

Received 14 August 2016 Accepted 8 September 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; 4-aminopyridinium; bis(phosphonate); hydrogen bonding.

CCDC reference: 1503436

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN 👌 ACCESS

Hydrogen bonding, π - π stacking and van der Waals forces-dominated layered regions in the crystal structure of 4-aminopyridinium hydrogen (9-phosphonononyl)phosphonate

Martin van Megen, Guido J. Reiss* and Walter Frank

Institut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany. *Correspondence e-mail: reissg@hhu.de

The asymmetric unit of the title molecular salt, $[C_5H_7N_2^+][(HO)_2OP(CH_2)_9PO_2^-(OH)^-]$, consists of one 4-aminopyridinium cation and one hydrogen (9-phosphonononyl)phosphonate anion, both in general positions. As expected, the 4-aminopyridinium moieties are protonated exclusively at their endocyclic nitrogen atom due to a mesomeric stabilization by the imine form which would not be given in the corresponding double-protonated dicationic species. In the crystal, the phosphonyl ($-PO_3H_2$) and hydrogen phosphonate ($-PO_3H$) groups of the anions form two-dimensional $O-H\cdots O$ hydrogen-bonded networks in the *ab* plane built from 24-membered hydrogen-bonded ring motifs with the graph-set descriptor $R_6^6(24)$. These networks are pairwise linked by the anions' alkylene chains. The 4-aminopyridinium cations are stacked in parallel displaced face-to-face arrangements and connect neighboring anionic substructures *via* medium–strong charge-supported $N-H\cdots O$ hydrogen bonds along the *c* axis. The resulting three-dimensional hydrogen-bonded network shows clearly separated hydrophilic and hydrophobic structural domains.

1. Chemical context

Salts of organophosphonic acids with organic cations, e.g. with protonated primary (Mahmoudkhani & Langer, 2002b), secondary (Wheatley et al., 2001) and tertiary amines (Kan & Ma, 2011) are of growing interest in supramolecular chemistry and crystal engineering. Besides their interesting topologies and structural diversity, they seem to be feasible model compounds for metal phosphonates as they exhibit similar structural characteristics but are less difficult to crystallize. Mostly, these organic solids establish extended hydrogenbonded networks which are characterized by a rich diversity of strong charge-supported hydrogen bonds (Aakeröy & Seddon, 1993) and can either be one-, two- or three-dimensional. This contribution forms part of our research on the principles of the arrangement of alkane- α,ω -diphosphonic acids (van Megen et al., 2015) and their organic aminium salts (van Megen et al., 2016). Moreover, aminopyridines and the related protonated cations are of crucial interest in the field of biochemistry (Muñoz-Caro & Niño, 2002; Bolliger et al., 2011) and are also used as counter-cations to stabilize complex salts (Reiss & Leske, 2014a,b), in crystal engineering (Sertucha et al., 1998; Surbella III et al., 2016) as well as in polymer chemistry (Deng et al., 2015).

Scheme 1

2. Structural commentary

The asymmetric unit of the title compound, $[C_5H_7N_2^+][(HO)_2OP(CH_2)_9PO_2(OH)^-],$ consists of one 4-aminopyridinium cation and one hydrogen (9-phosphonononyl)phosphonate anion, both in general positions (Fig. 1). Generally, the first protonation of the 4-aminopyridine can take place at the exo- as well as at the endocyclic nitrogen atom. In the literature, all monoprotonated 4-aminopyridines characterized to date are protonated at the endocyclic nitrogen atom. Geometric parameters derived from the singlecrystal diffraction experiment for the title compound show a short exocyclic N–C bond length [1.324 (2) Å] and slightly longer C-C and C-N bond lengths of the six-membered ring [1.350 (3)-1.425 (2) Å]. The bonding properties of this cation are best described by a pair of mesomeric structures: the enamine and the imine form (Scheme 2), which have been discussed in detail before (Koleva et al., 2008).

4-aminopyridin-1-ium Scheme 2 pyridin-4(1H)-iminium

.....

