

Received 22 June 2016 Accepted 19 July 2016

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; synchrotron radiation; ammonium/potassium salt; bis(methyliminodiacetato)chromate(III) ion; mida; *trans*facial configuration; hydrogen bonding.

CCDC reference: 1494843

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of ammonium/potassium *trans*bis(*N*-methyliminodiacetato- $\kappa^3 O, N, O'$)chromate(III) from synchrotron data

Dohyun Moon^a and Jong-Ha Choi^{b*}

^aPohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, and ^bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea. *Correspondence e-mail: jhchoi@anu.ac.kr

The structure of the title compound, $[(NH_4)_{0.8}K_{0.2}][Cr(C_5H_7NO_4)_2](C_5H_7NO_4)$ is methyliminodiacetate; mida), has been determined from synchrotron data. The Cr^{III} atom is located on a centre of symmetry and is coordinated by two N atoms and four O atoms of two facially arranged tridentate mida ligands, displaying a slightly distorted octahedral coordination environment. The Cr–N and mean Cr–O bond lengths are 2.0792 (14) and 1.958 (14) Å, respectively. The cation site is located on a twofold rotation axis and shows occupational disorder, being occupied by ammonium and potassium cations in a 0.8:0.2 ratio. In the crystal, intermolecular hydrogen bonds involving the N–H groups of the ammonium cation as donor and the two non-coordinating O atoms of the carboxylate group as acceptor groups consolidate the three-dimensional packing.

1. Chemical context

Methyliminodiacetate (abbreviated here as mida; $C_5H_7NO_4$) can coordinate to a central metal ion as a tridentate ligand through one N atom and two O atoms. The mida ligand differs from iminodiacetate (ida) in the substitution of the imino hydrogen with a methyl group. This change has significant consequences with respect to the configuration of the bischromate(III) complexes with these ligands. Two facial configurations in cis or trans mode relative to the two N atoms have been observed: for example K[Cr(ida)₂]·3H₂O (Mootz & Wunderlich, 1980) and Na[Cr(ida)₂]·1.5H₂O (Li et al., 2003) are *cis-fac* structures whereas $Na[Cr(mida)_2]$ is a *trans-fac* structure (Suh et al., 1997). However, the trans meridional isomer of octahedrally coordinated chromium(III) with ida or mida ligands has not yet been identified. In order to confirm the bonding mode of the methyliminodiacetato ligand and its structural arrangement, we report herein on the crystal structure of the title salt, $[(NH_4)_{0.8}K_{0.2}][Cr(C_5H_7NO_4)_2], (I).$

[(NH₄)_{0.8}K_{0.2}]⁺

Figure 1

The structures of the molecular entities of (I), showing the atomnumbering scheme. Non-H atoms are shown as displacement ellipsoids at the 50% probability level. The primed atoms are related by symmetry code (-x + 1, -y + 1, -z + 1). Dashed lines represent hydrogen-bonding interactions.

2. Structural commentary

Counter-ionic species play important roles in crystal packings and hydrogen-bonding patterns. The structure reported here is another example of a $[Cr(mida)_2]^-$ salt but with a different cation (Suh *et al.*, 1996, 1997). The structural analysis shows

Table	1		
Hydro	gen-bond	geometry	(Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1S - H1NS \cdots O3^{i}$ $N1S - H2NS \cdots O2$	0.92 (1) 0.90 (1)	2.07 (1) 1.95 (1)	2.9658 (16) 2.8485 (17)	166 (3) 175 (3)

Symmetry code: (i) $x, -y, z + \frac{1}{2}$.

that the two tridentate mida dianions octahedrally coordinate to the Cr^{III} metal atom through one N atom and two carboxylate O atoms in a facial configuration. The coordinating N atoms are mutually *trans* due to point group $\overline{1}$ for the entire anionic complex. The asymmetric unit of (I) comprises one half of the Cr^{III} complex anion and one occupationally disordered ammonium/potassium cation (situated on a twofold rotation axis), respectively. An ellipsoid plot of title compound together with the atomic numbering is illustrated in Fig. 1.

