 (12)	0.0334 (5)	
F16A	0.5578 (3)	0.3839 (2)	-0.01354 (12)	0.0362 (4)	0.457 (3)
F17A	0.5790 (3)	0.29508 (11)	0.0682 (3)	0.0362 (4)	0.457 (3)
F18A	0.65707 (14)	0.3914 (3)	0.0972 (3)	0.0362 (4)	0.457 (3)
F16B	0.5558 (5)	0.3618 (4)	-0.01471 (13)	0.0362 (4)	0.315 (3)

F17B	0.5990 (4)	0.30242 (19)	0.0940 (3)	0.0362 (4)	0.315 (3)
F18B	0.6470 (2)	0.4117 (3)	0.0875 (4)	0.0362 (4)	0.315 (3)
F16C	0.5496 (8)	0.2997 (4)	0.0363 (9)	0.0362 (4)	0.118 (3)
F17C	0.6562 (3)	0.3652 (9)	0.1125 (6)	0.0362 (4)	0.118 (3)
F18C	0.5837 (9)	0.3942 (8)	-0.0020 (5)	0.0362 (4)	0.118 (3)
F16D	0.5391 (7)	0.3310 (8)	-0.0051 (6)	0.0362 (4)	0.110 (3)
F17D	0.6205 (9)	0.3188 (6)	0.1136 (6)	0.0362 (4)	0.110 (3)
F18D	0.6404 (6)	0.4108 (7)	0.0606 (9)	0.0362 (4)	0.110 (3)
F7A	0.3939 (5)	0.51089 (14)	0.4606 (3)	0.0351 (5)	0.398 (3)
F8A	0.3370 (4)	0.6223 (4)	0.4436 (4)	0.0351 (5)	0.398 (3)
F9A	0.4609 (2)	0.6116 (3)	0.49079 (19)	0.0351 (5)	0.398 (3)
F7B	0.3620 (4)	0.51232 (18)	0.4344 (3)	0.0351 (5)	0.338 (3)
F8B	0.3334 (5)	0.6281 (5)	0.4284 (4)	0.0351 (5)	0.338 (3)
F9B	0.4625 (2)	0.5889 (3)	0.4999 (2)	0.0351 (5)	0.338 (3)
F7C	0.3999 (9)	0.50701 (19)	0.4506 (7)	0.0351 (5)	0.190 (3)
F8C	0.3188 (3)	0.5964 (6)	0.4282 (5)	0.0351 (5)	0.190 (3)
F9C	0.4455 (4)	0.6156 (6)	0.4995 (4)	0.0351 (5)	0.190 (3)
F7D	0.3279 (8)	0.5350 (9)	0.4112 (10)	0.0351 (5)	0.0734 (19)
F8D	0.3577 (12)	0.6383 (9)	0.4527 (14)	0.0351 (5)	0.0734 (19)
F9D	0.4442 (10)	0.5377 (10)	0.4934 (7)	0.0351 (5)	0.0734 (19)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
Cl1	0.0307 (3)	0.0299 (3)	0.0250 (3)	-0.0082 (2)	0.0070 (2)	-0.0015 (2)
F1	0.0515 (9)	0.0446 (9)	0.0496 (9)	0.0195 (7)	0.0189 (8)	-0.0124 (7)
F2	0.0289 (8)	0.0459 (9)	0.0903 (13)	0.0045 (7)	0.0153 (8)	0.0269 (9)
F3	0.0488 (9)	0.0569 (10)	0.0318 (8)	0.0221 (7)	0.0149 (7)	0.0079 (7)
F4	0.0546 (10)	0.1007 (14)	0.0528 (10)	-0.0322 (10)	0.0381 (9)	-0.0135 (9)
F5	0.0544 (10)	0.0349 (9)	0.1155 (16)	-0.0146 (8)	0.0357 (11)	0.0160 (9)
F6	0.0337 (8)	0.0657 (11)	0.0449 (9)	-0.0190 (7)	0.0105 (7)	0.0062 (8)
