

Received 9 June 2016 Accepted 1 July 2016

Edited by M. Gdaniec, Adam Mickiewicz University, Poland

Keywords: crystal structure; copper; pyrazolate; trinuclear complex; terminal sulfate ligand.

CCDC reference: 1489622

Supporting information: this article has supporting information at journals.iucr.org/e

Sulfate-bridged dimeric trinuclear copper(II)pyrazolate complex with three different terminal ligands

Gellert Mezei*

Department of Chemistry, Western Michigan University, Kalamazoo, Michigan, USA. *Correspondence e-mail: gellert.mezei@wmich.edu

The reaction of $CuSO_4$ ·5H₂O, 4-chloropyrazole (4-Cl-pzH) and triethylamine (Et₃N) in dimethylformamide (DMF) produced crystals of diaquahexakis(μ -4chloropyrazolato- $\kappa^2 N:N'$)bis(N,N-dimethylformamide)di- μ_3 -hydroxido-bis(μ_4 sulfato- $\kappa^4 O:O':O'':O''$)hexacopper(II) N,N-dimethylformamide tetrasolvate $[Cu_{3}(OH)(SO_{4})(C_{3}H_{2}CIN_{2})_{3}(C_{3}H_{7}NO)(H_{2}O)]_{2} \cdot 4C_{3}H_{7}NO \cdot 2H_{2}O.$ dihydrate, The centrosymmetric dimeric molecule consists of two trinuclear copperpyrazolate units bridged by two sulfate ions. The title compound provides the first example of a trinuclear copper-pyrazolate complex with three different terminal ligands on the Cu atoms, and also the first example of such complex with a strongly binding basal sulfate ion. Within each trinuclear unit, the Cu^{II} atoms are bridged by μ -pyrazolate groups and a central μ_3 -OH group, and are coordinated by terminal sulfate, H₂O and DMF ligands, respectively. Moreover, the sulfate O atoms coordinate at the apical position to the Cu atoms of the symmetry-related unit, providing square-pyramidal coordination geometry around each copper cation. The metal complex and solvent molecules are involved in O-H···O hydrogen bonds, leading to a two-dimensional network parallel to $(10\overline{1})$.

1. Chemical context

Trinuclear copper(II) complexes are primarily studied for their relevance to multicopper enzymes, such as oxidases (e.g., laccase, ascorbate oxidase, ceruloplasmin), oxygenases (e.g., tyrosinase, particulate methane monooxygenase, ammonia monooxygenase) and reductases (e.g., nitrite reductase, nitrous oxide reductase) (Solomon et al., 1996, 2014). Thus, such complexes are important targets from synthesis, redox chemistry and catalysis viewpoints (Di Nicola et al., 2009; Mimmi et al., 2004; Tsui et al., 2011; Lionetti et al., 2013; Grundner et al., 2015). Trinuclear copper(II) complexes also display interesting spectroscopic and magnetic properties (Boča et al., 2003; Rivera-Carrillo et al., 2008; Spielberg et al., 2015), and have been crucial in studying concepts such as spin frustration (Fu et al., 2015). The pyrazolate anion is an excellent ligand for the construction of cyclic trinuclear and higher nuclearity metal complexes, leading to a variety of molecular architectures based on copper or other metals (Halcrow, 2009; Viciano-Chumillas et al., 2010).

A unique class of copper–pyrazolate complexes is defined by nanojars, based on a series of cyclic polymerization isomers, $[cis-Cu^{II}(\mu-OH)(\mu-pz)]_n$ (pz = pyrazolate anion, n = 6-14, except 11), which incarcerate anions with large hydration energies (*e.g.*, sulfate, phosphate, carbonate) with unprecedented strength (Fernando *et al.*, 2012; Mezei, 2015; Ahmed, Szymczyna et al., 2016) and permits the extraction of such anions from water into aliphatic solvents (Ahmed, Calco et al., 2016). Nanojars are obtained by self-assembly from a copper salt, pyrazole and a base (needed both for deprotonating pyrazole and as a hydroxide ion source) in the presence of an anion with large hydration energy, via a trinuclear intermediate, which is isolable and can be converted into nanojars by adding a base (Ahmed & Mezei, 2016). Use of a strong base, such as sodium or tetrabutylammonium hydroxide, allows the preparation of nanojar solutions in different organic solvents. In contrast, a weak base, such as triethylamine, can only be employed as hydroxide source (Et₃N + $H_2O \leftrightarrow Et_3NH^+ + HO^-$) if the nanojar product is precipitated out of the solution by dilution with excess water, in which the nanojar is not soluble (Fernando et al., 2012). Isolation of the title compound provides further evidence that in a neat organic solvent, such as N,N-dimethylformamide, the selfassembly process using triethylamine halts at the trinuclear stage, due to the acidity of the conjugate acid (triethylammonium cation, $pK_a = 10.75$ in H₂O).