The facial configuration of the complex anion in (I) can be compared with that of $NH_4[Cr(pydc)_2]$ (pydc = pyridine-2,6dicarboxylate; Moon & Choi, 2015) where it displays a *trans* meridional configuration. The Cr–N and mean Cr–O bond lengths involving the mida ligands are 2.0792 (14) and 1.958 (14) Å, respectively, in good agreement with the values observed for Na[Cr(mida)_2] (Suh *et al.*, 1997). Bond angles about the central chromium atom are 90.23 (6) for O1–Cr1– O3, 84.66 (6) for O1–Cr1–N1 and 82.62 (5)° for N1–Cr1– O3 indicating a distorted octahedral coordination environment. The C–O bond lengths within the carboxylate group of the mida ligand range from 1.219 (2) to 1.296 (2) Å and can be compared with values of 1.225 (15) and 1.294 (15) Å for NH₄[Cr(pydc)₂] (Moon & Choi, 2015). The slightly longer C–

Figure 2

A packing diagram of (I), viewed perpendicular to the *ac* plane. Dashed lines represent hydrogen-bonding interactions N-H···O (cyan).

research communications

O bond length (C1–O2 and C3–O4) and smaller O–C–O bond angles of the carboxylate groups in the mida ligand of (I) compared to the ligand in Na[Cr(mida)₂] (Suh *et al.*, 1997) may be attributed to the involvement of the two non-coordinating O atoms in hydrogen bonds with the N–H groups of the ammonium cation. The N–C and C–C distances in the mida moieties are close to those found in the free H₂mida molecule (Shkol'nikova *et al.*, 1986) and are equal to 1.479 (2)–1.494 (2) and 1.508 (3)–1.512 (2) Å, respectively.

3. Supramolecular features

The pattern of hydrogen bonding around the cation is different from the crystal packing network in the related sodium salt (Suh *et al.*, 1996, 1997). The cation is linked to four non-coordinating O atoms of carboxylate groups from four neighboring mida ligands through classical $N-H\cdotsO$ hydrogen bonds (Table 1). An array of these interactions generate a three-dimensional network of molecules whereby individual molecules are stacked along the *b*-axis direction (Fig. 2).

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, Feb. 2016 with two updates; Groom *et al.*, 2016) gave just two hits for a complex anion $[Cr(C_5H_7NO_4)_2]^-$ unit. The crystal structures of Na $[Cr(mida)_2]$ with three different space groups have been reported and compared previously (Suh *et al.*, 1996, 1997).

5. Synthesis and crystallization

All chemicals were reagent-grade materials and were used without further purification. The starting material, $K[Cr(mida)_2]$ was prepared by a method similar to that outlined previously (Wernicke *et al.*, 1977; Uehara *et al.*, 1970). The potassium salt (0.25 g) was dissolved in 15 mL of water at 343 K and added to 5 mL of water containing 0.50 g of NH₄Cl. The resulting solution was filtered to remove any impurities and allowed to stand at room temperature for several days to give pale pink plate-like crystals of the mixed-occupancy ammonium/potassium salt, (I), suitable for X-ray diffraction analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms of the complex were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.97–0.98 Å and with $U_{\rm iso}(H)$ values of 1.5 (methyl) and 1.2 times $U_{\rm eq}$ (all others) of the parent atoms. The H atoms of the cation were located from difference Fourier maps and refined with DFIX and DANG restraints and fixed N—H distances of 0.855 (9) and 0.869 (9) Å, with $U_{\rm iso}(H)$ values of $1.2U_{\rm eq}(N)$. The occupancy of mixed-occupied (NH₄/K) first was refined and then

Table	2	
Experi	mental	details.

