

Received 23 June 2016 Accepted 6 July 2016

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; hydrogen bonding; isonicotinamide; cobalt.

CCDC reference: 1491089

Supporting information: this article has supporting information at journals.iucr.org/e

Acta Cryst. (2016). E72, 1077–1080

Crystal structure of tetrakis(isonicotinamide- κN)bis(thiocyanato- κN)cobalt(II)–isonicotinamide– ethanol (1/2/1)

Tristan Neumann,* Inke Jess and Christian Näther

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Strasse 2, D-24118 Kiel, Germany. *Correspondence e-mail: t.neumann@ac.uni-kiel.de

The asymmetric unit of the title compound, $[Co(NCS)_2(C_6H_6N_2O)_4] \cdot 2C_6H_6-N_2O \cdot C_2H_5OH$, comprises one Co^{II} cation, two thiocyanate anions, four coordinating and two solvent isonicotinamide molecules and one ethanol solvent molecule. The Co^{II} cations are octahedrally coordinated by four N-coordinating isonicotinamide ligands and two terminally N-bonded thiocyanate anions. These discrete complexes are linked by intermolecular $N-H \cdot \cdot \cdot O$ and $N-H \cdot \cdot \cdot S$ hydrogen-bonding interactions into a three-dimensional network. The two isonicotinamide and the ethanol solvent molecules are embedded in channels of this network and are linked through further $N-H \cdot \cdot \cdot O$ and $N-H \cdot \cdot \cdot N$ hydrogen bonds to the network. The ethanol solvent molecule is disordered over two sets of sites (occupancy ratio 0.6:0.4).

1. Chemical context

There is an increasing interest in compounds showing cooperative magnetic properties, such as ferromagnetism, antiferromagnetism and metamagnetism or a slow relaxation of the magnetization, indicative of single-molecule or singlechain magnetism (Gao et al., 2009; Ma et al., 2009; Palion-Gazda et al., 2015; Näther et al., 2013). In this context we have reported on a number of one-dimensional cobalt(II) thiocvanate coordination compounds with different N-donor coligands that show slow relaxations of the magnetization which in some compounds can be traced back to the behaviour of single-chain magnets (SCM) (Wöhlert et al., 2014; Werner et al., 2014, 2015a,b,c,). In the course of our systematic investigation of these materials, we became interested in the monodentate ligand isonicotinamide, which can coordinate with the N atom to the Co^{II} atoms, forming the desired onedimensional compounds. However, instead of the expected chain compound, a discrete complex with additional solvate molecules of composition $[Co(NCS)_2(C_6H_6N_2O)_4] \cdot 2C_6H_6$ -N2O·C2H5OH was obtained in the current study and characterized by single-crystal X-ray diffraction.

2. Structural commentary

The asymmetric unit of the title compound consists of one Co^{II} cation, two thiocyanate ligands, six isonicotinamide molecules (four coordinating, two non-coordinating) and one positionally disordered ethanol solvent molecule. The Co^{II} cation is coordinated by two terminal N-bonded thiocyanate anions and four N-coordinating isonicotinamide ligands, forming a slightly distorted octahedron (Fig. 1). Bond lengths [Co–N range: 2.074 (3)–2.185 (2) Å] and angles [N-Co-N range: 88.09 (9)–91.91 (10)° for *cis* and 177.27 (10)–178.32 (11)° for *trans* angles] are indicative for a slight distortion and are comparable with those in similar coordination compounds with Co^{II}, thiocyanate anions and N-bound co-ligands.

3. Supramolecular features

In the crystal structure of the title compound, neighboring complexes are linked into chains extending along the a axis by

Figure 1

View of the asymmetric unit of the title compound, with atom labelling and displacement ellipsoids drawn at the 50% probability level. The positional disorder of the ethanol molecule is shown by full and open bonds for the two orientations.

Table 1			
Hydrogen-bond	geometry	(Å,	°).

, , ,	• • • •			
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C11-H11\cdots S1^i$	0.95	3.03	3.676 (3)	127
$C14-H14\cdots O31^{ii}$	0.95	2.62	3.532 (4)	162
$C15-H15\cdots O81^{ii}$	0.95	2.60	3.454 (7)	149
N12-H12A···N51	0.88	2.09	2.936 (4)	160
$N12 - H12B \cdot \cdot \cdot O31^{ii}$	0.88	2.12	2.879 (4)	144
$C25-H25\cdots O41^{iii}$	0.95	2.47	3.100 (4)	124
$N22-H22A\cdots S2^{iv}$	0.88	2.60	3.439 (3)	160
$N22 - H22B \cdots O61^{v}$	0.88	2.26	3.005 (4)	142
$C32-H32\cdots O11^{vi}$	0.95	2.47	3.399 (4)	165
$N32-H32A\cdots N61^{vii}$	0.88	2.14	2.965 (4)	156
$N32-H32B\cdots O11^{vi}$	0.88	2.14	2.952 (4)	153
$C41 - H41 \cdots O21^{iv}$	0.95	2.32	3.113 (4)	140
$C42-H42\cdots O61^{iv}$	0.95	2.63	3.547 (4)	163
$N42-H42A\cdots S1^{iii}$	0.88	2.68	3.523 (3)	161
$N42-H42B\cdots O61^{iv}$	0.88	2.22	3.063 (4)	159
N52 $-$ H52 A \cdots O41 ^{viii}	0.88	2.09	2.921 (4)	157
$N52-H52B\cdots O61^{ii}$	0.88	2.06	2.882 (4)	155
$C62 - H62 \cdot \cdot \cdot S1^{ix}$	0.95	2.89	3.734 (3)	148
$N62 - H62A \cdots O21$	0.88	2.03	2.854 (4)	156
$N62 - H62B \cdots O51^{vi}$	0.88	1.94	2.775 (4)	159
$O71 - H71 \cdot \cdot \cdot O31^{ii}$	0.84	2.20	3.020 (13)	167
$O81 - H81 \cdots O11^{vi}$	0.84	2.37	2.855 (7)	118
$O81 - H81 \cdot \cdot \cdot N32$	0.84	2.58	3.062 (8)	118