F10	0.0632 (10)	0.0234 (7)	0.0480 (9)	0.0094 (7)	0.0220 (8)	0.0000 (6)
F11	0.0391 (9)	0.0390 (9)	0.0491 (9)	0.0009 (7)	-0.0108 (7)	0.0055 (7)
F12	0.0595 (10)	0.0430 (9)	0.0576 (10)	0.0171 (7)	0.0360 (8)	0.0254 (7)
F13	0.0288 (7)	0.0461 (9)	0.0550 (9)	-0.0129 (6)	0.0153 (7)	-0.0047 (7)
F14	0.0290 (7)	0.0378 (8)	0.0402 (8)	0.0058 (6)	0.0077 (6)	-0.0012 (6)
F15	0.0330 (8)	0.0726 (11)	0.0245 (7)	0.0039 (7)	0.0029 (6)	-0.0126 (7)
F19	0.0449 (9)	0.0591 (10)	0.0325 (8)	-0.0212 (8)	0.0082 (7)	-0.0156 (7)
F20	0.0818 (12)	0.0504 (10)	0.0300 (8)	0.0155 (9)	-0.0065 (8)	0.0039 (7)
F21	0.0561 (10)	0.0880 (13)	0.0281 (7)	-0.0215 (9)	0.0221 (7)	-0.0141 (8)
F22	0.0393 (8)	0.0531 (9)	0.0333 (7)	-0.0058 (7)	0.0143 (6)	0.0144 (7)
F23	0.0696 (11)	0.0312 (8)	0.0549 (9)	-0.0185 (7)	0.0354 (8)	-0.0028 (7)
F24	0.0502 (9)	0.0524 (9)	0.0659 (10)	0.0230 (8)	0.0448 (8)	0.0260 (8)
N1	0.0216 (9)	0.0207 (9)	0.0201 (9)	-0.0012 (7)	0.0064 (7)	0.0005 (7)
N2	0.0224 (9)	0.0213 (9)	0.0202 (9)	-0.0041 (7)	0.0061 (7)	0.0003 (7)
C1	0.0210 (10)	0.0185 (10)	0.0231 (11)	0.0029 (8)	0.0070 (9)	0.0003 (8)
C2	0.0288 (12)	0.0262 (12)	0.0228 (11)	-0.0052 (9)	0.0078 (9)	-0.0034 (9)
C3	0.0264 (11)	0.0291 (12)	0.0218 (11)	-0.0070 (9)	0.0061 (9)	-0.0016 (9)

supporting information

C4	0.0224 (11)	0.0266 (11)	0.0196 (10)	-0.0074 (9)	0.0068 (9)	0.0004 (8)
C5	0.0264 (11)	0.0242 (11)	0.0241 (11)	-0.0069 (9)	0.0077 (9)	-0.0014 (9)
C6	0.0353 (13)	0.0272 (12)	0.0253 (11)	-0.0045 (10)	0.0093 (10)	0.0037 (9)
C7	0.0353 (13)	0.0363 (13)	0.0229 (11)	-0.0113 (10)	0.0126 (10)	0.0006 (10)
C8	0.0296 (12)	0.0358 (13)	0.0286 (12)	-0.0073 (10)	0.0137 (10)	-0.0054 (10)
С9	0.0225 (11)	0.0273 (12)	0.0251 (11)	-0.0069 (9)	0.0074 (9)	-0.0021(9)
C10	0.0290 (12)	0.0307 (12)	0.0305 (12)	0.0018 (10)	0.0123 (10)	0.0011 (10)
C11	0.0399 (14)	0.0297 (13)	0.0384 (14)	0.0023 (11)	0.0124 (11)	-0.0016 (10)
C12	0.0302 (13)	0.0440 (15)	0.0480 (15)	0.0028 (11)	0.0110 (12)	0.0026 (12)
C13	0.0363 (13)	0.0264 (12)	0.0274 (12)	0.0007 (10)	0.0112 (10)	0.0032 (9)