Crystal data	
Chemical formula	$[(NH_4)_{0.8}K_{0.2}][Cr(C_5H_7NO_4)_2]$
M _r	364.48
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	243
a, b, c (Å)	16.786 (3), 6.5240 (13), 13.925 (3)
β (°)	113.19 (3)
$V(\dot{A}^3)$	1401.8 (6)
Z	4
Radiation type	Synchrotron, $\lambda = 0.610 \text{ Å}$
$\mu \text{ (mm}^{-1})$	0.61
Crystal size (mm)	$0.02 \times 0.02 \times 0.01$
•	
Data collection	
Diffractometer	ADSC Q210 CCD area-detector
Absorption correction	Empirical (using intensity measurements) (<i>HKL3000sm</i> SCALEPACK: Otwinowski &
	Minor 1997)
T + T	0.989 0.995
No of measured independent and	6984 1833 1519
observed $[I > 2\sigma(I)]$ reflections	0,01,1000,101,
R_{int}	0.028
$(\sin \theta/\lambda)$ $(Å^{-1})$	0.693
(one of the offered and the offere	0.070
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.035, 0.100, 1.05
No. of reflections	1833
No. of parameters	110
No. of restraints	3
H-atom treatment	H atoms treated by a mixture of
	independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.40, -0.69

Computer programs: PAL BL2D-SMDC (Shin et al., 2016), HKL3000sm (Otwinowski & Minor, 1997), SHELXT2014 (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), DIAMOND (Putz & Brandenburg, 2014) and publCIF (Westrip, 2010).

fixed at a ratio of 0.8:0.2. The corresponding (NH_4/K) sites was refined using EXYZ/EADP commands for the two atom types.

Acknowledgements

This work was supported by a grant from 2016 Research Funds of Andong National University. The X-ray crystallography experiment at PLS-II BL2D-SMC beamline was supported in part by MSIP and POSTECH.

References

- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Li, H., Xu, D.-J. & Yin, K.-L. (2003). Acta Cryst. E59, m671-m673.
- Moon, D. & Choi, J.-H. (2015). Acta Cryst. E71, 210-212.
- Mootz, D. & Wunderlich, H. (1980). Acta Cryst. B36, 445-447.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W.
- Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Putz, H. & Brandenburg, K. (2014). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Sheldrick, G. M. (2015*a*). Acta Cryst. A**71**, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373.

- Shkol'nikova, L. M., Donchenko, N. V., Poznyak, A. L., Dyatlova, N.
- M. & Zavodnik, E. V. (1986). *Zh. Strukt. Khim.* **27**, 89–94. Suh, I.-H., Lee, J.-H., Song, J.-H., Oh, M.-R., Suh, J.-S., Park, S.-J. & Lee, K.-W. (1996). J. Korean Phys. Soc. 29, 739-744.
- Suh, J.-S., Park, S.-J., Lee, K.-W., Suh, I.-H., Lee, J.-H., Song, J.-H. & Oh, M.-R. (1997). Acta Cryst. C53, 432-434.
- Uehara, A., Kyuno, E. & Tsuchiya, R. (1970). Bull. Chem. Soc. Jpn, **43**, 1394–1397.
- Wernicke, R., Schmidtke, H.-H. & Hoggard, P. E. (1977). Inorg. Chim. Acta, 24, 145-148.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2016). E72, 1190-1193 [https://doi.org/10.1107/S2056989016011804]

Crystal structure of ammonium/potassium trans-bis(N-methyliminodiacetato- $\kappa^{3}O, N, O'$) chromate(III) from synchrotron data

Dohyun Moon and Jong-Ha Choi

Computing details

Data collection: PAL BL2D-SMDC (Shin et al., 2016); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

> F(000) = 754 $D_{\rm x} = 1.727 \ {\rm Mg \ m^{-3}}$

 $\theta = 0.4 - 33.7^{\circ}$ $\mu = 0.61 \text{ mm}^{-1}$ T = 243 KPlate, pale pink $0.02 \times 0.02 \times 0.01 \text{ mm}$

Synchrotron radiation, $\lambda = 0.610$ Å Cell parameters from 23758 reflections

Ammonium/potassium trans-bis(N-methyliminodiacetato- $\kappa^3 O, N, O'$) chromate(III)

$[(NH_4)_{0.8}K_{0.2}][Cr(C_5H_7NO_4)_2]$
$M_r = 364.48$
Monoclinic, $C2/c$
a = 16.786 (3) Å
b = 6.5240 (13) Å
c = 13.925 (3) Å
$\beta = 113.19 (3)^{\circ}$
V = 1401.8 (6) Å ³
Z = 4