Symmetry codes: (i) x - 1, y, z; (ii) -x + 2, -y + 1, -z + 1; (iii) -x + 1, -y + 1, -z; (iv) -x + 1, -y, -z; (v) -x + 2, -y, -z; (vi) -x + 1, -y + 1, -z + 1; (vii) -x + 2, -y, -z + 1; (viii) -x + 1, -y + 2, -z + 1; (ix) x, y - 1, z.

intermolecular $N-H\cdots O$ hydrogen-bonding interactions (Fig. 2, Table 1). These chains are further linked into a threedimensional network by interchain $N-H\cdots S$ hydrogen bonding between the thiocyanate anions and the amide H atoms of neighboring complexes (Fig. 3, Table 1). In this way, two types of channels are formed along the *a* axis. In the larger

Crystal structure of the title compound in a view along the a axis. Intermolecular hydrogen bonding is shown as dashed lines and the second orientation of the disordered ethanol molecule is omitted for clarity.

Figure 3

Crystal structure of the title compound in a view along the b axis. Intermolecular hydrogen bonding is shown as dashed lines and the second orientation of the disordered ethanol molecule is omitted for clarity.

channels, the isonicotinamide solvent molecules are embedded whereas the smaller channels are occupied by the disordered ethanol molecules (Figs. 2 and 3). The solvent molecules are linked by $O-H\cdots O$, $N-H\cdots O$ and $N-H\cdots N$ hydrogen-bonding interactions to the the isonicotinamide ligands that form the channels. Weak $C-H\cdots O$ and $C-H\cdots S$ interactions are also observed, consolidating the packing of the crystal structure.

4. Database survey

In the Cambridge Structure Database (Version 5.37, last update 2015; Groom et al., 2016) only five structures of coordination compounds with isonicotinamide and thiocyanate as ligands are reported: two clathrates of nickel coordination polymers, in which the metal atoms are connected into chains by μ -1,3-bridging thiocyanate ligands of which one contains 9,10-anthraquinone and the other pyrene as clathrate molecules (Sekiya et al., 2009). Furthermore, a one-dimensional cadmium 9,10-dichloroanthracene-clathrate with bridging μ -1,3-thiocyanate ligands between the metal atoms is reported (Sekiya & Nishikiori, 2005), as well as a three-dimensional network consisting of cadmium cations with μ -1,3-bridging thiocyanate ligands (Yang et al., 2001), and finally one Cu coordination polymer in which Cu-NCS sheets are observed (Đaković et al., 2010). In this context we have reported recently on a Zn complex in which the Zn cations are tetrahedrally coordinated by two terminal N-bonded thiocyanate anions and two isonicotinamide ligands (Neumann et al., 2016).

Experimental details.	
Crystal data	
Chemical formula	$[Co(NCS)_2(C_6H_6N_2O)_4]$
	$2C_6H_6N_2O\cdot C_2H_6O$
M _r	953.92
Crystal system, space group	Triclinic, P1
Temperature (K)	200
a, b, c (Å)	9.1877 (4), 13.6779 (5), 20.3185 (8)
α, β, γ (°)	104.027 (3), 97.256 (3), 109.576 (3)
$V(\text{\AA}^3)$	2273.12 (17)
Z	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.53
Crystal size (mm)	$0.42 \times 0.35 \times 0.25$
Data collection	
Diffractometer	Stoe IPDS2
Absorption correction	Numerical (X-SHAPE and X- RED32; Stoe, 2008)
T_{\min}, T_{\max}	0.637, 0.805
No. of measured, independent and	23938, 9885, 8035
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.044
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.639
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.054, 0.142, 1.10
No. of reflections	9885
No. of parameters	606
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} \ {\rm \AA}^{-3})$	0.75, -0.39

Computer programs: X-AREA (Stoe, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), XP in SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 1999) and publCIF (Westrip, 2010).

5. Synthesis and crystallization

Cobalt(II) thiocyanate and isonicotinamide were obtained from Alfa Aesar and were used without further purification. Single crystals suitable for structure analysis were obtained by the reaction of 26.3 mg $Co(NCS)_2$ (0.15 mmol) with 73.3 mg isonicotinamide (0.6 mmol) in ethanol (1.5 ml) after being allowed to stand for a few days at room temperature.

6. Refinement

Table 2

Crystal data, data collection and structure refinement details are summarized in Table 2. The C–H, O–H and N–H hydrogen atoms were located in a difference map but were positioned with idealized geometry (methyl and O–H hydrogen atoms were allowed to rotate but not to tip) and were refined with $U_{iso}(H) = 1.2U_{eq}(C,N)$ (1.5 for methyl and O–H hydrogen atoms) using a riding model with C–H = 0.95 Å for aromatic, C–H = 0.98 Å for methyl, N–H = 0.88 Å and O– H = 0.84 Å, respectively. The ethanol molecule was found to be disordered over two sets of sites and was refined with fixed occupation factors of 0.6 and 0.4, respectively.

Acknowledgements

This project was supported by the Deutsche Forschungsgemeinschaft (project No. NA 720/5-1) and the State of Schleswig-Holstein. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

References

- Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Đaković, M., Jagličić, Z., Kozlevčar, B. & Popović, Z. (2010). Polyhedron, 29, 1910–1917.
- Gao, E.-Q., Liu, P.-P., Wang, Y.-Q., Yue, Q. & Wang, Q.-L. (2009). *Chem. Eur. J.* **15**, 1217–1226.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Ma, Y., Zhang, J. Y., Cheng, A.-L., Sun, Q., Gao, E.-Q. & Liu, C.-M. (2009). *Inorg. Chem.* 48, 6142–6151.
- Näther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696–2714.
- Neumann, T., Jess, I. & Näther, C. (2016). Acta Cryst. E72, 922-925.
- Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380–2388.

