research communications

Received 6 September 2016 Accepted 20 September 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; sulfonylurea herbicide; azimsulfuron; dimorphism.

CCDC reference: 1505302

Supporting information: this article has supporting information at journals.iucr.org/e

A second triclinic polymorph of azimsulfuron

Eunjin Kwon, Jineun Kim,* Hyunjin Park and Tae Ho Kim*

Department of Chemistry (BK21 plus) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea. *Correspondence e-mail: thkim@gnu.ac.kr, jekim@gnu.ac.kr

The title compound, $C_{13}H_{16}N_{10}O_5S$ (systematic name: 1-(4,6-dimethoxypyrimidin-2-yl)-3-{[1-methyl-4-(2-methyl-2*H*-tetrazol-5-yl)pyrazol-5-yl]sulfonyl}urea), is a second triclinic polymorph of this crystal [for the other, see: Jeon *et al.*, (2015). *Acta Cryst.* E**71**, 0470–0471]. There are two molecules, *A* and *B*, in the asymmetric unit; the dihedral angles between the pyrazole ring and the tetrazole and dimethoxypyrimidine ring planes are 72.84 (10) and 37.24 (14)°, respectively (molecule *A*) and 84.38 (9) and 26.09 (15)°, respectively (molecule *B*). Each molecule features an intramolecular N–H···N hydrogen bond. In the crystal, aromatic π - π stacking interactions [centroid–centroid separations = 3.9871 (16), 3.4487 (14) and 3.5455 (16) Å] link the molecules into [001] chains. In addition, N–H···N, N–H···O, C–H···O and C–H···N hydrogen bonds occur, forming a three-dimensional architecture. We propose that the dimorphism results from differences in conformations and packing owing to different intermolecular interactions, especially aromatic π - π stacking.

1. Chemical context

Sulfonylurea herbicides are well known as being highly beneficial for controlling undesirable vegetation in agronomically desirable crops including corn and cereals such as wheat and barley. Azimsulfuron is a recently introduced highly selective sulfonylurea herbicide (Valle *et al.*, 2006) and has been found to be particularly useful as a post-emergent herbicide for weed control in rice paddies and suppression of barnyard grass in rice (Venkatesh *et al.*, 2016). The crystal structure of azimsulfuron (dimorph I) has already been reported in our previous study (Jeon *et al.*, 2015). We now report the crystal structure of a second triclinic polymorph, grown under different conditions, as observed for other systems (Schmidt & Jansen, 2012; Ebenezer & Muthiah, 2010).

Figure 1

The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

2. Structural commentary

The asymmetric unit of the new dimorph II (Fig. 1), consists of two independent molecules, A and B, which are curved and form a 'boxing glove' shape around the pyrazole ring. The dihedral angles between the pyrazole ring and the tetrazole and dimethoxypyrimidine ring planes are 72.84 (10) and 37.24 (14)°, respectively, in molecule A and 84.38 (9) and 26.09 (15)°, respectively, in molecule B. All bond lengths and bond angles are normal and comparable to those observed in similar crystal structures (Chopra *et al.*, 2004; Kwon *et al.*, 2015). Each molecule features an intramolecular N-H···N hydrogen bond (Table 1), which closes an S(6) ring.

Table	1		
Hydrog	gen-bond geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N3-H3N\cdots N11^{i}$	0.88	2.65	3.494 (3)	162
$N4-H4N\cdots N2$	0.88	1.89	2.611 (3)	138
N13 $-H13N \cdots O3^{i}$	0.88	2.04	2.844 (2)	151
N14−H14 <i>N</i> ···N12	0.88	1.95	2.636 (3)	134
$C1-H1C\cdots O8^{ii}$	0.98	2.58	3.559 (3)	178
C11−H11B···O3	0.98	2.38	3.236 (3)	146
$C11 - H11B \cdots O8^{i}$	0.98	2.57	3.278 (3)	129
$C11 - H11C \cdot \cdot \cdot N10^{iii}$	0.98	2.58	3.290 (4)	130
$C13-H13A\cdots O9^{iv}$	0.98	2.40	3.374 (4)	175
$C14-H14A\cdots O5^{v}$	0.98	2.39	3.335 (3)	162
$C22-H22\cdots N17^{vi}$	0.95	2.57	3.435 (3)	152
$C24 - H24B \cdots O8$	0.98	2.33	3.080 (3)	133
$C26-H26B\cdots N16^{vi}$	0.98	2.52	3.376 (3)	146

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x - 1, y, z; (iii) -x + 1, -y + 1, -z; (iv) -x + 2, -y, -z + 1; (v) x + 1, y, z; (vi) -x + 1, -y, -z + 2.

3. Supramolecular features

In the crystal, aromatic π - π stacking interactions, $Cg1\cdots Cg1^{iii}$ = 3.9817 (16), $Cg3\cdots Cg6^{vii}$ = 3.4487 (14) and $Cg4\cdots Cg4^{viii}$ = 3.5455 (16) Å occur [Cg1, Cg3, Cg4 and Cg6 are the centroids of the N5/N6/C8-C10, N1/N2/C2-C5, N15/N16/C21-C23 and N11/N12/C15-C18 rings, respectively; symmetry codes: (vii) x, y, z, (viii) -x + 2, -y, -z + 2]. Together, these link adjacent molecules, forming chains propagating along the c axis. (Fig. 2). In addition, there are N-H···N, N-H···O, C-H···O and C-H···N hydrogen bonds in dimorph II (Table 1), which generate a three-dimensional architecture.

Figure 2 The crystal packing, viewed along the *b* axis. H atoms have been omitted for clarity.

research communications

The previous dimorph has only one $\pi-\pi$ interaction between the tetrazole rings of neighboring molecules, while the present dimorph has three $\pi-\pi$ interactions between dimethoxypyrimidine rings in the asymmetric unit, and between the pyrazole rings of neighboring A or B molecules.