Data collection

ADSC Q210 CCD area-detector	6984 measured reflections
diffractometer	1833 independent reflections
Radiation source: PLSII 2D bending magnet	1519 reflections with $I > 2\sigma(I)$
ωscan	$R_{\rm int} = 0.028$
Absorption correction: empirical (using	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.7^\circ$
intensity measurements)	$h = -23 \rightarrow 23$
(HKL3000sm SCALEPACK; Otwinowski &	$k = -9 \rightarrow 9$
Minor, 1997)	$l = -17 \rightarrow 17$
$T_{\min} = 0.989, \ T_{\max} = 0.995$	
,	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.100$ *S* = 1.05 1833 reflections 110 parameters 3 restraints Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0702P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.40 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.69 \ {\rm e} \ {\rm \AA}^{-3}$

with $I > 2\sigma(I)$

Extinction correction: SHELXL2014 (Sheldrick, 2015*b*), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0118 (19)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Cr1	0.5000	0.5000	0.5000	0.01108 (14)	
01	0.53582 (8)	0.3160 (2)	0.61977 (10)	0.0228 (3)	
O2	0.64463 (9)	0.2272 (2)	0.76630 (10)	0.0267 (3)	
O3	0.54917 (8)	0.3115 (2)	0.42746 (10)	0.0228 (3)	
O4	0.65906 (10)	0.2681 (2)	0.37913 (13)	0.0361 (4)	
N1	0.62700 (8)	0.6057 (2)	0.56638 (10)	0.0129 (3)	
C1	0.61393 (11)	0.3333 (3)	0.68756 (13)	0.0175 (3)	
C2	0.67027 (13)	0.4929 (3)	0.66707 (15)	0.0326 (5)	
H2A	0.6886	0.5922	0.7245	0.039*	
H2B	0.7225	0.4260	0.6668	0.039*	
C3	0.62435 (11)	0.3600 (3)	0.42841 (13)	0.0196 (4)	
C4	0.66622 (12)	0.5484 (3)	0.49128 (15)	0.0232 (4)	
H4A	0.7283	0.5226	0.5297	0.028*	
H4B	0.6601	0.6633	0.4435	0.028*	
C5	0.63441 (13)	0.8296 (3)	0.58441 (19)	0.0333 (5)	
H5A	0.6948	0.8699	0.6086	0.050*	
H5B	0.6121	0.8653	0.6368	0.050*	
H5C	0.6012	0.9003	0.5197	0.050*	
K1S	0.5000	-0.0201 (2)	0.7500	0.0275 (3)	0.2
N1S	0.5000	-0.0201 (2)	0.7500	0.0275 (3)	0.8
H1NS	0.5139 (17)	-0.091 (4)	0.8115 (14)	0.033*	0.8
H2NS	0.5476 (13)	0.052 (4)	0.757 (2)	0.033*	0.8

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cr1	0.00847 (19)	0.01210 (19)	0.0120 (2)	-0.00089 (12)	0.00332 (13)	-0.00138 (12)
01	0.0173 (6)	0.0248 (6)	0.0209 (6)	-0.0064 (5)	0.0018 (5)	0.0078 (5)
O2	0.0231 (7)	0.0300 (7)	0.0217 (7)	0.0003 (5)	0.0030 (5)	0.0107 (5)
O3	0.0201 (6)	0.0223 (6)	0.0290 (7)	-0.0052 (5)	0.0130 (5)	-0.0119 (5)
O4	0.0328 (8)	0.0430 (9)	0.0416 (9)	-0.0005 (7)	0.0243 (7)	-0.0173 (7)
N1	0.0110 (6)	0.0145 (6)	0.0134 (6)	-0.0023 (5)	0.0050 (5)	-0.0013 (5)
C1	0.0174 (8)	0.0198 (8)	0.0152 (8)	-0.0010 (6)	0.0063 (6)	0.0000 (6)
C2	0.0205 (9)	0.0530 (14)	0.0160 (9)	-0.0150 (8)	-0.0018 (7)	0.0125 (8)
C3	0.0201 (8)	0.0219 (8)	0.0185 (9)	0.0005 (6)	0.0094 (6)	-0.0027 (6)

supporting information

C4	0.0203 (8)	0.0327 (9)	0.0226 (10)	-0.0081 (7)	0.0148 (7)	-0.0083 (7)
C5	0.0221 (9)	0.0186 (9)	0.0574 (14)	-0.0070 (7)	0.0137 (9)	-0.0129 (8)
K1S	0.0277 (7)	0.0278 (8)	0.0270 (8)	0.000	0.0107 (6)	0.000
N1S	0.0277 (7)	0.0278 (8)	0.0270 (8)	0.000	0.0107 (6)	0.000