- Sekiya, R. & Nishikiori, S. (2005). Chem. Lett. 34, 1076-1077.
- Sekiya, R., Nishikiori, S. & Kuroda, R. (2009). CrystEngComm, 11, 2251–2253.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.
- Werner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333–17342.
- Werner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015a). *Inorg. Chem.* 54, 2893–2901.
- Werner, J., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015b). Eur. J. Inorg. Chem. pp. 3236– 3245.
- Werner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015c). *Dalton Trans.* 44, 14149–14158.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wöhlert, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Fink, L., Schmidt, M. U. & Näther, C. (2014). *Inorg. Chem.* 53, 8298–8310.
- Yang, G., Zhu, H.-G., Liang, B.-H. & Chen, X.-M. (2001). J. Chem. Soc. Dalton Trans. pp. 580–585.

Acta Cryst. (2016). E72, 1077-1080 [https://doi.org/10.1107/S2056989016010951]

Crystal structure of tetrakis(isonicotinamide- κN)bis(thiocyanato- κN)cobalt(II)– isonicotinamide–ethanol (1/2/1)

Tristan Neumann, Inke Jess and Christian Näther

Computing details

Data collection: *X-AREA* (Stoe, 2008); cell refinement: *X-AREA* (Stoe, 2008); data reduction: *X-AREA* (Stoe, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008) and *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Tetrakis(isonicotinamide- κN)bis(thiocyanato- κN)cobalt(II)–isonicotinamide–ethanol (1/2/1)

Crystal data

 $[Co(NCS)_2(C_6H_6N_2O)_4] \cdot 2C_6H_6N_2O \cdot C_2H_6O$ $M_r = 953.92$ Triclinic, $P\overline{1}$ a = 9.1877 (4) Å b = 13.6779 (5) Å c = 20.3185 (8) Å a = 104.027 (3)° $\beta = 97.256$ (3)° $\gamma = 109.576$ (3)° V = 2273.12 (17) Å³

Data collection

Stoe IPDS-2 diffractometer ω scans Absorption correction: numerical (X-SHAPE and X-RED32; Stoe, 2008) $T_{\min} = 0.637, T_{\max} = 0.805$ 23938 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.142$ S = 1.109885 reflections 606 parameters 0 restraints Z = 2 F(000) = 990 $D_x = 1.394 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9885 reflections $\theta = 3.3-54.0^{\circ}$ $\mu = 0.53 \text{ mm}^{-1}$ T = 200 K Block, red $0.42 \times 0.35 \times 0.25 \text{ mm}$