Table 1Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
0.78 (3)	1.85 (3)	2.6171 (18)	166 (3)
0.88 (3)	1.64 (3)	2.5059 (18)	168 (3)
0.91(3)	1.59 (3)	2.4977 (17)	178 (3)
0.96(2)	1.74 (3)	2.696 (2)	173 (2)
0.90 (3)	1.92 (3)	2.806 (2)	170(2)
0.88 (3)	2.14 (3)	2.965 (2)	156 (3)
	<i>D</i> -H 0.78 (3) 0.88 (3) 0.91 (3) 0.96 (2) 0.90 (3) 0.88 (3)	$\begin{array}{c cccc} D-H & H\cdots A \\ \hline 0.78 (3) & 1.85 (3) \\ 0.88 (3) & 1.64 (3) \\ 0.91 (3) & 1.59 (3) \\ 0.96 (2) & 1.74 (3) \\ 0.90 (3) & 1.92 (3) \\ 0.88 (3) & 2.14 (3) \\ \hline \end{array}$	$\begin{array}{c ccccc} D-H & H\cdots A & D\cdots A \\ \hline 0.78 (3) & 1.85 (3) & 2.6171 (18) \\ 0.88 (3) & 1.64 (3) & 2.5059 (18) \\ 0.91 (3) & 1.59 (3) & 2.4977 (17) \\ 0.96 (2) & 1.74 (3) & 2.696 (2) \\ 0.90 (3) & 1.92 (3) & 2.806 (2) \\ 0.88 (3) & 2.14 (3) & 2.965 (2) \\ \hline \end{array}$

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x, -y + 1, -z + 1; (iii) -x + 1, -y + 1, -z + 1; (iv) x, y - 1, z + 1; (v) x + 1, y - 1, z + 1.

For the designation of the title compound, the systematic name of the amino form is used throughout this article. The bond lengths and angles of the anion are unexceptional and lie within the expected ranges. The alkylene chain of the anion shows nearly antiperiplanar conformations. In detail, the P– OH distances of the phosphonate moieties have values between 1.5535 (13) and 1.5786 (14) Å, longer than the P=O distances [1.5045 (13)–1.5149 (12) Å].

3. Supramolecular features

Within the crystal of the title compound, the phosphonyl and hydrogen phosphonate groups of the anions form twodimensional O-H···O hydrogen-bonded networks which propagate in the ab plane. These networks contain 24membered rings classified as a third level graph set $R_6^6(24)$ (Etter et al., 1990; Fig. 2; Table 1). 24-Membered hydrogenbonded rings have been well known for decades (e.g. Mootz & Poll, 1984). In particular, the $R_6^6(24)$ motif is very common (e.g. Gomathi & Muthiah, 2011; Maspoch et al., 2007). Along the caxis direction, these networks are pairwise linked by the anions' alkylene chains to form a three-dimensional anionic substructure. The 4-aminopyridinium cations show $\pi - \pi$ stacking interactions. The rings are oriented in parallel displaced face-to-face arrangements (Grimme, 2008; Fig. 3). The geometry of these $\pi - \pi$ interactions is reflected by distances of 3.25 and 3.32 Å between neighbouring pyridinium

Figure 1

The asymmetric unit of the title compound plus symmetry-related hydrogen-bonded atoms [displacement ellipsoids are drawn at the 50% probability level; hydrogen atoms are drawn as spheres with arbitrary radii; symmetry codes: (i) 1 + x, -1 + y, 1 + z; (ii) x, -1 + y, 1 + z; (iii) 1 - x, 2 - y, 1 - z; (iv) 1 - x, 1 - y, 1 - z; (v) -x, 1 - y, 1 - z; (vi) -1 + x, 1 + y, -1 + z, (vii) x, 1 + y, -1 + z].

Figure 2

Two-dimensional hydrogen-bonded networks composed of phosphonyl and hydrogen phosphonate groups. The graph set $R_6^6(24)$ is indicated by blue bonds.

rings and centroid offsets of 2.37 and 2.42 Å. These findings are comparable to those found for other compounds containing pyridyl moieties (Janiak, 2000). Anions and cations are connected by medium-strong, charge-supported N— $H \cdots O$ hydrogen bonds (Steiner, 2002; Table 2) along the *c* axis. For these connections, each nitrogen-bound hydrogen atom forms one unbifurcated hydrogen bond (Fig. 1). The resulting three-dimensional hydrogen-bonded network clearly shows separated hydrophilic and hydrophobic regions (Fig. 3).