4. Synthesis and crystallization

In the previous report, crystals were obtained by using CH_3CN solvent, whereas colourless needles of the title polymorph were prepared by slow evaporation of a methanol solution.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were positioned geometrically and refined using a riding model with d(N-H)= 0.88 Å, $U_{iso} = 1.2U_{eq}(C)$ for N-H groups, d(C-H) =0.88 Å, $U_{iso} = 1.2U_{eq}(C)$ for Csp^2 -H and d(C-H) = 0.98 Å, $U_{iso} = 1.5U_{eq}(C)$ for methyl groups.

Acknowledgements

This research was supported by the Basic Science Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2014R1A1A4A01009105).

References

- Brandenburg, K. (2010). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chopra, D., Mohan, T. P., Rao, K. S. & Guru Row, T. N. (2004). Acta Cryst. E60, 02418–02420.
- Ebenezer, S. & Muthiah, P. T. (2010). Acta Cryst. E66, o2574.
- Jeon, Y., Kim, J., Kwon, E. & Kim, T. H. (2015). Acta Cryst. E71, 0470–0471.
- Kwon, E., Kim, J., Kang, G. & Kim, T. H. (2015). Acta Cryst. E71, o1033–o1034.

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	$C_{13}H_{16}N_{10}O_5S$
M _r	424.42
Crystal system, space group	Triclinic, P1
Temperature (K)	173
a, b, c (Å)	7.6451 (2), 15.1102 (4), 17.0314 (5)
$\alpha, \beta, \gamma(\circ)$	67.1562 (18), 80.5936 (17), 84.0996 (17)
$V(Å^3)$	1787.08 (9)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.24
Crystal size (mm)	$0.30\times0.04\times0.04$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker,
*	2014)
T_{\min}, T_{\max}	0.686, 0.746
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	25718, 6265, 4741
R _{int}	0.060
$(\sin \theta/\lambda)_{\rm max}$ (Å ⁻¹)	0.595
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.045, 0.114, 1.07
No. of reflections	6265
No. of parameters	531
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} \ {\rm \AA}^{-3})$	0.38, -0.39

Computer programs: *APEX2* and *SAINT* (Bruker, 2014), *SHELXS97* and *SHELXTL* (Sheldrick, 2008), *SHELXL2014* (Sheldrick, 2015), *DIAMOND* (Brandenburg, 2010) and *publCIF* (Westrip, 2010).

Schmidt, C. L. & Jansen, M. (2012). Z. Anorg. Allg. Chem. 638, 275– 278.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Valle, A., Boschin, G., Negri, M., Abbruscato, P., Sorlini, C., D'Agostina, A. & Zanardini, E. (2006). J. Appl. Microbiol. 101, 443–452.
- Venkatesh, P. M., Pardhasaradhi, V., Dhayanithi, V., Avinash, M., Palimkar, S., Subhash, K. R. & Mohan, H. R. (2016). *Chem. Sci. Trans.* 5, 41–55.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2016). E72, 1468-1470 [https://doi.org/10.1107/S2056989016014845]

A second triclinic polymorph of azimsulfuron

Eunjin Kwon, Jineun Kim, Hyunjin Park and Tae Ho Kim

Computing details

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

1-(4,6-Dimethoxypyrimidin-2-yl)-3-{[1-methyl-4-(2-methyl-2H-tetrazol-5-yl)pyrazol-5-yl]sulfonyl}urea

Crystal data

 $C_{13}H_{16}N_{10}O_5S$ $M_r = 424.42$ Triclinic, $P\overline{1}$ a = 7.6451 (2) Å b = 15.1102 (4) Å c = 17.0314(5) Å $\alpha = 67.1562 \ (18)^{\circ}$ $\beta = 80.5936 (17)^{\circ}$ $\gamma = 84.0996 (17)^{\circ}$ V = 1787.08 (9) Å³

Data collection

Bruker APEXII CCD	
diffractometer	
φ and ω scans	
Absorption correction: multi-scar	n
(SADABS; Bruker, 2014)	
$T_{\min} = 0.686, \ T_{\max} = 0.746$	
25718 measured reflections	

Refinement

Refinement on F^2 Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.114$ S = 1.07where $P = (F_o^2 + 2F_c^2)/3$ 6265 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.38 \ {\rm e} \ {\rm \AA}^{-3}$ 531 parameters $\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$ 0 restraints

Z = 4F(000) = 880 $D_{\rm x} = 1.577 {\rm ~Mg} {\rm ~m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 3336 reflections $\theta = 2.3 - 24.2^{\circ}$ $\mu = 0.24 \text{ mm}^{-1}$ T = 173 KNeedle, colourless $0.30 \times 0.04 \times 0.04$ mm

6265 independent reflections 4741 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.060$ $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.5^{\circ}$ $h = -8 \rightarrow 9$ $k = -17 \rightarrow 17$ $l = -20 \rightarrow 20$