C14	0.0324 (13)	0.0399 (15)	0.0492 (15)	0.0057 (11)	0.0142 (12)	0.0022 (12)
C15	0.0691 (19)	0.0267 (13)	0.0488 (16)	0.0030 (13)	0.0305 (15)	0.0038 (11)
C16	0.0262 (11)	0.0220 (11)	0.0179 (10)	-0.0025 (9)	0.0077 (9)	0.0009 (8)
C17	0.0287 (12)	0.0231 (11)	0.0194 (10)	0.0014 (9)	0.0067 (9)	-0.0009 (8)
C18	0.0439 (14)	0.0206 (11)	0.0266 (11)	0.0033 (10)	0.0131 (11)	0.0033 (9)
C19	0.0500 (15)	0.0257 (12)	0.0292 (12)	-0.0057 (11)	0.0215 (11)	0.0017 (9)
C20	0.0336 (13)	0.0325 (13)	0.0312 (12)	-0.0034 (10)	0.0191 (10)	-0.0011 (10)
C21	0.0276 (11)	0.0271 (12)	0.0210 (10)	0.0009 (9)	0.0107 (9)	0.0007 (9)
C22	0.0326 (12)	0.0246 (12)	0.0345 (12)	0.0067 (10)	0.0139 (10)	0.0032 (9)
C23	0.0353 (14)	0.0463 (16)	0.0400 (14)	0.0102 (12)	0.0077 (12)	0.0013 (12)
C24	0.0382 (14)	0.0502 (16)	0.0384 (14)	0.0125 (12)	0.0145 (12)	-0.0052 (12)
C25	0.0328 (12)	0.0318 (13)	0.0349 (12)	0.0071 (10)	0.0187 (11)	0.0084 (10)
C26	0.0375 (15)	0.0547 (18)	0.0590 (18)	0.0144 (13)	0.0109 (14)	0.0113 (15)
C27	0.0641 (18)	0.0307 (14)	0.0510 (16)	0.0119 (13)	0.0375 (15)	0.0066 (12)
C28	0.0192 (10)	0.0233 (11)	0.0194 (10)	-0.0035 (8)	0.0066 (8)	-0.0028 (8)
C29	0.0214 (11)	0.0242 (11)	0.0236 (11)	-0.0007 (9)	0.0085 (9)	-0.0014 (9)
C30	0.0232 (11)	0.0271 (12)	0.0244 (11)	-0.0016 (9)	0.0101 (9)	-0.0039 (9)
C31	0.0233 (11)	0.0257 (12)	0.0318 (12)	-0.0004 (9)	0.0119 (10)	-0.0075 (9)
C32	0.0207 (11)	0.0214 (11)	0.0256 (11)	-0.0030 (8)	0.0065 (9)	-0.0024 (8)
C33	0.0219 (10)	0.0232 (11)	0.0231 (10)	-0.0048 (8)	0.0098 (9)	-0.0018 (8)
C34	0.0395 (14)	0.0370 (14)	0.0373 (13)	0.0063 (11)	0.0231 (12)	0.0004 (11)
C35	0.0292 (12)	0.0267 (12)	0.0317 (12)	0.0024 (9)	0.0100 (10)	-0.0010 (10)
C36	0.0253 (11)	0.0221 (11)	0.0191 (10)	-0.0019 (8)	0.0118 (9)	-0.0028 (8)
C37	0.0247 (11)	0.0271 (12)	0.0226 (10)	-0.0011 (9)	0.0105 (9)	-0.0012 (9)
C38	0.0309 (12)	0.0259 (12)	0.0271 (11)	-0.0072 (9)	0.0145 (10)	-0.0025 (9)
C39	0.0373 (13)	0.0209 (11)	0.0251 (11)	-0.0007 (9)	0.0159 (10)	-0.0001 (9)