4. Related structures

For related phosphonate and bis(phosphonate) salts, see: Ferguson *et al.* (1998); Fu *et al.* (2004); Fuller & Heimer (1995); Glidewell *et al.* (2000); Kan & Ma (2011); Mahmoudkhani & Langer (2002a,b,c); van Megen *et al.* (2016); Plabst *et al.* (2009); Wheatley *et al.* (2001). For related 4-aminopyridinium salts, see: Sertucha *et al.* (1998); Reiss & Leske (2014a,b); Surbella III *et al.* (2016).

5. Synthesis and crystallization

Equimolar quantities (0.5 mmol) of 4-aminopyridine (47.1 mg) and nonane-1,9-diphosphonic acid (144.1 mg) were dissolved in methanol, separately. The solutions were mixed and stored in an open petri dish. Within several days, colorless platelet-shaped crystals of the title compound were obtained by slow evaporation of the solvent. 4-Aminopyridine was purchased from commercial sources and nonane-1,9-diphosphonic acid was synthesized according to the literature (Schwarzenbach & Zurc, 1950; Moedritzer & Irani, 1961; Griffith *et al.*, 1998). Elemental analysis: $C_{14}H_{28}N_2O_6P_2$ (382.3): calculated C 44.0, H 7.4, N 7.3; found C 43.6, H 7.9, N 7.1. M. p.: 157 °C. The IR and Raman spectra of the title compound are shown in Fig. 4.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms bound to either nitrogen or oxygen atoms were identified in difference syntheses and refined without any geometric constraints or restraints with individual $U_{iso}(H)$ values. Carbon-bound hydrogen atoms were included using a riding model (AFIX23 option of the *SHELX* program for the methylene groups and AFIX43 option for the methine groups).

Figure 3

View along [010] of the title structure, showing the hydrogen bonding (red), π - π stacking (blue), and van der Waals forces (grey) dominated layered regions within the three-dimensional network.

Figure 4

The IR (blue) and Raman (red) spectra of the title compound.

Acknowledgements

We thank E. Hammes and P. Roloff for technical support.

References

- Aakeröy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397-407.
- Bolliger, J. L., Oberholzer, M. & Frech, C. M. (2011). Adv. Synth. Catal. 353, 945–954.
- Brandenburg, K. (2015). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Deng, Y., Helms, B. A. & Rolandi, M. (2015). J. Polym. Sci. Part A Polym. Chem. 53, 211–214.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.
- Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998). Acta Cryst. B54, 129–138.
- Fu, R.-B., Wu, X.-T., Hu, S.-M., Du, W.-X. & Zhang, J.-J. (2004). Chin. J. Struct. Chem. 23, 855–861.
- Fuller, J. & Heimer, N. E. (1995). J. Chem. Crystallogr. 25, 129-136.
- Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. C56, 855–858.
- Gomathi, S. & Muthiah, P. T. (2011). Acta Cryst. E67, o2762.
- Griffith, J. A., McCauley, D. J., Barrans, R. E. & Herlinger, A. W. (1998). Synth. Commun. 28, 4317–4323.
- Grimme, S. (2008). Angew. Chem. Int. Ed. 47, 3430–3434.
- Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
- Kan, W.-Q. & Ma, J.-F. (2011). Z. Kristallogr. New Cryst. Struct. 226, 73–74.
- Koleva, B. B., Kolev, T., Seidel, R. W., Tsanev, T., Mayer-Frigge, H., Spiteller, M. & Sheldrick, W. S. (2008). Spectrochim. Acta part A, 71, 695–702.
- Mahmoudkhani, A. H. & Langer, V. (2002a). Cryst. Growth Des. 2, 21–25.
- Mahmoudkhani, A. H. & Langer, V. (2002b). J. Mol. Struct. 609, 97– 108.
- Mahmoudkhani, A. H. & Langer, V. (2002c). Phosphorus, Sulfur Silicon Relat. Elem. 177, 2941–2951.