Geometric parameters (Å, °)

Cr1—O1	1.9479 (13)	C2—H2B	0.9800
Cr1-01 ⁱ	1.9479 (13)	C3—C4	1.512 (2)
Cr1—O3	1.9673 (12)	C3—K1S ⁱⁱ	3.371 (2)
Cr1-O3 ⁱ	1.9673 (12)	C4—H4A	0.9800
Cr1—N1	2.0792 (14)	C4—H4B	0.9800
Cr1—N1 ⁱ	2.0792 (14)	С5—Н5А	0.9700
01—C1	1.284 (2)	С5—Н5В	0.9700
O1—K1S	3.0524 (17)	С5—Н5С	0.9700
O2—C1	1.226 (2)	K1S—O2 ⁱⁱⁱ	2.8484 (16)
O2—K1S	2.8485 (17)	K1S—O3 ^{iv}	2.9658 (16)
O3—C3	1.296 (2)	K1S—O3 ⁱⁱ	2.9658 (16)
O3—K1S ⁱⁱ	2.9658 (16)	K1S—O4 ^{iv}	3.033 (2)
O4—C3	1.219 (2)	K1S—O4 ⁱⁱ	3.033 (2)
O4—K1S ⁱⁱ	3.033 (2)	K1S—O1 ⁱⁱⁱ	3.0524 (17)
N1-C5	1.479 (2)	K1S—C1 ⁱⁱⁱ	3.322 (2)
N1-C4	1.486 (2)	K1S—C3 ⁱⁱ	3.371 (2)
N1—C2	1.494 (2)	K1S—C3 ^{iv}	3.371 (2)
C1—C2	1.508 (3)	N1S—H1NS	0.920 (10)
C1—K1S	3.322 (2)	N1S—H2NS	0.899 (10)
C2—H2A	0.9800		
O1-Cr1-O1 ⁱ	180.00 (5)	O2—K1S—O3 ⁱⁱ	112.23 (4)
O1—Cr1—O3	90.23 (6)	O3 ^{iv} —K1S—O3 ⁱⁱ	100.26 (7)
Ol ⁱ —Crl—O3	89.77 (6)	O2 ⁱⁱⁱ —K1S—O4 ^{iv}	150.81 (4)
$O1$ — $Cr1$ — $O3^i$	89.77 (6)	$O2$ —K1S— $O4^{iv}$	74.40 (4)
$O1^{i}$ —Cr1—O3 ⁱ	90.23 (6)	O3 ^{iv} —K1S—O4 ^{iv}	43.35 (4)
O3—Cr1—O3 ⁱ	180.0	O3 ⁱⁱ —K1S—O4 ^{iv}	92.48 (6)
O1—Cr1—N1	84.66 (6)	O2 ⁱⁱⁱ —K1S—O4 ⁱⁱ	74.40 (4)
Ol ⁱ —Crl—Nl	95.34 (6)	O2—K1S—O4 ⁱⁱ	150.82 (4)
O3—Cr1—N1	82.62 (5)	O3 ^{iv} —K1S—O4 ⁱⁱ	92.48 (6)
O3 ⁱ —Cr1—N1	97.38 (5)	O3 ⁱⁱ —K1S—O4 ⁱⁱ	43.36 (4)
O1-Cr1-N1 ⁱ	95.34 (6)	O4 ^{iv} —K1S—O4 ⁱⁱ	115.53 (8)
O1 ⁱ —Cr1—N1 ⁱ	84.66 (6)	O2 ⁱⁱⁱ —K1S—O1 ⁱⁱⁱ	43.90 (4)
O3—Cr1—N1 ⁱ	97.38 (5)	O2—K1S—O1 ⁱⁱⁱ	84.65 (6)
O3 ⁱ —Cr1—N1 ⁱ	82.62 (5)	O3 ^{iv} —K1S—O1 ⁱⁱⁱ	91.19 (4)
N1-Cr1-N1 ⁱ	180.00 (7)	O3 ⁱⁱ —K1S—O1 ⁱⁱⁱ	154.19 (4)
C1	117.20 (11)	O4 ^{iv} —K1S—O1 ⁱⁱⁱ	111.36 (5)
C1	90.53 (10)	O4 ⁱⁱ —K1S—O1 ⁱⁱⁱ	113.71 (4)
Cr1—O1—K1S	152.23 (6)	O2 ⁱⁱⁱ —K1S—O1	84.65 (6)
C1—O2—K1S	101.75 (11)	O2—K1S—O1	43.90 (4)
C3-03-Cr1	116.48 (11)	O3 ^{iv} —K1S—O1	154.19 (4)