9885 independent reflections 8035 reflections with $I > 2\sigma(I)$ $R_{int} = 0.044$ $\theta_{max} = 27.0^{\circ}, \ \theta_{min} = 1.7^{\circ}$ $h = -11 \rightarrow 10$ $k = -17 \rightarrow 17$ $l = -24 \rightarrow 25$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0507P)^2 + 3.0411P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.75$ e Å⁻³ $\Delta\rho_{min} = -0.39$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Col	0.61592 (5)	0.35492 (3)	0.21691 (2)	0.02592 (11)	
N1	0.8459 (3)	0.4542 (2)	0.22065 (14)	0.0336 (6)	
C1	0.9652 (4)	0.4826 (2)	0.20375 (15)	0.0304 (6)	
S1	1.13121 (10)	0.52353 (9)	0.17835 (5)	0.0467 (2)	
N2	0.3879 (3)	0.2543 (2)	0.21571 (14)	0.0361 (6)	
C2	0.2534 (4)	0.2022 (2)	0.20567 (15)	0.0307 (6)	
S2	0.06525 (11)	0.12699 (8)	0.18989 (5)	0.0497 (2)	
N11	0.5978 (3)	0.4880 (2)	0.29563 (13)	0.0297 (5)	
C11	0.4652 (4)	0.5085 (3)	0.29031 (16)	0.0357 (7)	
H11	0.3771	0.4615	0.2530	0.043*	
C12	0.4506 (4)	0.5955 (3)	0.33693 (17)	0.0363 (7)	
H12	0.3547	0.6080	0.3310	0.044*	
C13	0.5767 (4)	0.6641 (2)	0.39224 (16)	0.0302 (6)	
C14	0.7152 (4)	0.6439 (3)	0.39744 (16)	0.0335 (6)	
H14	0.8048	0.6895	0.4344	0.040*	
C15	0.7213 (4)	0.5563 (2)	0.34796 (16)	0.0316 (6)	
H15	0.8175	0.5442	0.3514	0.038*	
C16	0.5541 (4)	0.7534 (3)	0.44494 (16)	0.0335 (6)	
011	0.4191 (3)	0.7524 (2)	0.44465 (12)	0.0401 (5)	
N12	0.6808 (4)	0.8311 (3)	0.49009 (18)	0.0560 (9)	
H12A	0.6701	0.8842	0.5211	0.067*	
H12B	0.7755	0.8297	0.4891	0.067*	
N21	0.6386 (3)	0.2271 (2)	0.13538 (13)	0.0307 (5)	
C21	0.5924 (4)	0.1226 (2)	0.13461 (16)	0.0312 (6)	
H21	0.5311	0.1002	0.1665	0.037*	
C22	0.6302 (4)	0.0461 (2)	0.08948 (16)	0.0319 (6)	
H22	0.5951	-0.0271	0.0906	0.038*	
C23	0.7195 (3)	0.0771 (2)	0.04279 (15)	0.0282 (6)	
C24	0.7621 (4)	0.1837 (2)	0.04143 (16)	0.0344 (7)	
H24	0.8198	0.2074	0.0088	0.041*	
C25	0.7195 (4)	0.2552 (2)	0.08825 (16)	0.0346 (7)	
H25	0.7494	0.3280	0.0868	0.041*	
C26	0.7649 (4)	-0.0066 (2)	-0.00419 (15)	0.0309 (6)	
O21	0.7255 (3)	-0.09870 (17)	0.00063 (12)	0.0410 (5)	
N22	0.8473 (4)	0.0237 (2)	-0.04995 (15)	0.0406 (6)	
H22A	0.8752	-0.0233	-0.0781	0.049*	
H22B	0.8739	0.0907	-0.0522	0.049*	
N31	0.7061 (3)	0.2929 (2)	0.29549 (13)	0.0303 (5)	
C31	0.6391 (4)	0.2855(3)	0.34932 (16)	0.0313 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H31	0.5510	0.3067	0.3519	0.038*
C32	0.6913 (4)	0.2485 (3)	0.40192 (16)	0.0318 (6)
H32	0.6415	0.2460	0.4400	0.038*
C33	0.8176 (4)	0.2152 (2)	0.39785 (15)	0.0300 (6)
C34	0.8853 (4)	0.2197 (3)	0.34056 (17)	0.0365 (7)
H34	0.9702	0.1957	0.3353	0.044*
C35	0.8271 (4)	0.2594 (3)	0.29166 (16)	0.0348 (7)
H35	0.8752	0.2634	0.2531	0.042*
C36	0.8902 (4)	0.1787 (3)	0.45389 (16)	0.0335 (6)
O31	1.0142 (3)	0.1628 (2)	0.44981 (13)	0.0444 (6)
N32	0.8179 (4)	0.1652 (3)	0.50476 (16)	0.0490 (8)
H32A	0.8575	0.1440	0.5379	0.059*
H32B	0.7299	0.1774	0.5056	0.059*
N41	0.5176 (3)	0.4126 (2)	0.13757 (13)	0.0306 (5)
C41	0.3896 (4)	0.3416 (2)	0.08872 (16)	0.0353 (7)
H41	0.3594	0.2664	0.0844	0.042*
C42	0.2986 (4)	0.3719 (3)	0.04405 (16)	0.0346 (7)
H42	0.2092	0.3183	0.0097	0.041*
C43	0.3392 (3)	0.4808 (2)	0.05005 (15)	0.0279 (6)
C44	0.4744 (4)	0.5551 (2)	0.09968 (17)	0.0325 (6)
H44	0.5079	0.6307	0.1046	0.039*
C45	0.5596 (4)	0.5178 (2)	0.14181 (16)	0.0319 (6)
H45	0.6523	0.5694	0.1753	0.038*
C46	0.2421 (4)	0.5236 (3)	0.00764 (15)	0.0313 (6)
O41	0.2731 (3)	0.62182 (19)	0.02170 (13)	0.0428 (6)
N42	0.1222 (3)	0.4499 (2)	-0.04437 (15)	0.0390 (6)
H42A	0.0620	0.4713	-0.0701	0.047*
H42B	0.1037	0.3801	-0.0529	0.047*
N51	0.6258 (4)	0.9683 (2)	0.61213 (16)	0.0460 (7)
C51	0.5455 (5)	1.0340 (3)	0.61289 (19)	0.0459 (8)
H51	0.5017	1.0398	0.5698	0.055*
C52	0.5234 (4)	1.0931 (3)	0.67293 (18)	0.0406 (7)
H52	0.4627	1.1370	0.6710	0.049*
C53	0.5905 (4)	1.0883 (3)	0.73626 (17)	0.0344 (6)
C54	0.6730 (4)	1.0196 (3)	0.73642 (19)	0.0397 (7)
H54	0.7194	1.0129	0.7788	0.048*
C55	0.6854 (4)	0.9609 (3)	0.6724 (2)	0.0447 (8)
H55	0.7398	0.9128	0.6722	0.054*
C56	0.5693 (4)	1.1562 (3)	0.80151 (18)	0.0405 (7)
051	0.4479 (3)	1.1764 (3)	0.79954 (15)	0.0655 (9)
N52	0.6846 (3)	1.1943 (2)	0.85867 (15)	0.0406 (6)
H52A	0.6762	1.2358	0.8973	0.049*
H52B	0.7693	1.1779	0.8578	0.049*
N61	1.0108 (4)	-0.1655(3)	0.36132 (16)	0.0445 (7)
C61	1.0359 (4)	-0.2371(3)	0.3113 (2)	0.0429 (8)
H61	1.0812	-0.2845	0.3245	0.052*
C62	1 0002 (4)	-0.2467(3)	0 24140 (19)	0.032
H62	1 0214	-0 2988	0 2078	0.045*
1102	1.0211	0.2700	0.2070	0.012

C63	0.9329 (3)	-0.1788 (2)	0.22133 (17)	0.0317 (6)	
C64	0.9026 (4)	-0.1056 (3)	0.27224 (17)	0.0355 (7)	
H64	0.8538	-0.0592	0.2602	0.043*	
C65	0.9444 (4)	-0.1010 (3)	0.34117 (19)	0.0429 (8)	
H65	0.9250	-0.0494	0.3759	0.051*	
C66	0.9038 (4)	-0.1824 (2)	0.14579 (15)	0.0292 (6)	
O61	0.9960 (3)	-0.20254 (18)	0.10943 (12)	0.0367 (5)	
N62	0.7810(3)	-0.1622 (2)	0.12232 (14)	0.0365 (6)	
H62A	0.7600	-0.1624	0.0788	0.044*	
H62B	0.7194	-0.1484	0.1501	0.044*	
C71	0.678 (2)	0.5974 (12)	0.5795 (11)	0.106 (6)	0.4
H71A	0.5657	0.5518	0.5749	0.127*	0.4
H71B	0.7317	0.6140	0.6286	0.127*	0.4
C72	0.742 (3)	0.526 (3)	0.5390 (12)	0.095 (8)	0.4
H72A	0.7252	0.4627	0.5554	0.142*	0.4
H72B	0.6874	0.5028	0.4899	0.142*	0.4
H72C	0.8553	0.5657	0.5442	0.142*	0.4
O71	0.6780 (16)	0.6932 (13)	0.5727 (8)	0.122 (4)	0.4
H71	0.7702	0.7335	0.5731	0.182*	0.4
C81	0.9012 (14)	0.5036 (8)	0.5864 (8)	0.111 (4)	0.6
H81A	1.0100	0.5458	0.5836	0.133*	0.6
H81B	0.8927	0.5336	0.6346	0.133*	0.6
C82	0.802 (2)	0.531 (2)	0.5447 (13)	0.137 (10)	0.6
H82A	0.8318	0.6097	0.5598	0.205*	0.6
H82B	0.8111	0.5068	0.4963	0.205*	0.6
H82C	0.6926	0.4945	0.5478	0.205*	0.6
O81	0.8947 (8)	0.4053 (5)	0.5805 (5)	0.096 (2)	0.6
H81	0.8285	0.3619	0.5439	0.145*	0.6