Table 2	
Experimental details.	
Crystal data	
Chemical formula	$C_5H_7N_2^+ \cdot C_9H_{21}O_6P_2^-$
$M_{\rm r}$	382.32
Crystal system, space group	Triclinic, P1
Temperature (K)	123
a, b, c (Å)	6.7275 (4), 6.8963 (4), 20.0643 (10)
α, β, γ (°)	97.956 (4), 98.767 (4), 94.309 (5)
$V(\dot{A}^3)$	906.73 (9)
Ζ	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.27
Crystal size (mm)	$0.33 \times 0.07 \times 0.03$
Data collection	
Diffractometer	Stoe IPDS
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	8855, 4131, 3674
R _{int}	0.029
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.650
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.079, 1.02
No. of reflections	4131
No. of parameters	241
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.50, -0.36

Computer programs: X-AREA (Stoe & Cie, 2002), SHELXT (Sheldrick, 2015a), SHELXL-2014/7 (Sheldrick, 2015b) and DIAMOND (Brandenburg, 2015).

- Maspoch, D., Domingo, N., Roques, N., Wurst, K., Tejada, J., Rovira, C., Ruiz-Molina, D. & Veciana, J. (2007). *Chem. Eur. J.* 13, 8153– 8163.
- Megen, M. van, Frank, W. & Reiss, G. J. (2015). Z. Kristallogr. 230, 485–494.
- Megen, M. van, Frank, W. & Reiss, G. J. (2016). CrystEngComm, 18, 3574–3584.
- Moedritzer, K. & Irani, R. (1961). J. Inorg. Nucl. Chem. 22, 297-304.
- Mootz, D. & Poll, W. (1984). Z. Naturforsch. Teil B, 39, 290-297.
- Muñoz-Caro, C. & Niño, A. (2002). Biophys. Chem. 96, 1-14.
- Plabst, M., Stock, N. & Bein, T. (2009). Cryst. Growth Des. 9, 5049– 5060.
- Reiss, G. J. & Leske, P. B. (2014a). Z. Kristallogr. New Cryst. Struct. 229, 239–240.
- Reiss, G. J. & Leske, P. B. (2014b). Z. Kristallogr. New Cryst. Struct. 229, 452–454.
- Schwarzenbach, G. & Zurc, J. (1950). Monatsh. Chem. 81, 202-212.
- Sertucha, J., Luque, A., Lloret, F. & Román, P. (1998). Polyhedron, 17, 3875–3880.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.
- Stoe & Cie (2002). X-AREA. Stoe & Cie, Darmstadt, Germany.
- Surbella, R. G. III, Andrews, M. B. & Cahill, C. L. (2016). J. Solid State Chem. 236, 257–271.
- Wheatley, P. S., Lough, A. J., Ferguson, G., Burchell, C. J. & Glidewell, C. (2001). Acta Cryst. B57, 95–102.

supporting information

Acta Cryst. (2016). E72, 1456-1459 [https://doi.org/10.1107/S2056989016014298]

Hydrogen bonding, π - π stacking and van der Waals forces-dominated layered regions in the crystal structure of 4-aminopyridinium hydrogen (9-phosphono-nonyl)phosphonate

Martin van Megen, Guido J. Reiss and Walter Frank

Computing details

Data collection: *X-AREA* (Stoe & Cie, 2002); cell refinement: *X-AREA* (Stoe & Cie, 2002); data reduction: *X-AREA* (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL-2014/7* (Sheldrick, 2015b); molecular graphics: *DIAMOND* (Brandenburg, 2015).