C40	0.0304 (12)	0.0223 (11)	0.0219 (10)	0.0002 (9)	0.0132 (9)	-0.0023 (8)
C41	0.0247 (11)	0.0231 (11)	0.0242 (10)	-0.0019 (9)	0.0137 (9)	-0.0029 (8)
C42	0.0341 (13)	0.0235 (12)	0.0338 (13)	0.0042 (10)	0.0167 (11)	0.0006 (9)
C43	0.0362 (14)	0.0363 (14)	0.0369 (13)	-0.0082 (11)	0.0157 (12)	0.0017 (11)
C44	0.0225 (10)	0.0192 (10)	0.0222 (10)	0.0037 (8)	0.0115 (9)	0.0001 (8)
C45	0.0263 (11)	0.0214 (11)	0.0256 (11)	0.0013 (9)	0.0140 (9)	0.0008 (8)
C46	0.0249 (11)	0.0233 (11)	0.0244 (11)	0.0026 (9)	0.0092 (9)	-0.0028 (9)
C47	0.0216 (11)	0.0216 (11)	0.0309 (12)	-0.0003 (9)	0.0103 (9)	-0.0027 (9)
C48	0.0229 (11)	0.0177 (10)	0.0290 (11)	0.0035 (8)	0.0131 (9)	0.0009 (8)
C49	0.0224 (10)	0.0220 (11)	0.0213 (10)	0.0038 (8)	0.0096 (9)	-0.0014 (8)
C50	0.0372 (13)	0.0352 (13)	0.0271 (12)	-0.0042 (11)	0.0089 (11)	-0.0037 (10)
C51	0.0259 (12)	0.0230 (11)	0.0334 (12)	0.0007 (9)	0.0152 (10)	0.0015 (9)

supporting information

C52	0.0248 (11)	0.0172 (10)	0.0228 (10)	-0.0021 (8)	0.0109 (9)	0.0018 (8)
C53	0.0209 (10)	0.0244 (11)	0.0239 (10)	-0.0009 (8)	0.0088 (9)	0.0005 (8)
C54	0.0280 (11)	0.0222 (11)	0.0270 (11)	-0.0015 (9)	0.0148 (9)	-0.0002 (9)
C55	0.0310 (12)	0.0240 (11)	0.0232 (11)	-0.0033 (9)	0.0126 (10)	-0.0038 (9)
C56	0.0250 (11)	0.0200 (11)	0.0244 (11)	-0.0027 (8)	0.0104 (9)	-0.0004 (8)
C57	0.0231 (11)	0.0204 (11)	0.0255 (11)	-0.0019 (8)	0.0125 (9)	0.0007 (8)
C59	0.0274 (12)	0.0338 (13)	0.0284 (12)	-0.0036 (10)	0.0107 (10)	-0.0062 (10)
B1	0.0208 (12)	0.0223 (12)	0.0199 (11)	0.0010 (9)	0.0085 (10)	0.0010 (9)
C58	0.0317 (13)	0.0377 (14)	0.0305 (12)	0.0009 (10)	0.0136 (10)	-0.0048 (10)
F16A	0.0396 (8)	0.0351 (10)	0.0406 (8)	0.0062 (7)	0.0239 (7)	-0.0056 (7)
F17A	0.0396 (8)	0.0351 (10)	0.0406 (8)	0.0062 (7)	0.0239 (7)	-0.0056 (7)
F18A	0.0396 (8)	0.0351 (10)	0.0406 (8)	0.0062 (7)	0.0239 (7)	-0.0056 (7)
F16B	0.0396 (8)	0.0351 (10)	0.0406 (8)	0.0062 (7)	0.0239 (7)	-0.0056 (7)
F17B	0.0396 (8)	0.0351 (10)	0.0406 (8)	0.0062 (7)	0.0239 (7)	-0.0056 (7)
F18B	0.0396 (8)	0.0351 (10)	0.0406 (8)	0.0062 (7)	0.0239 (7)	-0.0056 (7)