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Col	0.0294 (2)	0.02770 (19)	0.02199 (19)	0.01389 (16)	0.00461 (15)	0.00611 (14)
N1	0.0332 (14)	0.0347 (13)	0.0328 (14)	0.0136 (11)	0.0090 (11)	0.0081 (11)
C1	0.0347 (16)	0.0326 (15)	0.0265 (14)	0.0175 (13)	0.0046 (12)	0.0083 (12)
S 1	0.0337 (4)	0.0697 (6)	0.0498 (5)	0.0260 (4)	0.0163 (4)	0.0288 (5)
N2	0.0343 (14)	0.0376 (14)	0.0356 (14)	0.0141 (12)	0.0046 (11)	0.0108 (11)
C2	0.0342 (16)	0.0330 (15)	0.0262 (14)	0.0159 (13)	0.0082 (12)	0.0062 (12)
S2	0.0331 (4)	0.0516 (5)	0.0533 (5)	0.0102 (4)	0.0159 (4)	0.0018 (4)
N11	0.0324 (13)	0.0331 (13)	0.0239 (12)	0.0164 (11)	0.0043 (10)	0.0046 (10)
C11	0.0336 (16)	0.0433 (17)	0.0279 (15)	0.0198 (14)	0.0010 (12)	0.0025 (13)
C12	0.0338 (16)	0.0438 (17)	0.0324 (16)	0.0222 (14)	0.0035 (13)	0.0052 (13)
C13	0.0317 (15)	0.0335 (15)	0.0280 (14)	0.0158 (12)	0.0096 (12)	0.0076 (12)
C14	0.0315 (15)	0.0343 (15)	0.0309 (15)	0.0143 (13)	0.0042 (12)	0.0018 (12)
C15	0.0279 (14)	0.0366 (15)	0.0291 (15)	0.0160 (12)	0.0039 (12)	0.0040 (12)
C16	0.0351 (16)	0.0368 (16)	0.0313 (15)	0.0191 (13)	0.0081 (13)	0.0071 (13)
O11	0.0372 (12)	0.0475 (13)	0.0394 (13)	0.0247 (11)	0.0120 (10)	0.0059 (10)
N12	0.0380 (16)	0.0531 (18)	0.059 (2)	0.0232 (15)	0.0022 (14)	-0.0179 (15)