4-Aminopyridinium hydrogen (9-phosphonononyl)phosphonate

Crystal data

 $C_{5}H_{7}N_{2}^{+}C_{9}H_{21}O_{6}P_{2}^{-1}$ $M_{r} = 382.32$ Triclinic, *P*1 a = 6.7275 (4) Å b = 6.8963 (4) Å c = 20.0643 (10) Å $\alpha = 97.956 (4)^{\circ}$ $\beta = 98.767 (4)^{\circ}$ $\gamma = 94.309 (5)^{\circ}$ $V = 906.73 (9) Å^{3}$

Data collection

Stoe IPDS diffractometer Radiation source: sealed tube ω scans 8855 measured reflections 4131 independent reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.079$ S = 1.024131 reflections 241 parameters 0 restraints Z = 2 F(000) = 408 $D_x = 1.400 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6853 reflections $\theta = 3.0-35.3^{\circ}$ $\mu = 0.27 \text{ mm}^{-1}$ T = 123 KPlatelet, colourless $0.33 \times 0.07 \times 0.03 \text{ mm}$

3674 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 3.0^{\circ}$ $h = -8 \rightarrow 8$ $k = -8 \rightarrow 8$ $l = -26 \rightarrow 26$

Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.011P)^2 + 1.110P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.50$ e Å⁻³ $\Delta\rho_{min} = -0.36$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
P1	0.29655 (6)	1.15924 (6)	0.22320 (2)	0.01579 (10)
01	0.14667 (19)	1.0094 (2)	0.17549 (6)	0.0230 (3)
N1	0.5995 (3)	0.2836 (2)	0.92948 (8)	0.0257 (3)
H1	0.553 (4)	0.306 (4)	0.8838 (13)	0.036 (6)*
C1	0.2470 (3)	1.1616 (3)	0.30883 (8)	0.0179 (3)
H1A	0.3161	1.2802	0.3371	0.021*
H1B	0.1032	1.1663	0.3086	0.021*
P2	0.24757 (6)	0.29013 (6)	0.77082 (2)	0.01589 (10)
O2	0.51802 (18)	1.13618 (18)	0.22159 (6)	0.0199 (3)
N2	0.7740 (3)	0.1858 (3)	1.12583 (8)	0.0252 (3)
H21	0.901 (4)	0.169 (4)	1.1403 (14)	0.049 (8)*
H22	0.681 (4)	0.172 (4)	1.1527 (12)	0.035 (6)*
C2	0.3143 (3)	0.9827 (3)	0.34082 (8)	0.0191 (3)
H2A	0.2686	0.8640	0.3084	0.023*
H2B	0.4608	0.9929	0.3504	0.023*
O3	0.2486 (2)	1.3660 (2)	0.20293 (7)	0.0239 (3)
C3	0.2306 (3)	0.9668 (3)	0.40681 (8)	0.0191 (3)
H3A	0.2699	1.0891	0.4379	0.023*
H3B	0.0842	0.9503	0.3964	0.023*
H3	0.343 (5)	1.442 (5)	0.2068 (17)	0.070 (11)*
O4	0.24107 (19)	0.08343 (18)	0.72796 (6)	0.0188 (2)
C4	0.3028 (3)	0.7975 (3)	0.44244 (8)	0.0195 (3)
H4A	0.4490	0.8157	0.4542	0.023*
H4B	0.2664	0.6752	0.4112	0.023*
H4	0.330 (5)	0.006 (5)	0.7471 (16)	0.066 (9)*
O5	0.1083 (2)	0.27587 (19)	0.82576 (6)	0.0216 (3)
C5	0.2125 (3)	0.7822 (3)	0.50710 (9)	0.0195 (3)
H5A	0.2483	0.9055	0.5379	0.023*
H5B	0.0664	0.7648	0.4950	0.023*
Н5	0.017 (5)	0.174 (5)	0.8191 (16)	0.064 (9)*
O6	0.45679 (19)	0.37295 (19)	0.80557 (6)	0.0220 (3)
C6	0.2806 (3)	0.6151 (3)	0.54491 (8)	0.0188 (3)
H6A	0.4264	0.6325	0.5579	0.023*
H6B	0.2450	0.4910	0.5146	0.023*
C7	0.1838 (3)	0.6074 (3)	0.60867 (8)	0.0179 (3)
H7A	0.0383	0.5858	0.5951	0.022*
H7B	0.2146	0.7341	0.6377	0.022*
C8	0.2526 (3)	0.4476 (3)	0.65035 (8)	0.0180 (3)
H8A	0.3972	0.4716	0.6661	0.022*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