F16C	0.0396 (8)	0.0351 (10)	0.0406 (8)	0.0062 (7)	0.0239 (7)	-0.0056 (7)
F17C	0.0396 (8)	0.0351 (10)	0.0406 (8)	0.0062 (7)	0.0239 (7)	-0.0056 (7)
F18C	0.0396 (8)	0.0351 (10)	0.0406 (8)	0.0062 (7)	0.0239 (7)	-0.0056 (7)
F16D	0.0396 (8)	0.0351 (10)	0.0406 (8)	0.0062 (7)	0.0239 (7)	-0.0056 (7)
F17D	0.0396 (8)	0.0351 (10)	0.0406 (8)	0.0062 (7)	0.0239 (7)	-0.0056 (7)
F18D	0.0396 (8)	0.0351 (10)	0.0406 (8)	0.0062 (7)	0.0239 (7)	-0.0056 (7)
F7A	0.0448 (8)	0.0450 (9)	0.0241 (9)	0.0091 (6)	0.0230 (7)	0.0062 (6)
F8A	0.0448 (8)	0.0450 (9)	0.0241 (9)	0.0091 (6)	0.0230 (7)	0.0062 (6)
F9A	0.0448 (8)	0.0450 (9)	0.0241 (9)	0.0091 (6)	0.0230 (7)	0.0062 (6)
F7B	0.0448 (8)	0.0450 (9)	0.0241 (9)	0.0091 (6)	0.0230 (7)	0.0062 (6)
F8B	0.0448 (8)	0.0450 (9)	0.0241 (9)	0.0091 (6)	0.0230 (7)	0.0062 (6)
F9B	0.0448 (8)	0.0450 (9)	0.0241 (9)	0.0091 (6)	0.0230 (7)	0.0062 (6)
F7C	0.0448 (8)	0.0450 (9)	0.0241 (9)	0.0091 (6)	0.0230 (7)	0.0062 (6)
F8C	0.0448 (8)	0.0450 (9)	0.0241 (9)	0.0091 (6)	0.0230 (7)	0.0062 (6)
F9C	0.0448 (8)	0.0450 (9)	0.0241 (9)	0.0091 (6)	0.0230 (7)	0.0062 (6)
F7D	0.0448 (8)	0.0450 (9)	0.0241 (9)	0.0091 (6)	0.0230 (7)	0.0062 (6)
F8D	0.0448 (8)	0.0450 (9)	0.0241 (9)	0.0091 (6)	0.0230 (7)	0.0062 (6)
F9D	0.0448 (8)	0.0450 (9)	0.0241 (9)	0.0091 (6)	0.0230 (7)	0.0062 (6)

Geometric parameters (Å, °)

Cl1—C1	1.681 (2)	C30—C34	1.486 (3)	
F1—C42	1.334 (3)	C31—C32	1.391 (3)	
F2—C42	1.327 (3)	C32—C33	1.385 (3)	
F3—C42	1.337 (3)	C32—C35	1.493 (3)	
F4—C43	1.327 (3)	C34—F8C	1.346 (3)	
F5—C43	1.341 (3)	C34—F8A	1.347 (3)	
F6—C43	1.328 (3)	C34—F8D	1.347 (3)	
F10-C35	1.339 (3)	C34—F8B	1.347 (3)	
F11—C35	1.334 (3)	C34—F7B	1.353 (3)	
F12—C35	1.336 (3)	C34—F7A	1.354 (3)	
F13—C59	1.349 (3)	C34—F7C	1.354 (3)	
F14—C59	1.342 (3)	C34—F7D	1.354 (3)	

F15—C59	1.337 (3)	C34—F9B	1.372 (3)
F19—C50	1.337 (3)	C34—F9D	1.373 (3)
F20—C50	1.347 (3)	C34—F9C	1.373 (3)
F21—C50	1.329 (3)	C34—F9A	1.374 (3)
F22—C51	1.336 (3)	C36—C41	1.398 (3)
F23—C51	1.335 (3)	C36—C37	1.399 (3)
F24—C51	1.337 (3)	C36—B1	1.640 (3)