Hydrogen site location: inferred from H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0457P)^2 + 0.2151P]$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.29659 (8)	0.39202 (4)	0.20930 (4)	0.02210 (17)	
S2	1.16721 (9)	0.10185 (4)	0.78289 (4)	0.02695 (18)	
01	0.6095 (2)	0.23247 (11)	0.66818 (10)	0.0267 (4)	
O2	0.5902 (2)	0.10067 (11)	0.46454 (10)	0.0295 (4)	
O3	0.2038 (2)	0.50940 (11)	0.31822 (10)	0.0260 (4)	
O4	0.3602 (2)	0.30534 (11)	0.19780 (11)	0.0288 (4)	
05	0.1186 (2)	0.42651 (12)	0.19829 (11)	0.0294 (4)	
O6	0.7598 (2)	0.48627 (11)	0.37801 (10)	0.0260 (4)	
O7	1.0204 (2)	0.17015 (12)	0.45730 (11)	0.0315 (4)	
08	1.0811 (2)	0.30423 (11)	0.75749 (11)	0.0285 (4)	
O9	1.1625 (2)	0.01909 (11)	0.76253 (12)	0.0346 (5)	
O10	1.3265 (2)	0.12288 (12)	0.80359 (12)	0.0360 (5)	
N1	0.4586 (3)	0.31656 (13)	0.55273 (12)	0.0217 (5)	
N2	0.4580 (3)	0.25049 (13)	0.44580 (12)	0.0214 (5)	
N3	0.3252 (3)	0.40128 (13)	0.43281 (12)	0.0210 (5)	
H3N	0.2896	0.4405	0.4598	0.025*	
N4	0.3313 (3)	0.37078 (13)	0.30805 (12)	0.0212 (5)	
H4N	0.3867	0.3161	0.3356	0.025*	
N5	0.3879 (3)	0.57663 (15)	0.10476 (13)	0.0327 (6)	
N6	0.5224 (4)	0.62778 (16)	0.05092 (15)	0.0458 (7)	
N7	0.7561 (3)	0.31962 (15)	0.20532 (14)	0.0311 (5)	
N8	0.8972 (3)	0.26823 (15)	0.18460 (16)	0.0357 (6)	
N9	0.9657 (4)	0.3035 (2)	0.10352 (18)	0.0519 (7)	
N10	0.8695 (3)	0.3815 (2)	0.06687 (16)	0.0466 (7)	
N11	0.8673 (3)	0.41362 (13)	0.50271 (12)	0.0219 (5)	
N12	1.0024 (3)	0.25495 (13)	0.54475 (12)	0.0215 (5)	
N13	0.9852 (3)	0.34673 (13)	0.62868 (12)	0.0218 (5)	
H13N	0.9551	0.4035	0.6311	0.026*	
N14	1.1044 (3)	0.19100 (13)	0.69852 (12)	0.0242 (5)	
H14N	1.0987	0.1805	0.6517	0.029*	
N15	1.0132 (3)	0.13158 (14)	0.92857 (13)	0.0293 (5)	
N16	0.8644 (3)	0.11937 (15)	0.98511 (14)	0.0350 (6)	
N17	0.6174 (3)	-0.04932 (14)	0.89155 (12)	0.0247 (5)	
N18	0.5689 (3)	-0.07811 (14)	0.83420 (13)	0.0241 (5)	
N19	0.6566 (3)	-0.03852 (15)	0.75612 (13)	0.0298 (5)	
N20	0.7690 (3)	0.01978 (15)	0.76081 (13)	0.0295 (5)	
C1	0.5501 (4)	0.30726 (18)	0.70047 (16)	0.0298 (6)	
H1A	0.5859	0.3696	0.6566	0.045*	
H1B	0.6036	0.2952	0.7524	0.045*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H1C	0.4206	0.3078	0.7143	0.045*
C2	0.5514 (3)	0.23781 (16)	0.59675 (15)	0.0218 (6)
C3	0.5963 (3)	0.16081 (16)	0.57120 (15)	0.0229 (6)
H3	0.6570	0.1042	0.6051	0.028*
C4	0.5473 (3)	0.17177 (16)	0.49379 (15)	0.0224 (6)
C5	0.4184 (3)	0.31774 (16)	0.47966 (15)	0.0200 (5)
C6	0.5328 (4)	0.11182 (18)	0.38456 (16)	0.0336(7)
H6A	0.4032	0.1201	0.3896	0.050*
H6B	0.5705	0.0545	0.3715	0.050*
H6C	0.5858	0.1684	0.3383	0.050*
C7	0.2806 (3)	0.43161 (16)	0.35078 (15)	0.0200 (5)
C8	0.4391 (4)	0.48225 (17)	0.14203 (15)	0.0241 (6)
С9	0.6598 (4)	0.5660 (2)	0.05491 (18)	0.0427 (8)
Н9	0.7736	0.5832	0.0230	0.051*
C10	0.6187 (4)	0.47261 (18)	0.11140 (15)	0.0281 (6)
C11	0.2159 (4)	0.62701 (19)	0.11317 (18)	0.0393 (8)
HIIA	0.2286	0.6964	0.0824	0.059*
H11B	0.1741	0.6133	0.1741	0.059*
HIIC	0.1298	0.6050	0.0887	0.059*
C12	0.7435(3)	0 38992 (18)	0.12941 (16)	0.0272 (6)
C13	0.7133(3) 0.9717(4)	0.1819(2)	0.12911(10) 0.2470(2)	0.0272(0) 0.0522(9)
H13A	0.9361	0.1250	0.2404	0.078*
H13R	0.9277	0.1791	0.3053	0.078*
H13C	1 1015	0.1837	0.2374	0.078*
C14	0.7391(4)	0.49082(18)	0.29395(15)	0.0278 (6)
H144	0.8562	0.49602 (18)	0.2617	0.0278 (0)
H14R	0.6774	0.5516	0.2631	0.042*
H14C	0.6697	0.4370	0.2001	0.042*
C15	0.007 0.8417(3)	0.40702 (16)	0.2290	0.042
C16	0.8417(3)	0.40702(10) 0.32688(17)	0.42890(15)	0.0217(0)
U16	0.8940 (3)	0.32000 (17)	0.40905 (10)	0.0239 (0)
C17	0.0701	0.3240 0.25142 (17)	0.3300	0.029
C17	0.9710(3)	0.23142(17) 0.33713(16)	0.47177(10) 0.55572(15)	0.0233(0)
C10	0.9302(3)	0.33713(10) 0.00138(17)	0.55572(15) 0.52504(18)	0.0211(0) 0.0234(7)
U19	1.0937 (4)	0.09138 (17)	0.52594 (18)	0.0334 (7)
HI9A HI0B	1.19/1	0.0376	0.5401	0.050*
	1.1298	0.0370	0.5768	0.050*
C20	1.0038	0.0700 0.28177(16)	0.3700	0.030°
C20	1.0001(3)	0.28177(10) 0.00825(16)	0.09881(10)	0.0221(6)
C21	0.9977(3)	0.09823(10) 0.07751(18)	0.00029(13)	0.0249(0)
022	0.7337 (4)	0.07731 (18)	0.93834 (10)	0.0313(7)
H22	0.03/1	0.0604	0.9805	0.038°
C23	0.8294 (4)	0.001/9(1/)	0.88397 (16)	0.0259(6)
C24	1.1380 (4)	0.17922 (19)	0.94119 (18)	0.036/(/)
п24А 1124D	1.1204	0.1980	0.9900	0.055*
П24В	1.1880	0.1240	0.8893	0.055*
П24U	1.2023	0.1349	0.9319	0.033*
025	0.7428 (3)	0.01230 (16)	0.84415 (15)	0.0246 (6)
C26	0.4366 (4)	-0.14953 (17)	0.85757(17)	0.0297 (6)