H8B	0.2261	0.3205	0.6214	0.022*	
C9	0.1432 (3)	0.4431 (3)	0.71211 (8)	0.0175 (3)	
H9A	0.0022	0.3966	0.6959	0.021*	
H9B	0.1488	0.5762	0.7360	0.021*	
C10	0.7973 (3)	0.2769 (3)	0.95325 (10)	0.0283 (4)	
H10	0.8919	0.2928	0.9247	0.034*	
C11	0.8604 (3)	0.2470 (3)	1.01867 (9)	0.0272 (4)	
H11	0.9972	0.2420	1.0341	0.033*	
C12	0.7189 (3)	0.2236 (3)	1.06310 (9)	0.0199 (3)	
C13	0.5127 (3)	0.2384 (3)	1.03659 (9)	0.0214 (4)	
H13	0.4144	0.2288	1.0642	0.026*	
C14	0.4601 (3)	0.2665 (3)	0.97075 (10)	0.0242 (4)	
H14	0.3249	0.2741	0.9537	0.029*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U ²³
P1	0.01293 (19)	0.0198 (2)	0.0158 (2)	0.00022 (16)	0.00233 (15)	0.00733 (16)
O1	0.0224 (6)	0.0286 (7)	0.0167 (6)	-0.0056 (5)	0.0023 (5)	0.0042 (5)
N1	0.0360 (9)	0.0236 (8)	0.0159 (7)	0.0009 (7)	-0.0008 (6)	0.0036 (6)
C1	0.0179 (8)	0.0202 (8)	0.0161 (8)	-0.0003 (6)	0.0038 (6)	0.0048 (6)
P2	0.0175 (2)	0.0167 (2)	0.01360 (19)	-0.00040 (16)	0.00111 (15)	0.00535 (15)
O2	0.0163 (6)	0.0239 (6)	0.0228 (6)	0.0042 (5)	0.0057 (5)	0.0111 (5)
N2	0.0187 (8)	0.0392 (10)	0.0194 (7)	0.0036 (7)	0.0035 (6)	0.0097 (7)
C2	0.0185 (8)	0.0237 (9)	0.0162 (8)	0.0015 (7)	0.0030 (6)	0.0072 (6)
O3	0.0158 (6)	0.0267 (7)	0.0328 (7)	0.0026 (5)	0.0047 (5)	0.0162 (6)
C3	0.0195 (8)	0.0229 (9)	0.0163 (8)	0.0003 (7)	0.0047 (6)	0.0066 (6)
O4	0.0190 (6)	0.0194 (6)	0.0178 (6)	0.0029 (5)	0.0014 (5)	0.0036 (5)
C4	0.0201 (8)	0.0239 (9)	0.0161 (8)	0.0009 (7)	0.0038 (6)	0.0079 (6)
O5	0.0280 (7)	0.0206 (6)	0.0170 (6)	-0.0021 (5)	0.0070 (5)	0.0041 (5)
C5	0.0209 (8)	0.0217 (8)	0.0169 (8)	0.0002 (7)	0.0039 (6)	0.0063 (6)
O6	0.0216 (6)	0.0228 (6)	0.0202 (6)	-0.0045 (5)	-0.0032 (5)	0.0091 (5)
C6	0.0193 (8)	0.0221 (8)	0.0161 (8)	0.0008 (7)	0.0041 (6)	0.0056 (6)
C7	0.0195 (8)	0.0199 (8)	0.0153 (7)	0.0014 (6)	0.0029 (6)	0.0060 (6)
C8	0.0191 (8)	0.0200 (8)	0.0157 (7)	0.0019 (6)	0.0027 (6)	0.0058 (6)
С9	0.0178 (8)	0.0198 (8)	0.0157 (7)	0.0020 (6)	0.0027 (6)	0.0054 (6)
C10	0.0305 (10)	0.0338 (11)	0.0206 (9)	0.0008 (8)	0.0077 (7)	0.0020 (8)
C11	0.0206 (9)	0.0390 (11)	0.0215 (9)	0.0018 (8)	0.0038 (7)	0.0032 (8)
C12	0.0212 (8)	0.0192 (8)	0.0184 (8)	0.0008 (7)	0.0025 (6)	0.0014 (6)
C13	0.0206 (8)	0.0207 (8)	0.0232 (9)	0.0010 (7)	0.0039 (7)	0.0047 (7)
C14	0.0249 (9)	0.0206 (9)	0.0254 (9)	0.0022 (7)	-0.0020 (7)	0.0046 (7)