2. Structural commentary

The title metal complex molecule, located around an inversion center, consists of two symmetry-related trinuclear copper pyrazolate units (Fig. 1) connected together by sulfate ions

Figure 1

Displacement ellipsoid plot (50% probability level) of the asymmetric unit of the title complex, showing the atom-labeling scheme (DMF and H_2O solvent molecules omitted).

Table 1		
Hydrogen-bond geometry	(Å, '	°).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
C13-H13···O5 ⁱ	0.93	2.23	3,155 (3)	170
$C6-H6\cdots O10^{ii}$	0.93	2.38	3.234 (4)	153
$O10-H10B\cdots O9^{iii}$	0.81 (2)	1.96 (2)	2.751 (3)	165 (4)
$O10-H10A\cdots O3^{iv}$	0.81(2)	1.91 (2)	2.700 (3)	165 (4)
$O7 - H7B \cdots O8^{v}$	0.83 (2)	1.83 (2)	2.658 (3)	175 (3)
$O7 - H7A \cdots O10^{ii}$	0.80(2)	1.83 (2)	2.625 (3)	172 (3)
$O1-H1O\cdots O9^{vi}$	0.78 (2)	1.95 (2)	2.711 (3)	166 (3)
$O1-H1O\cdots O9^{vi}$	0.78 (2)	1.95 (2)	2.711 (3)	166 (3)
$O7 - H7A \cdots O10^{ii}$	0.80(2)	1.83 (2)	2.625 (3)	172 (3)
$O7 - H7B \cdot \cdot \cdot O8^{v}$	0.83 (2)	1.83 (2)	2.658 (3)	175 (3)
$O10-H10A\cdots O3^{iv}$	0.81(2)	1.91 (2)	2.700 (3)	165 (4)
$O10-H10B\cdots O9^{iii}$	0.81 (2)	1.96 (2)	2.751 (3)	165 (4)
Symmetry codes: (i)	-x + 1, -y + 2	$z_{i}, -z + 1;$ (ii)	-x + 1, -y + 1	1, -z + 1; (iii)
$\begin{array}{l} -x, -y+1, -z+1; \\ -x+\frac{1}{2}, y+\frac{1}{2}, -z+\frac{3}{2}. \end{array}$	(1V) $x - \frac{1}{2}, -$	$y + \frac{1}{2}, z - \frac{1}{2};$	(v) $x + 1, y$	z, z + 1; (V1)

(Fig. 2). One O atom of the sulfate moiety coordinates to one of the three independent Cu^{II} atoms as basal donor [Cu1-O2: 1.976 (2) Å], and to the corresponding symmetry-related Cu^{II} atom as apical donor [Cu1'-O2: 2.277 (2) Å]. The other two O atoms of the sulfate moiety coordinate apically to the other two Cu atoms of the symmetry-related trinuclear unit, whereas the fourth O atom accepts a hydrogen bond from the solvent water molecule (Table 1). A square-pyramidal coordination geometry around each of the Cu^{II} atoms is completed by the bridging μ -pyrazolate and μ_3 -OH moieties, and terminal water or dimethylformamide molecules in basal positions. The $Cu_3(\mu$ -4-Cl-pz)₃ core is relatively flat, with dihedral angles between the 4-chloropyrazolate mean planes and the Cu₃ mean plane of 1.74 (6), 7.20 (6) and 14.10 (4)°. The μ_3 -OH group is located 0.5615 (15) Å above the Cu_3 mean plane. Bond lengths and angles within the $Cu_3(\mu$ -4-Cl-pz)₃ framework are similar to the ones found in related complexes (Mezei et al., 2007; Rivera-Carrillo et al., 2008). The sulfatebridged dimeric structure presented here is reminiscent of dimeric trinuclear copper-pyrazolate complexes with bridging carboxylates (Mezei et al., 2004; Casarin et al., 2005).

Dimeric structure formed by mutual apical coordination of three sulfate O atoms to the Cu atoms of the symmetry-related trinuclear copper(II)–pyrazolate complex.

research communications

Table 2 Experimental details.