C3—O3—K1S ⁱⁱ	96.63 (10)	O3 ⁱⁱ —K1S—O1	91.19 (4)
Cr1—O3—K1S ⁱⁱ	142.48 (6)	O4 ^{iv} —K1S—O1	113.71 (4)
C3—O4—K1S ⁱⁱ	95.27 (12)	O4 ⁱⁱ —K1S—O1	111.36 (5)
C5—N1—C4	109.69 (15)	O1 ⁱⁱⁱ —K1S—O1	88.15 (7)
C5—N1—C2	110.46 (15)	O2 ⁱⁱⁱ —K1S—C1 ⁱⁱⁱ	21.17 (4)
C4—N1—C2	110.50 (15)	O2—K1S—C1 ⁱⁱⁱ	98.43 (6)
C5—N1—Cr1	113.95 (11)	O3 ^{iv} —K1S—C1 ⁱⁱⁱ	103.11 (4)
C4—N1—Cr1	105.34 (10)	O3 ⁱⁱ —K1S—C1 ⁱⁱⁱ	131.52 (4)
C2—N1—Cr1	106.75 (10)	O4 ^{iv} —K1S—C1 ⁱⁱⁱ	132.69 (5)
O2-C1-O1	123.79 (16)	$O4^{ii}$ —K1S—C1 ⁱⁱⁱ	93.56 (4)
O2—C1—C2	119.04 (16)	$O1^{iii}$ —K1S—C1 ⁱⁱⁱ	22.73 (4)
01-C1-C2	117.17 (15)	01-K1S-C1 ⁱⁱⁱ	85.72 (6)
02-C1-K1S	57.08 (10)	02^{iii} —K1S—C1	98 43 (6)
01-C1-K1S	66 74 (9)	02-K1S-C1	21 17 (4)
C_2 — C_1 — K_1S	175 95 (12)	$O3^{iv}$ —K1S—C1	13152(4)
N1-C2-C1	114 11 (15)	03^{ii} K1S C1	101.02(1) 103 11 (4)
N1 - C2 - H2A	108 7	$O4^{iv}$ K1S C1	93 56 (4)
C1 - C2 - H2A	108.7	$O4^{ii}$ K1S C1	132.69(5)
N1 - C2 - H2B	108.7	01^{iii} K1S C1	85 72 (6)
C1 - C2 - H2B	108.7	01 - K1S - C1	2273(4)
$H_2A = C_2 = H_2B$	107.6	$C1^{iii}$ —K1S—C1	92 12 (7)
04-03-03	123 62 (17)	Ω^{2ii} K1S Ω^{2ii}	93.03(5)
$04 - C_3 - C_4$	120.65(16)	$02 - K1S - C3^{ii}$	$133 \ 81 \ (4)$
03-03-04	115 66 (15)	O_2^{iv} KIS O_2^{ii}	94 64 (6)
$04-C3-K1S^{ii}$	63 63 (11)	03^{ii} K1S 03^{ii}	22.45(4)
$03-C3-K1S^{ii}$	60.92 (9)	$O4^{iv}$ K1S C3 ⁱⁱ	103 37 (7)
$C4-C3-K1S^{ii}$	166.70(13)	04^{ii} K1S 03^{ii}	21 10 (4)
N1 - C4 - C3	112 21 (14)	01^{iii} K1S C3 ⁱⁱ	134 49 (4)
N1 - C4 - H4A	109.2	$01 - K1S - C3^{ii}$	104.15(4)
$C_3 - C_4 - H_{4A}$	109.2	$C1^{iii}$ $K1S$ $C3^{ii}$	104.13(4) 113 34 (5)
N1_C4_H4B	109.2	$C1 - K1S - C3^{ii}$	113.34(3) 121.12(4)
$C_3 - C_4 - H_4 B$	109.2	02^{iii} K1S C3 ^{iv}	121.12(4) 133.81(4)
$H_{4} = C_{4} = H_{4} B$	107.9	$02 K1S C3^{iv}$	93 03 (5)
N1 C5 H5A	109.5	O_2^{iv} K1S O_2^{iv}	22.45(4)
N1-C5-H5B	109.5	O_3^{ii} K1S O_3^{iv}	94 64 (6)
$H_{5A} = C_{5} = H_{5B}$	109.5	O_{4iv} K1S C_{3iv}	21.10(4)
N1_C5_H5C	109.5	$O4^{ii}$ K1S $O3^{iv}$	103 37 (7)
$H_{5A} = C_{5} = H_{5C}$	109.5	$O1^{iii}$ K1S $O3^{iv}$	103.37(7)
H5B C5 H5C	109.5	$O1 - K1S - C3^{iv}$	104.13(4) 134.49(4)
$02^{\text{iii}} K1S 02$	111.01.(8)	$C1^{iii}$ K1S $C3^{iv}$	134.47(4)
$O_2 = K_1 S = O_2^{iii}$	111.01(6) 112.23(4)	$C1 = K1S = C3^{iv}$	121.12(4)
$O_2 = K_{15} = O_3^{iv}$	112.23(4) 110.35(4)	$C_1 = K_1 S = C_3^{iv}$	113.34(3)
02 - K15 - 05	110.35(4)	$\frac{1}{100} = \frac{1}{100} = \frac{1}$	97.73(8)
02	110.55 (4)	111105—1115—112105	105.9 (19)
K1S—O2—C1—O1	-1.9 (2)	K1S ⁱⁱ —O4—C3—C4	-165.65 (16)
K1S—O2—C1—C2	178.67 (16)	Cr1O3O4	-173.25 (15)
Cr1-01-C1-02	-179.97 (14)	K1S ⁱⁱ —O3—C3—O4	-11.5 (2)
K1S—O1—C1—O2	1.73 (19)	Cr1—O3—C3—C4	3.7 (2)