N1—C1	1.315 (3)	C37—C38	1.392 (3)
N1—C16	1.442 (3)	C38—C39	1.383 (3)
N1—C2	1 479 (3)	C38—C43	1 494 (3)
N2-C1	1 311 (3)	C_{39} C_{40}	1 383 (3)
N2-C4	1.311(3) 1 448 (3)	C40-C41	1.303 (3)
N2 C3	1.486 (3)	C_{40} C_{42}	1.371(3) 1.407(3)
$C_2 C_3$	1.400(3)	$C_{40} = C_{42}$	1.497(3) 1.207(3)
$C_2 = C_3$	1.331(3) 1.200(2)	$C_{44} = C_{45}$	1.397(3) 1.207(2)
C4 = C9	1.399 (3)	C44 = C43	1.397(3) 1.642(2)
C4—C3	1.400 (3)		1.045(5) 1.202(2)
C_{5}	1.391 (3)	C45	1.392 (3)
C5—C13	1.521 (3)	C46—C47	1.383 (3)
C6—C7	1.379 (3)	C46—C50	1.489 (3)
C7—C8	1.380 (3)	C47—C48	1.386 (3)
C8—C9	1.390 (3)	C48—C49	1.392 (3)
C9—C10	1.524 (3)	C48—C51	1.495 (3)
C10-C11	1.531 (3)	C52—C57	1.392 (3)
C10—C12	1.532 (3)	C52—C53	1.406 (3)
C13—C15	1.527 (3)	C52—B1	1.646 (3)
C13—C14	1.533 (3)	C53—C54	1.393 (3)
C16—C21	1.398 (3)	C54—C55	1.386 (3)
C16—C17	1.399 (3)	C54—C58	1.494 (3)
C17—C18	1.391 (3)	C55—C56	1.380 (3)
C17—C22	1.524 (3)	C56—C57	1.396 (3)
C18—C19	1.380 (3)	C56—C59	1.491 (3)
C19—C20	1.378 (3)	C58—F17A	1.343 (3)
C20—C21	1.397 (3)	C58—F17C	1.343 (3)
C21—C25	1.517 (3)	C58—F17B	1.343 (3)
C22—C23	1.522 (3)	C58—F17D	1.343 (3)
C^{22} C^{24}	1 535 (3)	C58—F18D	1355(3)
C_{25} C_{27}	1 529 (3)	C58—F18A	1.355(3) 1.356(3)
$C_{25} = C_{26}$	1.529(3) 1.530(4)	C58 - F18C	1 356 (3)
$C_{23} = C_{20}$	1.350(4) 1 400 (3)	C58—F18B	1.356(3)
C_{28} C_{23}	1.400(3)	C58 F16B	1.363(3)
C28 P1	1.402(3)	C58 E16D	1.303(3) 1.262(2)
C_{20} C_{20} C_{20}	1.030(3) 1.200(2)	C58 F16C	1.303(3) 1.264(2)
$C_{29} = C_{30}$	1.390(3)	C58 F16C	1.304(3)
C30—C31	1.385 (3)	C38—F10A	1.304 (3)
C1—N1—C16	127.50 (17)	C39—C38—C37	120.4 (2)
C1—N1—C2	108.78 (17)	C39—C38—C43	119.9 (2)
C16—N1—C2	123.64 (16)	C37—C38—C43	119.6 (2)
C1—N2—C4	127.33 (17)	C40—C39—C38	118.7 (2)

C1—N2—C3	108.32 (16)	C39—C40—C41	120.5 (2)
C4—N2—C3	121.63 (16)	C39—C40—C42	118.38 (19)
N2—C1—N1	114.83 (18)	C41—C40—C42	121.1 (2)
N2—C1—Cl1	122.96 (16)	C40—C41—C36	122.1 (2)
N1—C1—C11	122.21 (16)	F2—C42—F1	106.87 (19)
N1-C2-C3	102.43 (16)	F2-C42-F3	105.79 (19)
N2-C3-C2	102.55 (16)	F1-C42-F3	105.11 (18)