Crystal data Chemical formula

 M_r Crystal system, space group Temperature (K) *a*, *b*, *c* (Å)

 $\beta (^{\circ})$ V (Å³) Ζ

 T_{\min}, T_{\max}

 R_{int}

Radiation type $\mu \,({\rm mm}^{-1})$ Crystal size (mm)

Data collection Diffractometer Absorption correction

 $(\sin\,\theta/\lambda)_{max}\,(\mathring{A}^{-1})$

[Cu₆(OH)₂(SO₄)₂(C₃H₂ClN₂)₆- $(C_3H_7NO)_2(H_2O)_2]\cdot 4C_3H_7NO$ $2H_2O$ $1727.\overline{1}1$ Monoclinic, $P2_1/n$ 100 12.7038 (1), 16.5265 (2), 16.6830(2)109.774 (1) 3296.05 (6) 2 Μο Κα 2.29 $0.24 \times 0.10 \times 0.05$ Bruker APEXII CCD Multi-scan (SADABS; Bruker, 2014)0.610, 0.894 39853, 8504, 6351 0.061 0.676

0.035, 0.075, 1.01

refinement

0.59, -0.52

H atoms treated by a mixture of independent and constrained

8504 418

5

Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ No. of reflections No. of parameters No. of restraints H-atom treatment

 $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$

No. of measured, independent and

observed $[I > 2\sigma(I)]$ reflections

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXS97 and SHELXTL (Sheldrick, 2008) and SHELXL2014 (Sheldrick, 2015).

3. Supramolecular features

The dimeric metal complex participates in an intricate hydrogen-bond network with the solvent DMF and H₂O molecules. Numerical details of the hydrogen bonding are given in Table 1. The μ_3 -OH group donates a hydrogen bond to a solvent DMF molecule $[O1 \cdots O9: 2.711 (3) \text{ Å}]$, whereas the coordinating water molecule donates two hydrogen bonds, one to the solvent water molecule $[O7 \cdots O10; 2.625 (3) \text{ Å}]$ and one to the other independent DMF solvent molecule $[O7 \cdots O8: 2.658 (3) \text{ Å}]$. The solvent water molecule donates two hydrogen bonds, one to a sulfate O atom $[O10 \cdots O3:$ 2.700 (3) Å] and one to a DMF solvent molecule $[O10 \cdots O9:$ 2.751 (3) Å]. Within the dimeric unit, $\pi - \pi$ interactions are identified between pairs of pyrazolate moieties along the sulfate-bridged sides of the trinuclear units [centroid-centroid distance: 3.641 (1) Å; dihedral angle: 7.5 (1) $^{\circ}$].

4. Database survey

A search of the Cambridge Structural Database (Groom et al., 2016) reveals only three trinuclear copper pyrazolate structures that contain sulfate (Zheng et al., 2008; Di Nicola et al., 2010). In all three cases, the sulfate ion coordinates weakly at the apical position of the copper cations (Cu-O bonds lengths >2.3 Å). Thus, the complex presented here is the first example of a trinuclear copper pyrazolate with the sulfate anion strongly binding at the basal position to a pentacoordinate Cu-atom [Cu1-O2: 1.976 (2) Å].

5. Synthesis and crystallization

Copper sulfate pentahydrate (1.000 g), 4-chloropyrazole (411 mg) and Et₃N (1.2 mL) were dissolved in DMF (20 mL) vielding a deep-blue solution. Dark-blue prismatic crystals of the title compound were obtained upon slow evaporation of the solvent.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. C-H hydrogen atoms were placed in idealized positions and refined using the riding-model approximation. The OH hydrogen atoms were located from difference Fourier maps; their displacement parameters were fixed to be 20% larger than those of the attached O atoms. O-H distances were restrained to 0.82 (2) Å.

Acknowledgements

This material is based upon work supported by the National Science Foundation under grant No. CHE-1404730.