H26A	0.4199	-0.1609	0.8065	0.044*
H26B	0.3240	-0.1263	0.8811	0.044*
H26C	0.4767	-0.2097	0.9009	0.044*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
S 1	0.0221 (4)	0.0230 (3)	0.0234 (3)	0.0007 (3)	-0.0029 (3)	-0.0116 (3)
S2	0.0239 (4)	0.0192 (3)	0.0317 (4)	0.0031 (3)	-0.0010 (3)	-0.0051 (3)
01	0.0284 (11)	0.0289 (9)	0.0222 (9)	0.0028 (8)	-0.0049 (8)	-0.0096 (8)
O2	0.0415 (12)	0.0205 (9)	0.0287 (10)	0.0040 (8)	-0.0094 (9)	-0.0113 (8)
O3	0.0347 (11)	0.0193 (9)	0.0233 (9)	0.0069 (8)	-0.0078 (8)	-0.0077 (7)
O4	0.0290 (11)	0.0271 (9)	0.0368 (10)	-0.0005 (8)	-0.0028 (8)	-0.0199 (8)
05	0.0214 (11)	0.0373 (10)	0.0323 (10)	0.0059 (8)	-0.0076 (8)	-0.0165 (8)
06	0.0316 (11)	0.0263 (9)	0.0235 (9)	0.0038 (8)	-0.0092 (8)	-0.0121 (7)
07	0.0377 (12)	0.0265 (9)	0.0370 (11)	0.0034 (8)	-0.0042 (9)	-0.0208 (8)
08	0.0362 (12)	0.0238 (9)	0.0264 (10)	0.0031 (8)	-0.0085 (8)	-0.0099 (8)
09	0.0368 (12)	0.0196 (9)	0.0421 (11)	0.0040 (8)	0.0031 (9)	-0.0105 (8)
O10	0.0221 (11)	0.0329 (10)	0.0472 (12)	0.0008 (8)	-0.0071 (9)	-0.0086 (9)
N1	0.0205 (12)	0.0218 (10)	0.0205 (11)	-0.0026 (9)	-0.0011 (9)	-0.0058 (9)
N2	0.0213 (12)	0.0178 (10)	0.0232 (11)	0.0003 (8)	-0.0016 (9)	-0.0066 (9)
N3	0.0238 (12)	0.0198 (10)	0.0197 (11)	0.0026 (8)	-0.0019 (9)	-0.0093 (8)
N4	0.0246 (13)	0.0171 (10)	0.0196 (10)	0.0053 (8)	-0.0032 (9)	-0.0057 (8)
N5	0.0399 (15)	0.0255 (11)	0.0251 (12)	0.0036 (10)	-0.0017 (11)	-0.0037 (10)
N6	0.0538 (19)	0.0303 (13)	0.0362 (14)	-0.0034 (12)	0.0064 (13)	0.0013 (11)
N7	0.0271 (14)	0.0277 (12)	0.0424 (14)	-0.0009 (10)	-0.0050 (11)	-0.0173 (11)
N8	0.0252 (14)	0.0316 (12)	0.0614 (17)	0.0047 (10)	-0.0119 (12)	-0.0288 (12)
N9	0.0380 (17)	0.0719 (19)	0.0605 (19)	0.0015 (14)	-0.0009 (14)	-0.0443 (16)
N10	0.0320 (16)	0.0691 (18)	0.0476 (16)	0.0033 (13)	0.0005 (12)	-0.0354 (14)
N11	0.0210 (12)	0.0222 (10)	0.0233 (11)	-0.0020 (9)	-0.0005 (9)	-0.0102 (9)
N12	0.0188 (12)	0.0194 (10)	0.0277 (12)	-0.0023 (8)	0.0000 (9)	-0.0112 (9)
N13	0.0262 (13)	0.0164 (10)	0.0257 (11)	0.0031 (8)	-0.0074 (9)	-0.0105 (9)
N14	0.0302 (13)	0.0196 (10)	0.0196 (11)	0.0033 (9)	0.0006 (9)	-0.0066 (9)
N15	0.0332 (15)	0.0229 (11)	0.0283 (12)	-0.0032 (9)	-0.0063 (10)	-0.0046 (9)
N16	0.0431 (16)	0.0301 (12)	0.0271 (12)	-0.0043 (11)	0.0035 (11)	-0.0083 (10)
N17	0.0276 (13)	0.0261 (11)	0.0213 (11)	0.0023 (9)	-0.0047 (9)	-0.0103 (9)
N18	0.0244 (13)	0.0236 (11)	0.0244 (12)	0.0058 (9)	-0.0062 (10)	-0.0097 (9)
N19	0.0337 (15)	0.0309 (12)	0.0215 (12)	0.0039 (10)	-0.0019 (10)	-0.0085 (10)
N20	0.0323 (14)	0.0287 (12)	0.0223 (12)	0.0013 (10)	-0.0022 (10)	-0.0055 (9)
C1	0.0329 (17)	0.0333 (14)	0.0283 (14)	-0.0024 (12)	-0.0032 (12)	-0.0171 (12)
C2	0.0183 (14)	0.0257 (13)	0.0189 (13)	-0.0025 (10)	0.0006 (10)	-0.0064 (10)
C3	0.0201 (15)	0.0198 (12)	0.0239 (13)	0.0000 (10)	-0.0025 (11)	-0.0033 (10)
C4	0.0208 (15)	0.0191 (12)	0.0242 (13)	-0.0038 (10)	0.0013 (11)	-0.0057 (10)
C5	0.0153 (14)	0.0200 (12)	0.0221 (13)	-0.0055 (10)	0.0001 (10)	-0.0049 (10)
C6	0.048 (2)	0.0288 (14)	0.0254 (14)	0.0016 (13)	-0.0055 (13)	-0.0130 (12)
C7	0.0187 (14)	0.0172 (12)	0.0224 (13)	-0.0037 (10)	0.0002 (10)	-0.0061 (10)
C8	0.0308 (16)	0.0236 (13)	0.0180 (13)	-0.0003 (11)	-0.0026 (11)	-0.0086 (10)
C9	0.045 (2)	0.0371 (16)	0.0341 (17)	-0.0085 (14)	0.0087 (14)	-0.0040 (13)