C9-C4-C5	123 8 (2)	F_{2} — C_{42} — C_{40}	113 68 (18)
C9—C4—N2	118 65 (19)	F1 - C42 - C40	112.25 (19)
C5-C4-N2	117 44 (19)	$F_3 - C_4 - C_4 0$	112.20 (19)
C6-C5-C4	116.6 (2)	$F_4 - C_{43} - F_6$	106.8(2)
C6-C5-C13	1217(2)	F4-C43-F5	100.0(2)
C4-C5-C13	121.7(2) 121.67(19)	F6_C43_F5	100.0(2) 105.6(2)
$C_{7} - C_{6} - C_{5}$	121.07(17)	$F_4 - C_{43} - C_{38}$	103.0(2) 112.2(2)
$C_{1}^{-} C_{2}^{-} C_{3}^{-} C_{3$	121.1(2) 120.8(2)	F_{6} C_{43} C_{38}	112.2(2)
$C_{7}^{-}C_{8}^{-}C_{9}^{0}$	120.0(2) 121.0(2)	F_{5} C_{43} C_{38}	113.37(17) 112.3(2)
$C_{1}^{2} = C_{2}^{2} = C_{2}^{2}$	121.0(2) 116.8(2)	$C_{49} = C_{44} = C_{45}$	112.5(2)
$C_8 = C_9 = C_4$	110.0(2) 110.2(2)	$C_{49} = C_{44} = C_{43}$	113.90(19)
$C_{8} = C_{9} = C_{10}$	119.5(2) 122.06(10)	C45 = C44 = B1	123.00(17)
$C_4 - C_9 - C_{10}$	123.90(19) 111.20(19)	C45 - C44 - B1	120.10(10)
$C_{0} = C_{10} = C_{12}$	111.30(18) 111.1(2)	C40 - C43 - C44	122.49 (19)
C_{9} C_{10} C_{12} C_{11} C_{10} C_{12}	111.1(2)	C47 = C40 = C43	120.34(19)
C11 - C10 - C12	110.0(2)	C47 - C40 - C50	120.0(2)
C_{5}	113.4(2)	C45 - C40 - C50	118.8(2)
C5-C13-C14	110.42 (19)	C46-C4/-C48	118.09 (19)
C15 - C13 - C14	110.0 (2)	C47 - C48 - C49	121.08 (19)
C21—C16—C17	123.61 (19)	C47—C48—C51	118.68 (19)
C21—C16—N1	118.76 (18)	C49—C48—C51	120.18 (18)
C17—C16—N1	117.60 (19)	C48—C49—C44	121.89 (19)
C18—C17—C16	116.9 (2)	F21—C50—F19	105.88 (19)
C18—C17—C22	120.4 (2)	F21—C50—F20	106.4 (2)
C16—C17—C22	122.61 (19)	F19—C50—F20	105.0 (2)
C19—C18—C17	121.1 (2)	F21—C50—C46	113.6 (2)
C20—C19—C18	120.6 (2)	F19—C50—C46	113.8 (2)
C19—C20—C21	121.2 (2)	F20—C50—C46	111.48 (19)
C20—C21—C16	116.6 (2)	F23—C51—F22	105.73 (17)
C20—C21—C25	120.4 (2)	F23—C51—F24	106.28 (18)
C16—C21—C25	123.01 (19)	F22—C51—F24	106.02 (18)
C23—C22—C17	113.0 (2)	F23—C51—C48	112.81 (18)
C23—C22—C24	110.9 (2)	F22—C51—C48	113.24 (17)
C17—C22—C24	110.26 (19)	F24—C51—C48	112.18 (17)
C21—C25—C27	110.75 (19)	C57—C52—C53	115.63 (19)
C21—C25—C26	111.4 (2)	C57—C52—B1	123.57 (18)