References

- Ahmed, B. M., Calco, B. & Mezei, G. (2016). Dalton Trans. 45, 8327-8339
- Ahmed, B. M. & Mezei, G. (2016). Inorg. Chem. Submitted.
- Ahmed, B. M., Szymczyna, B. R., Jianrattanasawat, S., Surmann, S. A. & Mezei, G. (2016). Chem. Eur. J. 22, 5499-5503.
- Boča, R., Dlháň, L., Mezei, G., Ortiz-Pérez, T., Raptis, R. G. & Telser, J. (2003). Inorg. Chem. 42, 5801-5803.
- Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Casarin, M., Corvaja, C., Di Nicola, C., Falcomer, D., Franco, L., Monari, M., Pandolfo, L., Pettinari, C. & Piccinelli, F. (2005). Inorg. Chem. 44, 6265-6276.
- Di Nicola, C., Garau, F., Gazzano, M., Monari, M., Pandolfo, L., Pettinari, C. & Pettinari, R. (2010). Cryst. Growth Des. 10, 3120-3131.
- Di Nicola, C., Garau, F., Karabach, Y. Y., Martins, L. M. D. R. S., Monari, M., Pandolfo, L., Pettinari, C. & Pombeiro, A. J. L. (2009). Eur. J. Inorg. Chem. pp. 666-676.
- Fernando, I. R., Surmann, S. A., Urech, A. A., Poulsen, A. M. & Mezei, G. (2012). Chem. Commun. 48, 6860-6862.
- Fu, M., Imai, T., Han, T.-H. & Lee, Y. S. (2015). Science, 350, 655-658.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.
- Grundner, S., Markovits, M. A. C., Li, G., Tromp, M., Pidko, E. A., Hensen, E. J. M., Jentys, A., Sanchez-Sanchez, M. & Lercher, J. A. (2015). Nat. Commun. 6, 7546.
- Halcrow, M. A. (2009). Dalton Trans. pp. 2059-2073.
- Lionetti, D., Day, M. W. & Agapie, T. (2013). Chem. Sci. 4, 785-790.
- Mezei, G. (2015). Chem. Commun. 51, 10341-10344.
- Mezei, G., Rivera-Carrillo, M. & Raptis, R. G. (2004). Inorg. Chim. Acta, 357, 3721-3732.

- Mezei, G., Rivera-Carrillo, M. & Raptis, R. G. (2007). *Dalton Trans.* pp. 37–40.
- Mimmi, M. C., Gullotti, M., Santagostini, L., Battaini, G., Monzani, E., Pagliarin, R., Zoppellaro, G. & Casella, L. (2004). *Dalton Trans.* pp. 2192–2201.
- Rivera-Carrillo, M., Chakraborty, I., Mezei, G., Webster, R. D. & Raptis, R. G. (2008). *Inorg. Chem.* 47, 7644–7650.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Solomon, E. I., Heppner, D. E., Johnston, E. M., Ginsbach, J. W., Cirera, J., Qayyum, M., Kieber-Emmons, M. T., Kjaergaard, C. H., Hadt, R. G. & Tian, L. (2014). *Chem. Rev.* **114**, 3659–3853.
- Solomon, E. I., Sundaram, U. M. & Machonkin, T. E. (1996). *Chem. Rev.* **96**, 2563–2606.
- Spielberg, E. T., Gilb, A., Plaul, D., Geibig, D., Hornig, D., Schuch, D., Buchholz, A., Ardavan, A. & Plass, W. (2015). *Inorg. Chem.* 54, 3432–3438.
- Tsui, E. Y., Day, M. W. & Agapie, T. (2011). Angew. Chem. Int. Ed. 50, 1668–1672.
- Viciano-Chumillas, M., Tanase, S., de Jongh, L. J. & Reedijk, J. (2010). *Eur. J. Inorg. Chem.* pp. 3403–3418.
- Zheng, L.-L., Leng, J.-D., Zheng, S.-L., Zhaxi, Y.-C., Zhang, W.-X. & Tong, M.-L. (2008). *CrystEngComm*, **10**, 1467–1473.

supporting information

Acta Cryst. (2016). E72, 1064-1067 [https://doi.org/10.1107/S2056989016010719]

Sulfate-bridged dimeric trinuclear copper(II)-pyrazolate complex with three different terminal ligands

Gellert Mezei

Computing details

Data collection: *APEX2* (Bruker, 2014); cell refinement: *SAINT* (Bruker, 2014); data reduction: *SAINT* (Bruker, 2014); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Diaquahexakis(μ -4-chloropyrazolato- $\kappa^2 N$:N')bis(N,N-dimethylformamide)di- μ_3 -hydroxido-bis(μ_4 -sulfato- $\kappa^4 O$:O':O'':O'')hexacopper(II) N,N-dimethylformamide tetrasolvate dihydrate