N21	0.0387 (14)	0.0302 (12)	0.0260 (12)	0.0180 (11)	0.0053 (10)	0.0077 (10)
C21	0.0348 (15)	0.0316 (15)	0.0303 (15)	0.0142 (12)	0.0100 (12)	0.0114 (12)
C22	0.0349 (15)	0.0271 (14)	0.0331 (15)	0.0111 (12)	0.0062 (13)	0.0098 (12)
C23	0.0326 (15)	0.0275 (13)	0.0221 (13)	0.0129 (12)	-0.0001 (11)	0.0043 (11)
C24	0.0494 (18)	0.0315 (15)	0.0247 (14)	0.0163 (14)	0.0112 (13)	0.0099 (12)
C25	0.0534 (19)	0.0260 (14)	0.0271 (15)	0.0166 (14)	0.0117 (14)	0.0095 (12)
C26	0.0344 (15)	0.0293 (14)	0.0258 (14)	0.0125 (12)	0.0018 (12)	0.0047 (11)
O21	0.0643 (16)	0.0288 (11)	0.0333 (12)	0.0224 (11)	0.0129 (11)	0.0078 (9)
N22	0.0535 (17)	0.0324 (13)	0.0403 (16)	0.0196 (13)	0.0216 (13)	0.0089 (12)
N31	0.0322 (13)	0.0379 (13)	0.0251 (12)	0.0176 (11)	0.0065 (10)	0.0110 (10)
C31	0.0301 (15)	0.0414 (16)	0.0276 (15)	0.0181 (13)	0.0084 (12)	0.0123 (12)
C32	0.0330 (15)	0.0416 (16)	0.0261 (14)	0.0173 (13)	0.0089 (12)	0.0140 (12)
C33	0.0306 (14)	0.0342 (15)	0.0263 (14)	0.0144 (12)	0.0052 (12)	0.0084 (12)
C34	0.0385 (17)	0.0498 (19)	0.0305 (16)	0.0278 (15)	0.0095 (13)	0.0117 (14)
C35	0.0370 (16)	0.0507 (18)	0.0258 (15)	0.0248 (15)	0.0125 (12)	0.0133 (13)
C36	0.0348 (16)	0.0392 (16)	0.0290 (15)	0.0186 (13)	0.0046 (12)	0.0096 (13)
O31	0.0434 (13)	0.0684 (16)	0.0370 (13)	0.0367 (13)	0.0098 (10)	0.0210 (12)
N32	0.0450 (17)	0.084 (2)	0.0408 (16)	0.0394 (17)	0.0153 (13)	0.0352 (17)
N41	0.0368 (13)	0.0313 (12)	0.0251 (12)	0.0172 (11)	0.0041 (10)	0.0064 (10)
C41	0.0502 (19)	0.0257 (14)	0.0261 (15)	0.0162 (13)	-0.0004 (13)	0.0030 (11)
C42	0.0422 (17)	0.0320 (15)	0.0250 (14)	0.0150 (13)	-0.0010 (13)	0.0040 (12)
C43	0.0324 (14)	0.0336 (14)	0.0232 (13)	0.0167 (12)	0.0107 (11)	0.0102 (11)
C44	0.0349 (16)	0.0276 (14)	0.0361 (16)	0.0114 (12)	0.0084 (13)	0.0122 (12)
C45	0.0311 (15)	0.0305 (14)	0.0310 (15)	0.0097 (12)	0.0042 (12)	0.0085 (12)
C46	0.0379 (16)	0.0378 (16)	0.0254 (14)	0.0198 (13)	0.0107 (12)	0.0126 (12)
O41	0.0587 (15)	0.0357 (12)	0.0384 (13)	0.0232 (11)	0.0045 (11)	0.0144 (10)
N42	0.0413 (15)	0.0409 (15)	0.0371 (15)	0.0212 (13)	-0.0002 (12)	0.0125 (12)
N51	0.0463 (17)	0.0402 (16)	0.0415 (17)	0.0134 (13)	0.0096 (14)	-0.0006 (13)
C51	0.052 (2)	0.048 (2)	0.0357 (18)	0.0201 (17)	0.0089 (16)	0.0080 (15)
C52	0.0428 (18)	0.0433 (18)	0.0354 (17)	0.0198 (15)	0.0057 (14)	0.0079 (14)
C53	0.0294 (15)	0.0380 (16)	0.0328 (16)	0.0112 (13)	0.0090 (12)	0.0070 (13)
C54	0.0361 (17)	0.0373 (17)	0.0421 (18)	0.0120 (14)	0.0060 (14)	0.0097 (14)
C55	0.0404 (18)	0.0334 (17)	0.054 (2)	0.0139 (15)	0.0079 (16)	0.0049 (15)
C56	0.0352 (17)	0.052 (2)	0.0369 (17)	0.0205 (15)	0.0128 (14)	0.0110 (15)
051	0.0451 (15)	0.109 (3)	0.0438 (15)	0.0458 (17)	0.0086 (12)	0.0024 (16)
N52	0.0380 (15)	0.0519 (17)	0.0300 (14)	0.0213 (13)	0.0050 (12)	0.0045 (12)
N61	0.0411 (16)	0.0533 (17)	0.0388 (16)	0.0142 (14)	0.0039 (13)	0.0217 (14)
C61	0.0440 (19)	0.0446 (19)	0.046 (2)	0.0190 (16)	0.0059 (16)	0.0236 (16)
C62	0.0389 (17)	0.0339 (16)	0.0440 (18)	0.0154 (14)	0.0089 (14)	0.0166 (14)
C63	0.0259 (14)	0.0318 (15)	0.0349 (16)	0.0087 (12)	0.0021 (12)	0.0117 (12)
C64	0.0352 (16)	0.0432 (17)	0.0314 (16)	0.0195 (14)	0.0058 (13)	0.0118 (13)
C65	0.0422 (18)	0.051 (2)	0.0350 (17)	0.0186 (16)	0.0071 (14)	0.0112 (15)
C66	0.0314 (14)	0.0265 (13)	0.0289 (14)	0.0106 (12)	0.0056 (12)	0.0081 (11)
061	0.0379 (12)	0.0409 (12)	0.0349 (12)	0.0194 (10)	0.0093 (10)	0.0109 (10)
N62	0.0386 (14)	0.0471 (15)	0.0296 (13)	0.0219 (13)	0.0083 (11)	0.0135 (12)
C71	0.125 (14)	0.056 (8)	0.129 (15)	0.016 (9)	0.034 (12)	0.038 (9)
C72	0.12 (2)	0.091 (15)	0.071 (12)	0.022 (16)	0.041 (14)	0.036 (11)
O71	0.108 (9)	0.155 (12)	0.136 (11)	0.059 (9)	0.054 (9)	0.077 (10)

C81	0.091 (7)	0.065 (6)	0.169 (13)	0.017 (5)	0.006 (8)	0.051 (7)
C82	0.096 (13)	0.088 (10)	0.167 (17)	-0.029 (9)	-0.051 (11)	0.070 (11)
O81	0.064 (4)	0.073 (4)	0.132 (7)	0.014 (3)	0.001 (4)	0.023 (4)

Geometric parameters (Å, °)

Co1—N1	2.074 (3)	C41—H41	0.9500
Co1—N2	2.079 (3)	C42—C43	1.378 (4)
Co1—N31	2.179 (2)	C42—H42	0.9500
Col—N11	2.181 (2)	C43—C44	1.391 (4)
Col—N41	2.183 (2)	C43—C46	1.511 (4)
Co1—N21	2.185 (2)	C44—C45	1.384 (4)
N1—C1	1.160 (4)	C44—H44	0.9500
C1—S1	1.635 (3)	C45—H45	0.9500
N2—C2	1.162 (4)	C46—O41	1.227 (4)
C2—S2	1.631 (3)	C46—N42	1.338 (4)
N11-C11	1.337 (4)	N42—H42A	0.8800
N11—C15	1.339 (4)	N42—H42B	0.8800
C11—C12	1.387 (4)	N51—C55	1.319 (5)
C11—H11	0.9500	N51—C51	1.338 (5)
C12—C13	1.385 (4)	C51—C52	1.370 (5)
C12—H12	0.9500	C51—H51	0.9500
C13—C14	1.387 (4)	C52—C53	1.381 (5)
C13—C16	1.508 (4)	C52—H52	0.9500
C14—C15	1.388 (4)	C53—C54	1.391 (5)
C14—H14	0.9500	C53—C56	1.499 (4)
С15—Н15	0.9500	C54—C55	1.393 (5)
C16—O11	1.236 (4)	C54—H54	0.9500
C16—N12	1.325 (4)	C55—H55	0.9500
N12—H12A	0.8800	C56—O51	1.235 (4)
N12—H12B	0.8800	C56—N52	1.330 (4)
N21—C25	1.336 (4)	N52—H52A	0.8800
N21—C21	1.343 (4)	N52—H52B	0.8800
C21—C22	1.384 (4)	N61—C61	1.333 (5)
C21—H21	0.9500	N61—C65	1.339 (5)
C22—C23	1.382 (4)	C61—C62	1.379 (5)
С22—Н22	0.9500	C61—H61	0.9500
C23—C24	1.387 (4)	C62—C63	1.384 (4)
C23—C26	1.512 (4)	С62—Н62	0.9500
C24—C25	1.383 (4)	C63—C64	1.381 (5)
C24—H24	0.9500	C63—C66	1.510 (4)
С25—Н25	0.9500	C64—C65	1.385 (5)
C26—O21	1.221 (4)	C64—H64	0.9500
C26—N22	1.328 (4)	C65—H65	0.9500
N22—H22A	0.8800	C66—O61	1.247 (4)
N22—H22B	0.8800	C66—N62	1.309 (4)
N31—C31	1.330 (4)	N62—H62A	0.8800
N31—C35	1.341 (4)	N62—H62B	0.8800