C10	0.0319 (17)	0.0302 (14)	0.0207 (13)	-0.0044 (12)	0.0026 (12)	-0.0098 (11)
C11	0.047 (2)	0.0314 (15)	0.0322 (16)	0.0151 (13)	-0.0080 (14)	-0.0075 (13)
C12	0.0226 (16)	0.0330 (14)	0.0294 (15)	-0.0038 (11)	0.0002 (12)	-0.0164 (12)
C13	0.042 (2)	0.0348 (16)	0.085 (3)	0.0064 (14)	-0.0173 (18)	-0.0268 (17)
C14	0.0323 (17)	0.0321 (14)	0.0224 (14)	0.0030 (12)	-0.0082 (12)	-0.0133 (11)
C15	0.0157 (14)	0.0254 (13)	0.0256 (14)	-0.0040 (10)	0.0009 (11)	-0.0119 (11)
C16	0.0229 (15)	0.0280 (13)	0.0238 (13)	-0.0051 (11)	0.0001 (11)	-0.0133 (11)
C17	0.0185 (15)	0.0240 (13)	0.0304 (14)	-0.0047 (10)	0.0028 (11)	-0.0151 (11)
C18	0.0177 (14)	0.0198 (12)	0.0241 (13)	-0.0023 (10)	0.0003 (11)	-0.0074 (10)
C19	0.0363 (18)	0.0193 (13)	0.0460 (17)	0.0026 (11)	-0.0045 (14)	-0.0150 (12)
C20	0.0192 (15)	0.0191 (12)	0.0249 (14)	-0.0002 (10)	0.0002 (11)	-0.0063 (11)
C21	0.0276 (16)	0.0201 (12)	0.0225 (13)	0.0031 (11)	-0.0040 (11)	-0.0040 (10)
C22	0.0332 (18)	0.0277 (14)	0.0291 (15)	-0.0044 (12)	0.0031 (13)	-0.0085 (12)
C23	0.0269 (16)	0.0213 (12)	0.0249 (14)	0.0015 (11)	-0.0010 (11)	-0.0053 (11)
C24	0.0420 (19)	0.0344 (15)	0.0341 (16)	-0.0048 (13)	-0.0132 (14)	-0.0096 (13)
C25	0.0243 (16)	0.0198 (12)	0.0245 (14)	0.0037 (11)	-0.0008 (11)	-0.0050 (11)
C26	0.0312 (17)	0.0281 (14)	0.0329 (15)	-0.0003 (12)	-0.0039 (12)	-0.0154 (12)

Geometric parameters (Å, °)

1.4212 (18)	N15—C21	1.364 (3)
1.4238 (16)	N15—C24	1.467 (4)
1.647 (2)	N16—C22	1.336 (4)
1.745 (3)	N17—N18	1.327 (3)
1.420 (2)	N17—C25	1.336 (3)
1.4267 (18)	N18—N19	1.323 (3)
1.6431 (19)	N18—C26	1.451 (3)
1.747 (3)	N19—N20	1.324 (3)
1.333 (3)	N20—C25	1.362 (3)
1.443 (3)	C1—H1A	0.9800
1.342 (3)	C1—H1B	0.9800
1.441 (3)	C1—H1C	0.9800
1.222 (3)	C2—C3	1.387 (3)
1.340 (3)	C3—C4	1.373 (3)
1.440 (3)	С3—Н3	0.9500
1.349 (3)	С6—Н6А	0.9800
1.447 (3)	С6—Н6В	0.9800
1.211 (3)	С6—Н6С	0.9800
1.323 (3)	C8—C10	1.400 (4)
1.338 (3)	C9—C10	1.398 (4)
1.338 (3)	С9—Н9	0.9500
1.345 (3)	C10-C12	1.455 (3)
1.380 (3)	C11—H11A	0.9800
1.399 (3)	C11—H11B	0.9800
0.8800	C11—H11C	0.9800
1.370 (3)	C13—H13A	0.9800
0.8800	C13—H13B	0.9800
1.341 (3)	C13—H13C	0.9800
	$\begin{array}{c} 1.4212 (18) \\ 1.4238 (16) \\ 1.647 (2) \\ 1.745 (3) \\ 1.420 (2) \\ 1.4267 (18) \\ 1.6431 (19) \\ 1.747 (3) \\ 1.333 (3) \\ 1.443 (3) \\ 1.342 (3) \\ 1.342 (3) \\ 1.342 (3) \\ 1.342 (3) \\ 1.340 (3) \\ 1.340 (3) \\ 1.340 (3) \\ 1.340 (3) \\ 1.349 (3) \\ 1.349 (3) \\ 1.349 (3) \\ 1.341 (3) \\ 1.399 (3) \\ 0.8800 \\ 1.370 (3) \\ 0.8800 \\ 1.341 (3) \end{array}$	1.4212 (18)N15—C21 $1.4238 (16)$ N15—C24 $1.647 (2)$ N16—C22 $1.745 (3)$ N17—N18 $1.420 (2)$ N17—C25 $1.4267 (18)$ N18—N19 $1.6431 (19)$ N18—C26 $1.747 (3)$ N19—N20 $1.333 (3)$ N20—C25 $1.443 (3)$ C1—H1A $1.342 (3)$ C1—H1B $1.441 (3)$ C1—H1C $1.222 (3)$ C2—C3 $1.340 (3)$ C3—C4 $1.440 (3)$ C3—H3 $1.349 (3)$ C6—H6A $1.447 (3)$ C6—H6B $1.211 (3)$ C6—H6C $1.323 (3)$ C9—C10 $1.338 (3)$ C9—H9 $1.345 (3)$ C10—C12 $1.380 (3)$ C11—H11A $1.399 (3)$ C11—H11B 0.8800 C11—H13A 0.8800 C13—H13B $1.341 (3)$ C13—H13C