Crystal data

```
[Cu_6(OH)_2(SO_4)_2(C_3H_2CIN_2)_6(C_3H_7NO)_2(H_2O)_2] \cdot 4C_3H_7NO \cdot 2H_2Q = 1.740 \text{ Mg m}^{-3}
M_r = 1727.11
                                                                               Mo K\alpha radiation, \lambda = 0.71073 Å
Monoclinic, P2_1/n
                                                                               Cell parameters from 6640
a = 12.7038(1) Å
                                                                                  reflections
b = 16.5265 (2) Å
                                                                               \theta = 2.6 - 26.9^{\circ}
c = 16.6830(2) Å
                                                                               \mu = 2.29 \text{ mm}^{-1}
\beta = 109.774 (1)^{\circ}
                                                                               T = 100 \text{ K}
V = 3296.05 (6) Å<sup>3</sup>
                                                                               Prism, blue
Z = 2
                                                                               0.24\times0.10\times0.05~mm
F(000) = 1748
Data collection
Bruker APEXII CCD
                                                                               8504 independent reflections
                                                                               6351 reflections with I > 2\sigma(I)
   diffractometer
\varphi and \omega scans
                                                                               R_{\rm int} = 0.061
Absorption correction: multi-scan
                                                                               \theta_{\text{max}} = 28.7^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}
   (SADABS; Bruker, 2014)
                                                                               h = -17 \rightarrow 17
T_{\rm min} = 0.610, T_{\rm max} = 0.894
                                                                               k = -20 \rightarrow 22
39853 measured reflections
                                                                               l = -22 \rightarrow 22
Refinement
Refinement on F^2
                                                                               Hydrogen site location: mixed
Least-squares matrix: full
                                                                               H atoms treated by a mixture of independent
R[F^2 > 2\sigma(F^2)] = 0.035
                                                                                  and constrained refinement
wR(F^2) = 0.075
                                                                               w = 1/[\sigma^2(F_o^2) + (0.0294P)^2 + 1.238P]
                                                                                  where P = (F_o^2 + 2F_c^2)/3
S = 1.01
8504 reflections
                                                                               (\Delta/\sigma)_{\rm max} = 0.001
418 parameters
                                                                               \Delta \rho_{\rm max} = 0.59 \text{ e} \text{ Å}^{-3}
5 restraints
                                                                               \Delta \rho_{\rm min} = -0.52 \ {\rm e} \ {\rm \AA}^{-3}
```