C31—C32	1.388 (4)	C71—O71	1.351 (19)
С31—Н31	0.9500	C71—C72	1.44 (4)
C32—C33	1.386 (4)	С71—Н71А	0.9900
С32—Н32	0.9500	C71—H71B	0.9900
C_{33} C_{34}	1 392 (4)	C72—H72A	0.9800
C_{33} $-C_{36}$	1 515 (4)	C72 H72B	0.9800
C_{34} C_{35}	1 375 (4)	C72 - H72C	0.9800
C34—H34	0.9500	071—H71	0.9000
C35_H35	0.9500	C81 - C81	1300(11)
C36 O31	1 238 (4)		1.300(11) 1.37(2)
C36 N32	1.230(4) 1.314(4)	C81 H81A	0.9900
N32 H32A	0.8800	C81 H81R	0.9900
N22 H22P	0.8800		0.9900
N41 C41	1.336(4)	C_{02} H_{02} H_{02}	0.9800
N41-C41	1.330(4) 1.226(4)	C_{02} $H_{02}C$	0.9800
N41 - C43	1.330(4) 1.295(4)	C_{02} —H $_{02}$ C	0.9800
C41—C42	1.385 (4)	081—H81	0.8400
N1-Co1-N2	178 32 (11)	C45—N41—Co1	123.6(2)
N1 - Co1 - N31	90.01 (10)	N41— $C41$ — $C42$	123.0(2) 123.4(3)
N2—Co1—N31	88 33 (10)	N41 - C41 - H41	118 3
N1 - Co1 - N11	89.42 (10)	C42 - C41 - H41	118.3
$N_2 C_{01} N_{11}$	90.36(10)	C_{42} C_{41} C_{41}	110.3 110.2(3)
$N_2 = C_0 I = N_1 I$	92 30 (9)	C_{43} C_{42} C_{41} C_{42} C_{41}	119.2 (3)
N1 Co1 N41	92.30(9)	$C_{43} = C_{42} = H_{42}$	120.4
$N2 C_{2} N41$	91.91 (10) 90.74 (10)	$C_{41} = C_{42} = 1142$	120.4
N2 - C01 - N41	69.74(10)	C42 - C43 - C44	117.8(3)
N11 C-1 N41	1/8.04(10)	C42 - C43 - C40	123.0(3)
N11-Co1-N21	88.09 (9)	C44 - C43 - C46	118.5(3)
N1 = Co1 = N21	88.74 (10)	C45 - C44 - C43	119.3 (3)
N_2 —Col— N_2 l	91.53 (10)	C45—C44—H44	120.4
N31—Co1—N21	89.72 (9)	C43—C44—H44	120.4
NII—CoI—N2I	177.27 (10)	N41—C45—C44	123.0 (3)
N41—Co1—N21	89.95 (9)	N41—C45—H45	118.5
Cl—Nl—Col	158.0 (2)	C44—C45—H45	118.5
N1—C1—S1	178.5 (3)	O41—C46—N42	122.7 (3)
C2—N2—Co1	169.1 (3)	O41—C46—C43	120.3 (3)
N2—C2—S2	178.5 (3)	N42—C46—C43	117.0 (3)
C11—N11—C15	117.6 (3)	C46—N42—H42A	120.0
C11—N11—Co1	120.6 (2)	C46—N42—H42B	120.0
C15—N11—Co1	121.68 (19)	H42A—N42—H42B	120.0
N11—C11—C12	122.8 (3)	C55—N51—C51	117.6 (3)
N11—C11—H11	118.6	N51—C51—C52	123.1 (3)
C12—C11—H11	118.6	N51—C51—H51	118.4
C13—C12—C11	119.5 (3)	С52—С51—Н51	118.4
C13—C12—H12	120.2	C51—C52—C53	119.2 (3)
C11—C12—H12	120.2	C51—C52—H52	120.4
C12—C13—C14	117.9 (3)	С53—С52—Н52	120.4
C12—C13—C16	118.5 (3)	C52—C53—C54	118.4 (3)
C14—C13—C16	123.6 (3)	C52—C53—C56	118.5 (3)