supporting information

Cr1-O1-C1-C2 K1S-O1-C1-C2 Cr1-O1-C1-K1S C5-N1-C2-C1 C4-N1-C2-C1 Cr1-N1-C2-C1 O2-C1-C2-N1 O1-C1-C2-N1 K1Sii O4 C2-O2	-0.5 (2) -178.83 (16) 178.30 (12) 127.82 (19) -110.61 (19) 3.4 (2) 177.29 (16) -2.2 (3) 11.2 (2)	K1S ⁱⁱ —O3—C3—C4 Cr1—O3—C3—K1S ⁱⁱ C5—N1—C4—C3 C2—N1—C4—C3 Cr1—N1—C4—C3 O4—C3—C4—N1 O3—C3—C4—N1 K1S ⁱⁱ —C3—C4—N1	165.51 (14) -161.79 (12) -151.02 (16) 86.96 (18) -27.99 (18) -165.12 (17) 17.8 (2) 89.7 (5)
K1S ⁱⁱ —O4—C3—O3	11.2 (2)		

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) -x+1, y, -z+3/2; (iv) x, -y, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D····A	<i>D</i> —H··· <i>A</i>
N1 <i>S</i> —H1 <i>NS</i> ···O3 ^{iv}	0.92 (1)	2.07 (1)	2.9658 (16)	166 (3)
N1 <i>S</i> —H2 <i>NS</i> ···O2	0.90 (1)	1.95 (1)	2.8485 (17)	175 (3)

Symmetry code: (iv) x, -y, z+1/2.