C27—C25—C26	111.1 (2)	C53—C52—B1	120.50 (18)
C29—C28—C33	115.55 (19)	C54—C53—C52	122.39 (19)
C29—C28—B1	122.78 (18)	C55—C54—C53	120.5 (2)
C33—C28—B1	121.23 (18)	C55—C54—C58	119.43 (19)
C30—C29—C28	122.4 (2)	C53—C54—C58	120.02 (19)
C31—C30—C29	120.7 (2)	C56—C55—C54	118.17 (19)

C31—C30—C34	120.2 (2)	C55—C56—C57	121.10 (19)
C29—C30—C34	119.0 (2)	C55—C56—C59	120.39 (19)
C30—C31—C32	118.2 (2)	C57—C56—C59	118.50 (19)
C33—C32—C31	120.6 (2)	C52—C57—C56	122.2 (2)
C33—C32—C35	120.2 (2)	F15—C59—F14	106.54 (18)
C31—C32—C35	119.1 (2)	F15—C59—F13	105.96 (18)
C32—C33—C28	122.5 (2)	F14—C59—F13	104.88 (18)
F8B—C34—F7B	103.9 (5)	F15—C59—C56	113.22 (19)
F8AC34F7A	109.7 (4)	F14—C59—C56	112.99 (18)
F8C—C34—F7C	102.1 (7)	F13—C59—C56	112.58 (19)
F8D-C34-F7D	95.3 (12)	C28—B1—C36	111.67 (17)
F8B—C34—F9B	113.8 (5)	C28—B1—C44	103.48 (16)
F7B—C34—F9B	108.1 (3)	C36—B1—C44	111.86 (16)
F8D-C34-F9D	115.6 (13)	C28—B1—C52	113.14 (16)
F7D-C34-F9D	96.9 (12)	C36—B1—C52	104.19 (16)
F8CC34F9C	105.0 (5)	C44—B1—C52	112.77 (17)
F7C—C34—F9C	105.2 (8)	F17D-C58-F18D	100.2 (9)
F8A—C34—F9A	98.6 (5)	F17A—C58—F18A	106.0 (3)
F7A—C34—F9A	101.7 (4)	F17C—C58—F18C	103.6 (8)
F11—C35—F12	106.67 (19)	F17B—C58—F18B	107.2 (4)
F11—C35—F10	105.42 (18)	F17B—C58—F16B	109.1 (3)
F12—C35—F10	106.10 (19)	F18B—C58—F16B	105.7 (4)
F11—C35—C32	112.32 (19)	F17D-C58-F16D	106.2 (9)
F12—C35—C32	112.96 (19)	F18D-C58-F16D	111.7 (9)
F10-C35-C32	112.80 (18)	F17C—C58—F16C	109.5 (8)
C41—C36—C37	116.00 (19)	F18C—C58—F16C	98.7 (8)
C41—C36—B1	123.41 (18)	F17A—C58—F16A	106.8 (3)
C37—C36—B1	120.42 (18)	F18AC58F16A	104.3 (3)
C38—C37—C36	122.2 (2)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
0.99	2.43	3.256 (3)	141
0.98	2.53	3.269 (12)	132
0.95	2.48	3.297 (18)	144
0.95	2.35	3.180 (14)	146
	<i>D</i> —H 0.99 0.98 0.95 0.95	D—H H···A 0.99 2.43 0.98 2.53 0.95 2.48 0.95 2.35	D—HH···AD···A0.992.433.256 (3)0.982.533.269 (12)0.952.483.297 (18)0.952.353.180 (14)

Symmetry codes: (i) -x+1/2, y-1/2, -z+1/2; (ii) x-1/2, -y+1/2, z+1/2; (iii) -x+1, -y+1, -z+1.