C13—C14—C15	119.1 (3)	C54—C53—C56	123.1 (3)
C13—C14—H14	120.4	C53—C54—C55	117.8 (3)
C15—C14—H14	120.4	С53—С54—Н54	121.1
N11—C15—C14	123.1 (3)	С55—С54—Н54	121.1
N11—C15—H15	118.5	N51—C55—C54	123.7 (3)
C14—C15—H15	118.5	N51—C55—H55	118.1
O11—C16—N12	122.0 (3)	С54—С55—Н55	118.1
O11—C16—C13	119.4 (3)	O51—C56—N52	122.9 (3)
N12—C16—C13	118.6 (3)	O51—C56—C53	118.8 (3)
C16—N12—H12A	120.0	N52—C56—C53	118.2 (3)
C16—N12—H12B	120.0	C56—N52—H52A	120.0
H12A—N12—H12B	120.0	C56—N52—H52B	120.0
C25—N21—C21	117.2 (3)	H52A—N52—H52B	120.0
C25—N21—Co1	118.8 (2)	C61—N61—C65	116.8 (3)
C21—N21—Co1	123.5 (2)	N61—C61—C62	124.0 (3)
N21—C21—C22	122.9 (3)	N61—C61—H61	118.0
N21—C21—H21	118.5	С62—С61—Н61	118.0
C22—C21—H21	118.5	C61—C62—C63	118.6 (3)
C23—C22—C21	119.4 (3)	С61—С62—Н62	120.7
C23—C22—H22	120.3	С63—С62—Н62	120.7
C21—C22—H22	120.3	C64—C63—C62	118.3 (3)
C22—C23—C24	117.9 (3)	C64—C63—C66	122.2 (3)
C22—C23—C26	118.7 (3)	C62—C63—C66	119.4 (3)
C24—C23—C26	123.4 (3)	C63—C64—C65	119.0 (3)
C25—C24—C23	119.0 (3)	С63—С64—Н64	120.5
C25—C24—H24	120.5	С65—С64—Н64	120.5
C23—C24—H24	120.5	N61—C65—C64	123.3 (3)
N21—C25—C24	123.5 (3)	N61—C65—H65	118.4
N21—C25—H25	118.3	С64—С65—Н65	118.4
C24—C25—H25	118.3	O61—C66—N62	123.4 (3)
021—C26—N22	122.2 (3)	O61—C66—C63	119.9 (3)
O21—C26—C23	119.9 (3)	N62—C66—C63	116.7 (3)
N22—C26—C23	117.9 (3)	C66—N62—H62A	120.0
C26—N22—H22A	120.0	C66—N62—H62B	120.0
C26—N22—H22B	120.0	H62A—N62—H62B	120.0
H22A—N22—H22B	120.0	O71—C71—C72	127.2 (19)
C31—N31—C35	117.4 (3)	071—C71—H71A	105.5
C31—N31—Co1	119.99 (19)	С72—С71—Н71А	105.5
C35—N31—Co1	122.6 (2)	071—C71—H71B	105.5
N31—C31—C32	123.3 (3)	С72—С71—Н71В	105.5
N31—C31—H31	118.3	H71A—C71—H71B	106.1
C32—C31—H31	118.3	С71—С72—Н72А	109.5
C33—C32—C31	118.8 (3)	С71—С72—Н72В	109.5
C33—C32—H32	120.6	H72A—C72—H72B	109.5
C31—C32—H32	120.6	C71—C72—H72C	109.5
C32—C33—C34	118.2 (3)	H72A—C72—H72C	109.5
C32—C33—C36	123.5 (3)	H72B—C72—H72C	109.5
C34—C33—C36	118.3 (3)	C71—O71—H71	109.5
	\- /		

C35—C34—C33	118.9 (3)	O81—C81—C82	125.4 (14)
С35—С34—Н34	120.6	O81—C81—H81A	106.0
С33—С34—Н34	120.6	C82—C81—H81A	106.0
N31—C35—C34	123.4 (3)	O81—C81—H81B	106.0
N31—C35—H35	118.3	C82—C81—H81B	106.0
С34—С35—Н35	118.3	H81A—C81—H81B	106.3
O31—C36—N32	123.0 (3)	C81—C82—H82A	109.5
O31—C36—C33	118.8 (3)	C81—C82—H82B	109.5
N32—C36—C33	118.2 (3)	H82A—C82—H82B	109.5
C36—N32—H32A	120.0	C81—C82—H82C	109.5
C36—N32—H32B	120.0	H82A—C82—H82C	109.5
H32A—N32—H32B	120.0	H82B—C82—H82C	109.5
C41—N41—C45	117.3 (3)	C81—O81—H81	109.5
C41—N41—Co1	118.0 (2)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	D—H…A
C11—H11…S1 ⁱ	0.95	3.03	3.676 (3)	127
C14—H14…O31 ⁱⁱ	0.95	2.62	3.532 (4)	162
C15—H15…O81 ⁱⁱ	0.95	2.60	3.454 (7)	149
N12—H12A…N51	0.88	2.09	2.936 (4)	160
N12—H12B···O31 ⁱⁱ	0.88	2.12	2.879 (4)	144
C25—H25…O41 ⁱⁱⁱ	0.95	2.47	3.100 (4)	124
N22—H22A···S2 ^{iv}	0.88	2.60	3.439 (3)	160
N22—H22 <i>B</i> ···O61 ^v	0.88	2.26	3.005 (4)	142
C32—H32…O11 ^{vi}	0.95	2.47	3.399 (4)	165
N32—H32A···N61 ^{vii}	0.88	2.14	2.965 (4)	156
N32—H32 <i>B</i> ···O11 ^{vi}	0.88	2.14	2.952 (4)	153
C41—H41···O21 ^{iv}	0.95	2.32	3.113 (4)	140
C42—H42···O61 ^{iv}	0.95	2.63	3.547 (4)	163
N42—H42A···S1 ⁱⁱⁱ	0.88	2.68	3.523 (3)	161
N42—H42 <i>B</i> ···O61 ^{iv}	0.88	2.22	3.063 (4)	159
N52—H52A···O41 ^{viii}	0.88	2.09	2.921 (4)	157
N52—H52 <i>B</i> ···O61 ⁱⁱ	0.88	2.06	2.882 (4)	155
C62—H62···S1 ^{ix}	0.95	2.89	3.734 (3)	148
N62—H62A···O21	0.88	2.03	2.854 (4)	156
N62—H62 <i>B</i> ···O51 ^{vi}	0.88	1.94	2.775 (4)	159
O71—H71···O31 ⁱⁱ	0.84	2.20	3.020 (13)	167
O81—H81…O11 ^{vi}	0.84	2.37	2.855 (7)	118
O81—H81…N32	0.84	2.58	3.062 (8)	118

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+2, -*y*+1, -*z*+1; (iii) -*x*+1, -*y*+1, -*z*; (iv) -*x*+1, -*y*, -*z*; (v) -*x*+2, -*y*, -*z*; (vi) -*x*+1, -*y*+1, -*z*+1; (vii) -*x*+2, -*y*, -*z*+1