Geometric parameters (Å, °)

P101	1.5088 (13)	C4—H4A	0.9700
P1	1.5149 (12)	C4—H4B	0.9700
P103	1.5786 (14)	O5—H5	0.88 (3)
P1—C1	1.7974 (17)	C5—C6	1.526 (2)

supporting information

N1C10	1 350 (3)	С5—Н5А	0 9700
N1-C14	1.350(3)	C5—H5B	0.9700
N1 H1	0.96(2)	C6 C7	1.527(2)
11-111	0.90(2)		1.327(2)
C1 - C2	1.334(2)		0.9700
CI-HIA	0.9700		0.9700
	0.9700		1.530 (2)
P2-06	1.5045 (13)	C/—H/A	0.9700
P2—O4	1.5535 (13)	С7—Н7В	0.9700
P2—O5	1.5601 (13)	C8—C9	1.537 (2)
Р2—С9	1.7880 (17)	C8—H8A	0.9700
N2—C12	1.324 (2)	C8—H8B	0.9700
N2—H21	0.88 (3)	С9—Н9А	0.9700
N2—H22	0.90 (3)	С9—Н9В	0.9700
C2—C3	1.530 (2)	C10—C11	1.365 (3)
C2—H2A	0.9700	C10—H10	0.9300
C2—H2B	0.9700	C11—C12	1.415 (3)
O3—H3	0.78 (3)	C11—H11	0.9300
C3—C4	1.523 (2)	C12—C13	1.425 (2)
С3—НЗА	0.9700	C13—C14	1.359 (3)
C3—H3B	0 9700	C13—H13	0.9300
04—H4	0.91 (3)	C14—H14	0.9300
C4-C5	1527(2)		0.9200
C+-C3	1.527 (2)		
01 - P1 - 02	116 41 (8)	C6-C5-C4	114 77 (15)
01 - P1 - 03	105.96 (8)	C6-C5-H5A	108.6
$0^2 - P_1 - 0^3$	108.76(7)	C4-C5-H5A	108.6
O1 P1 C1	100.70(7) 100.00(8)	C6 C5 H5B	108.6
$O_2 P_1 C_1$	109.09(0) 109.62(7)	C_4 C_5 H5B	108.6
02 - 1 - C1	109.02(7) 106.51(8)		108.0
C_{10} N1 C_{14}	100.31(6) 120.40(16)	ПЗА—СЭ—ПЗВ С5 С6 С7	107.0
C10 N1 U1	120.49(10)	C_{3}	112.00 (14)
CIO-NI-HI	121.8 (15)		109.2
CI4—NI—HI	117.6 (15)	С/—С6—Н6А	109.2
C2—C1—P1	113.66 (12)	С5—С6—Н6В	109.2
C2—C1—H1A	108.8	С7—С6—Н6В	109.2
P1—C1—H1A	108.8	H6A—C6—H6B	107.9
C2—C1—H1B	108.8	C6—C7—C8	114.51 (14)
P1—C1—H1B	108.8	С6—С7—Н7А	108.6
H1A—C1—H1B	107.7	С8—С7—Н7А	108.6
O6—P2—O4	113.40 (7)	С6—С7—Н7В	108.6
O6—P2—O5	109.15 (7)	С8—С7—Н7В	108.6
O4—P2—O5	108.70 (7)	H7A—C7—H7B	107.6
O6—P2—C9	111.12 (8)	C7—C8—C9	111.67 (14)
O4—P2—C9	105.43 (8)	С7—С8—Н8А	109.3
O5—P2—C9	108.89 (8)	С9—С8—Н8А	109.3
C12—N2—H21	119.9 (18)	С7—С8—Н8В	109.3
C12—N2—H22	119.6 (16)	C9—C8—H8B	109.3
H21—N2—H22	120 (2)	H8A—C8—H8B	107.9
C_{3} C_{2} C_{1}	112 06 (14)	C8-C9-P2	113 70 (12)
$0.5 \ 0.2 - 0.1$	112.00 (17)	-0 - 12	113.70 (12)