N5—C8	1.361 (3)	C14—H14A	0.9800
N5—C11	1.465 (3)	C14—H14B	0.9800
N6—C9	1.324 (4)	C14—H14C	0.9800
N7—C12	1.328 (3)	C15—C16	1.384 (3)
N7—N8	1.344 (3)	C16—C17	1.382 (3)
N8—N9	1.310(3)	C16—H16	0.9500
N8—C13	1.458 (4)	C19—H19A	0.9800
N9—N10	1.312 (3)	C19—H19B	0.9800
N10—C12	1.350 (3)	C19—H19C	0.9800
N11—C18	1.333 (3)	C21—C23	1.393 (4)
N11—C15	1.345 (3)	C22—C23	1.400 (3)
N12—C17	1.326 (3)	C22—H22	0.9500
N12—C18	1.338 (3)	C23—C25	1,449 (4)
N13—C18	1.376 (3)	C24—H24A	0.9800
N13—C20	1.384 (3)	C24—H24B	0.9800
N13—H13N	0.8800	C24—H24C	0.9800
N14—C20	1 380 (3)	C26—H26A	0.9800
N14—H14N	0.8800	C26—H26B	0.9800
N15—N16	1343(3)	C26—H26C	0.9800
	1.545 (5)	620 11200	0.9000
05-81-04	120.08 (11)	O3 - C7 - N3	121 2 (2)
05—S1—N4	110.06 (10)	N4—C7—N3	116.2 (2)
04—S1—N4	103.25 (10)	N5-C8-C10	107.4(2)
05-81-08	108.81 (11)	N5-C8-S1	1243(2)
04 - 81 - 68	107 74 (11)	C10-C8-S1	12 1.3 (2) 128 17 (18)
N4—S1—C8	105.99 (11)	N6-C9-C10	120.17(10) 1124(3)
010 - 52 - 09	119 77 (11)	N6-C9-H9	123.8
010-52-07	119.77(11) 110.51(11)	C10 - C9 - H9	123.8
$00 \ S2 \ N14$	103.83(11)	C_{10} C_{10} C_{8}	123.0 103.2(2)
010 S2 C21	105.05(11) 108.05(13)	$C_{10} = C_{10} = C_{10}$	103.2(2) 124.8(3)
$00 \ 82 \ C21$	100.03(13) 100.42(12)	$C_{10} = C_{10} = C_{12}$	124.0(3) 132.0(2)
N14 S2 C21	109.42(12) 104.16(11)	N5 C11 H11A	100.5
$C_{2} = 01 = C_{1}$	104.10(11) 117.82(10)	N_{3} C_{11} H_{11} $H_$	109.5
$C_{2} = 01 = C_{1}$	117.02(19) 117.04(10)	$H_{11A} = C_{11} = H_{11B}$	109.5
$C_{4} = 0_{2} = C_{0}$	117.94 (19)	$\frac{111}{111} = \frac{111}{111} = \frac{1111}{111} = \frac{11111}{111} = \frac{11111}{111} = \frac{11111}{111} = \frac{11111}{111} = \frac{11111}{1111} = \frac{111111}{1111} = \frac{11111}{1111} = \frac{11111}{1111} = \frac{11111}{1111} = \frac{11111}{1111} = \frac{11111}{1111} = \frac{11111}{1111} = \frac{111111}{1111} = \frac{111111}{1111} = \frac{111111}{1111} = \frac{111111}{1111} = \frac{111111}{1111} = \frac{1111111}{1111} = \frac{1111111}{1111} = \frac{111111111}{11111} = \frac{11111111111}{11111} = \frac{111111111111}{1111111} = 11111111111111111111111111111111111$	109.5
C13 - 00 - C14	117.12(10) 116.6(2)		109.5
$C_{1} = 0 = 0$	110.0(2)	HIIA-CII-HIIC	109.5
C_{3} N1 $-C_{2}$	114.0(2)	HIB—CII—HIIC	109.5
C_{3} N2 C5	114.0(2) 120.0(2)	N/-C12-N10	112.7(2)
C_{1} N3 C_{2}	129.9 (2)	N/-C12-C10	120.0(2)
C/-N3-H3N	115.0	N10 - C12 - C10	120.5 (2)
C_{2} N_{3} H_{3} N_{3}	115.0	N8—C13—H13A	109.5
C/—N4—SI	125.14 (16)	N8—C13—H13B	109.5
C/-N4-H4N	117.4	HI3A—CI3—HI3B	109.5
S1—N4—H4N	117.4	N8—C13—H13C	109.5
No-N5-C8	111.0 (2)	H13A—C13—H13C	109.5
No-NS-CII	118.1 (2)	H13B—C13—H13C	109.5
C8—N5—C11	130.9 (2)	06—C14—H14A	109.5
C9—N6—N5	105.9 (2)	O6—C14—H14B	109.5

C12—N7—N8	100.5 (2)	H14A—C14—H14B	109.5
N9—N8—N7	114.3 (2)	O6—C14—H14C	109.5
N9—N8—C13	122.4 (2)	H14A—C14—H14C	109.5
N7—N8—C13	123.2 (2)	H14B—C14—H14C	109.5
N8—N9—N10	106.2 (2)	O6—C15—N11	112.2 (2)
N9—N10—C12	106.2 (2)	O6—C15—C16	124.5 (2)
C18—N11—C15	115.0 (2)	N11—C15—C16	123.3 (2)
C17—N12—C18	115.4 (2)	C17—C16—C15	115.3 (2)
C18—N13—C20	130.6 (2)	C17—C16—H16	122.3
C18—N13—H13N	114.7	C15—C16—H16	122.3
C20—N13—H13N	114.7	N12—C17—O7	118.0 (2)
C20—N14—S2	122.10 (18)	N12—C17—C16	123.7 (2)
C20—N14—H14N	119.0	O7—C17—C16	118.3 (2)
S2—N14—H14N	119.0	N11—C18—N12	127.2 (2)
N16—N15—C21	111.3 (2)	N11—C18—N13	114.6 (2)
N16—N15—C24	117.3 (2)	N12-C18-N13	118.2 (2)
C21—N15—C24	131.4 (2)	O7—C19—H19A	109.5
C22—N16—N15	105.5 (2)	O7—C19—H19B	109.5
N18—N17—C25	102.1 (2)	H19A—C19—H19B	109.5
N19—N18—N17	113.8 (2)	O7—C19—H19C	109.5
N19—N18—C26	124.1 (2)	H19A—C19—H19C	109.5
N17—N18—C26	122.0 (2)	H19B—C19—H19C	109.5
N18—N19—N20	106.5 (2)	O8—C20—N14	122.8 (2)
N19—N20—C25	105.9 (2)	O8—C20—N13	120.8 (2)
O1—C1—H1A	109.5	N14—C20—N13	116.4 (2)
O1—C1—H1B	109.5	N15-C21-C23	107.4 (2)
H1A—C1—H1B	109.5	N15—C21—S2	123.5 (2)
O1—C1—H1C	109.5	C23—C21—S2	129.0 (2)
H1A—C1—H1C	109.5	N16—C22—C23	112.2 (3)
H1B—C1—H1C	109.5	N16—C22—H22	123.9
O1—C2—N1	119.3 (2)	C23—C22—H22	123.9
O1—C2—C3	117.0 (2)	C21—C23—C22	103.6 (2)
N1—C2—C3	123.7 (2)	C21—C23—C25	132.5 (2)
C4—C3—C2	115.6 (2)	C22—C23—C25	123.8 (2)
С4—С3—Н3	122.2	N15—C24—H24A	109.5
С2—С3—Н3	122.2	N15—C24—H24B	109.5
O2—C4—N2	118.3 (2)	H24A—C24—H24B	109.5
O2—C4—C3	118.6 (2)	N15—C24—H24C	109.5
N2-C4-C3	123.1 (2)	H24A—C24—H24C	109.5
N1—C5—N2	128.1 (2)	H24B—C24—H24C	109.5
N1—C5—N3	114.3 (2)	N17—C25—N20	111.8 (2)
N2—C5—N3	117.5 (2)	N17—C25—C23	119.4 (2)
O2—C6—H6A	109.5	N20-C25-C23	128.8 (2)
O2—C6—H6B	109.5	N18—C26—H26A	109.5
H6A—C6—H6B	109.5	N18—C26—H26B	109.5
O2—C6—H6C	109.5	H26A—C26—H26B	109.5
Н6А—С6—Н6С	109.5	N18—C26—H26C	109.5
H6B—C6—H6C	109.5	H26A—C26—H26C	109.5