C3—C2—H2A	109.2	С8—С9—Н9А	108.8
C1—C2—H2A	109.2	Р2—С9—Н9А	108.8
C3—C2—H2B	109.2	С8—С9—Н9В	108.8
C1—C2—H2B	109.2	Р2—С9—Н9В	108.8
H2A—C2—H2B	107.9	H9A—C9—H9B	107.7
Р1—О3—Н3	115 (2)	N1—C10—C11	120.95 (18)
C4—C3—C2	113.89 (15)	N1-C10-H10	119.5
С4—С3—Н3А	108.8	C11—C10—H10	119.5
С2—С3—Н3А	108.8	C10—C11—C12	120.38 (18)
С4—С3—Н3В	108.8	C10—C11—H11	119.8
С2—С3—Н3В	108.8	C12—C11—H11	119.8
НЗА—СЗ—НЗВ	107.7	N2-C12-C11	121.92 (17)
Р2—О4—Н4	113 (2)	N2—C12—C13	121.32 (17)
C3—C4—C5	112.68 (15)	C11—C12—C13	116.75 (16)
C3—C4—H4A	109.1	C14—C13—C12	119.77 (17)
C5—C4—H4A	109.1	C14—C13—H13	120.1
C3—C4—H4B	109.1	C12—C13—H13	120.1
C5—C4—H4B	109.1	N1—C14—C13	121.60 (18)
H4A—C4—H4B	107.8	N1—C14—H14	119.2
Р2—О5—Н5	117 (2)	C13—C14—H14	119.2
O1—P1—C1—C2	74.30 (14)	O6—P2—C9—C8	66.99 (14)
O2—P1—C1—C2	-54.24 (14)	O4—P2—C9—C8	-56.25 (14)
O3—P1—C1—C2	-171.74 (12)	O5—P2—C9—C8	-172.75 (12)
P1-C1-C2-C3	-167.86 (12)	C14—N1—C10—C11	1.9 (3)
C1—C2—C3—C4	-176.88 (14)	N1-C10-C11-C12	-0.4 (3)
C2—C3—C4—C5	-178.52 (15)	C10-C11-C12-N2	176.98 (19)
C3—C4—C5—C6	-179.83 (15)	C10-C11-C12-C13	-1.7 (3)
C4—C5—C6—C7	-179.62 (14)	N2-C12-C13-C14	-176.38 (18)
C5—C6—C7—C8	-177.72 (15)	C11—C12—C13—C14	2.3 (3)
C6—C7—C8—C9	-177.78 (14)	C10-N1-C14-C13	-1.3 (3)
C7—C8—C9—P2	-169.70 (12)	C12-C13-C14-N1	-0.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D^{\dots}A$	D—H···A
03—H3…O6 ⁱ	0.78 (3)	1.85 (3)	2.6171 (18)	166 (3)
O5—H5…O1 ⁱⁱ	0.88 (3)	1.64 (3)	2.5059 (18)	168 (3)
O4—H4···O2 ⁱⁱⁱ	0.91 (3)	1.59 (3)	2.4977 (17)	178 (3)
N1—H1…O6	0.96 (2)	1.74 (3)	2.696 (2)	173 (2)
N2—H22···O2 ^{iv}	0.90 (3)	1.92 (3)	2.806 (2)	170 (2)
N2—H21…O1 ^v	0.88 (3)	2.14 (3)	2.965 (2)	156 (3)

Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+1, -z+1; (iv) x, y-1, z+1; (v) x+1, y-1, z+1.