O3—C7—N4	122.6 (2)	H26B—C26—H26C	109.5
O5—S1—N4—C7	-46.2 (2)	N5-C8-C10-C12	179.0 (3)
O4—S1—N4—C7	-175.6 (2)	S1-C8-C10-C12	-5.2 (5)
C8—S1—N4—C7	71.3 (2)	N8—N7—C12—N10	-0.2 (3)
C8—N5—N6—C9	-0.8 (3)	N8—N7—C12—C10	-176.4 (3)
C11—N5—N6—C9	-179.6 (3)	N9—N10—C12—N7	0.2 (3)
C12—N7—N8—N9	0.2 (3)	N9-N10-C12-C10	176.7 (3)
C12—N7—N8—C13	178.5 (3)	C9—C10—C12—N7	140.6 (3)
N7—N8—N9—N10	-0.1(3)	C8—C10—C12—N7	-39.5 (5)
C13—N8—N9—N10	-178.4 (3)	C9-C10-C12-N10	-35.4 (4)
N8—N9—N10—C12	-0.1 (3)	C8—C10—C12—N10	144.6 (3)
O10—S2—N14—C20	-62.4 (2)	C14—O6—C15—N11	174.7 (2)
O9—S2—N14—C20	167.96 (19)	C14—O6—C15—C16	-5.5 (3)
C21—S2—N14—C20	53.4 (2)	C18—N11—C15—O6	-179.3(2)
C21—N15—N16—C22	0.2 (3)	C18—N11—C15—C16	0.9 (3)
C24—N15—N16—C22	178.3 (2)	O6—C15—C16—C17	-177.9(2)
C25—N17—N18—N19	0.3 (2)	N11—C15—C16—C17	1.9 (4)
C25—N17—N18—C26	177.8 (2)	C18—N12—C17—O7	-179.8(2)
N17—N18—N19—N20	-0.2(3)	C18—N12—C17—C16	1.6 (3)
C26—N18—N19—N20	-177.7(2)	C19—O7—C17—N12	3.8 (3)
N18—N19—N20—C25	0.0 (2)	C19—O7—C17—C16	-177.5(2)
C1	7.6 (3)	C15—C16—C17—N12	-3.2(4)
C1—O1—C2—C3	-174.1(2)	C15—C16—C17—O7	178.2 (2)
C5—N1—C2—O1	175.3 (2)	C15—N11—C18—N12	-2.9(4)
C5—N1—C2—C3	-2.9(3)	C15—N11—C18—N13	176.3 (2)
O1—C2—C3—C4	-174.8(2)	C17—N12—C18—N11	1.7 (4)
N1—C2—C3—C4	3.4 (4)	C17—N12—C18—N13	-177.5(2)
C6—O2—C4—N2	-1.9(3)	C20—N13—C18—N11	176.5 (2)
C6—O2—C4—C3	178.0 (2)	C20—N13—C18—N12	-4.2 (4)
C5—N2—C4—O2	179.3 (2)	S2—N14—C20—O8	7.5 (3)
C5—N2—C4—C3	-0.6 (3)	S2—N14—C20—N13	-171.02 (17)
C2—C3—C4—O2	178.6 (2)	C18—N13—C20—O8	179.7 (2)
C2—C3—C4—N2	-1.5 (4)	C18—N13—C20—N14	-1.8(4)
C2—N1—C5—N2	0.5 (4)	N16—N15—C21—C23	-0.4(3)
C2—N1—C5—N3	-178.47 (19)	C24—N15—C21—C23	-178.2(2)
C4—N2—C5—N1	1.2 (4)	N16—N15—C21—S2	-179.42 (17)
C4—N2—C5—N3	-179.9 (2)	C24—N15—C21—S2	2.8 (4)
C7—N3—C5—N1	171.6 (2)	O10—S2—C21—N15	13.3 (2)
C7—N3—C5—N2	-7.5 (4)	O9—S2—C21—N15	145.26 (19)
S1—N4—C7—O3	-0.4(4)	N14—S2—C21—N15	-104.2(2)
S1—N4—C7—N3	-178.80 (17)	O10—S2—C21—C23	-165.5(2)
C5—N3—C7—O3	-177.1 (2)	O9—S2—C21—C23	-33.5 (3)
C5—N3—C7—N4	1.4 (4)	N14—S2—C21—C23	77.0 (2)
N6—N5—C8—C10	1.2 (3)	N15—N16—C22—C23	0.1 (3)
C11—N5—C8—C10	179.8 (3)	N15—C21—C23—C22	0.4 (3)
N6—N5—C8—S1	-174.8 (2)	S2—C21—C23—C22	179.38 (19)
C11—N5—C8—S1	3.8 (4)	N15—C21—C23—C25	-175.6 (2)

O5—S1—C8—N5	16.9 (3)	\$2-C21-C23-C25	3.4 (4)	
O4—S1—C8—N5	148.5 (2)	N16-C22-C23-C21	-0.3 (3)	
N4—S1—C8—N5	-101.5 (2)	N16-C22-C23-C25	176.1 (2)	
O5—S1—C8—C10	-158.3 (2)	N18—N17—C25—N20	-0.2 (3)	
O4—S1—C8—C10	-26.6 (3)	N18—N17—C25—C23	179.0 (2)	
N4—S1—C8—C10	83.4 (3)	N19—N20—C25—N17	0.1 (3)	
N5—N6—C9—C10	0.1 (3)	N19—N20—C25—C23	-179.0 (2)	
N6—C9—C10—C8	0.5 (3)	C21—C23—C25—N17	151.6 (3)	
N6-C9-C10-C12	-179.5 (3)	C22—C23—C25—N17	-23.7 (4)	
N5-C8-C10-C9	-1.0 (3)	C21—C23—C25—N20	-29.3 (4)	
S1—C8—C10—C9	174.8 (2)	C22—C23—C25—N20	155.4 (2)	

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H…A
N3—H3 <i>N</i> ···N11 ⁱ	0.88	2.65	3.494 (3)	162
N4—H4 <i>N</i> ····N2	0.88	1.89	2.611 (3)	138
N13—H13 <i>N</i> ····O3 ⁱ	0.88	2.04	2.844 (2)	151
N14—H14 <i>N</i> ···N12	0.88	1.95	2.636 (3)	134
С1—Н1С…О8іі	0.98	2.58	3.559 (3)	178
C11—H11 <i>B</i> ···O3	0.98	2.38	3.236 (3)	146
C11—H11 <i>B</i> ···O8 ⁱ	0.98	2.57	3.278 (3)	129
C11—H11C···N10 ⁱⁱⁱ	0.98	2.58	3.290 (4)	130
C13—H13 <i>A</i> ····O9 ^{iv}	0.98	2.40	3.374 (4)	175
C14—H14 <i>A</i> ···O5 ^v	0.98	2.39	3.335 (3)	162
C22—H22…N17 ^{vi}	0.95	2.57	3.435 (3)	152
C24—H24 <i>B</i> ···O8	0.98	2.33	3.080 (3)	133
C26—H26 <i>B</i> ···N16 ^{vi}	0.98	2.52	3.376 (3)	146

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) -x+1, -y+1, -z; (iv) -x+2, -y, -z+1; (v) x+1, y, z; (vi) -x+1, -y, -z+2.