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cul	0.88533 (2)	0.98432 (2)	0.92266 (2)	0.01205 (7)	
Cu2	0.84732 (2)	0.78607 (2)	0.89552 (2)	0.01339 (8)	
Cu3	0.71256 (3)	0.89070 (2)	1.00006 (2)	0.01415 (8)	
S1	1.02182 (5)	1.14500 (4)	0.90916 (4)	0.01287 (13)	
C11	1.14671 (7)	0.88248 (5)	0.71858 (6)	0.0362 (2)	
Cl2	0.50045 (6)	0.57973 (5)	0.93424 (6)	0.0375 (2)	
C13	0.69134 (6)	1.23152 (4)	1.07089 (5)	0.02872 (17)	
01	0.78020 (14)	0.89300 (10)	0.90866 (11)	0.0124 (4)	
H1O	0.7316 (19)	0.8995 (17)	0.8661 (13)	0.015*	
O2	1.00215 (13)	1.06890 (10)	0.95164 (11)	0.0137 (4)	
O3	0.92608 (14)	1.15827 (11)	0.83199 (12)	0.0181 (4)	
O4	1.12603 (14)	1.13455 (11)	0.89049 (12)	0.0162 (4)	
05	1.03357 (14)	1.21179 (10)	0.96983 (11)	0.0156 (4)	
O6	0.62509 (15)	0.88937 (11)	1.07932 (12)	0.0193 (4)	
O7	0.89793 (15)	0.68175 (11)	0.86138 (13)	0.0191 (4)	
H7A	0.855 (2)	0.6528 (16)	0.8274 (16)	0.023*	
H7B	0.9493 (19)	0.6535 (16)	0.8930 (17)	0.023*	
08	0.07007 (16)	0.59491 (12)	-0.04174 (13)	0.0265 (5)	
09	-0.13195 (15)	0.43846 (12)	0.74393 (13)	0.0264 (5)	
O10	0.24177 (18)	0.42323 (14)	0.23718 (17)	0.0412 (7)	
H10A	0.293 (2)	0.401 (2)	0.2728 (19)	0.049*	
H10B	0.219 (3)	0.4655 (15)	0.251 (2)	0.049*	
N1	0.95307 (17)	0.92644 (13)	0.85102 (14)	0.0147 (5)	
N2	0.94773 (17)	0.84403 (13)	0.84797 (14)	0.0149 (5)	
N3	0.72096 (17)	0.73695 (13)	0.92013 (14)	0.0155 (5)	
N4	0.67343 (17)	0.77874 (13)	0.96960 (14)	0.0154 (5)	
N5	0.72004 (17)	1.00879 (13)	1.00420 (14)	0.0156 (5)	
N6	0.79401 (16)	1.04688 (13)	0.97334 (14)	0.0142 (5)	
N7	0.61860 (18)	0.90095 (14)	1.21195 (15)	0.0201 (5)	
N8	0.21667 (19)	0.62870 (14)	0.07710 (15)	0.0218 (5)	
N9	0.03464 (18)	0.37758 (13)	0.81585 (15)	0.0195 (5)	
C1	1.0125 (2)	0.81766 (16)	0.80436 (17)	0.0175 (6)	
H1	1.0244	0.7638	0.7937	0.021*	
C2	1.0585 (2)	0.88365 (17)	0.77797 (18)	0.0196 (6)	
C3	1.0202 (2)	0.95107 (17)	0.80841 (17)	0.0183 (6)	
Н3	1.0378	1.0045	0.8008	0.022*	
C4	0.5943 (2)	0.73193 (16)	0.98217 (18)	0.0185 (6)	
H4A	0.5498	0.7459	1.0143	0.022*	
C5	0.5894 (2)	0.65981 (16)	0.93968 (19)	0.0207 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C6	0.6705 (2)	0.66438 (16)	0.90177 (19)	0.0201 (6)
H6	0.6874	0.6241	0.8691	0.024*
C7	0.7943 (2)	1.12579 (16)	0.99150 (18)	0.0175 (6)
H7	0.8377	1.1651	0.9777	0.021*
C8	0.7200 (2)	1.13943 (16)	1.03396 (18)	0.0192 (6)
C9	0.6751 (2)	1.06498 (16)	1.04087 (18)	0.0187 (6)
H9	0.6221	1.0552	1.0668	0.022*
C10	0.6727 (2)	0.89642 (16)	1.15752 (19)	0.0199 (6)
H10	0.7504	0.8986	1.1785	0.024*
C11	0.4967 (2)	0.8972 (2)	1.1816 (2)	0.0321 (8)
H11A	0.4714	0.8602	1.1347	0.048*
H11B	0.4667	0.9500	1.1634	0.048*
H11C	0.4719	0.8790	1.2269	0.048*
C12	0.6772 (3)	0.9130 (2)	1.30266 (19)	0.0300 (7)
H12A	0.6561	0.9643	1.3197	0.045*
H12B	0.7565	0.9124	1.3138	0.045*
H12C	0.6578	0.8705	1.3342	0.045*
C13	0.1149 (2)	0.63767 (17)	0.02161 (19)	0.0216 (6)
H13	0.0728	0.6803	0.0310	0.026*
C14	0.2914 (3)	0.5656 (2)	0.0675 (2)	0.0379 (8)
H14A	0.2527	0.5324	0.0193	0.057*
H14B	0.3153	0.5328	0.1180	0.057*
H14C	0.3554	0.5899	0.0589	0.057*
C15	0.2608 (3)	0.6836 (2)	0.1482 (2)	0.0341 (8)
H15A	0.2041	0.7218	0.1485	0.051*
H15B	0.3241	0.7119	0.1428	0.051*
H15C	0.2836	0.6534	0.2005	0.051*
C16	-0.0465 (2)	0.43014 (17)	0.80778 (19)	0.0225 (6)
H16	-0.0392	0.4640	0.8539	0.027*
C17	0.1313 (2)	0.37298 (19)	0.89417 (19)	0.0273 (7)
H17A	0.1206	0.4090	0.9359	0.041*
H17B	0.1975	0.3884	0.8824	0.041*
H17C	0.1394	0.3186	0.9156	0.041*
C18	0.0309 (2)	0.32090 (18)	0.7482 (2)	0.0278 (7)
H18A	-0.0347	0.3310	0.6997	0.042*
H18B	0.0286	0.2666	0.7679	0.042*
H18C	0.0963	0.3277	0.7324	0.042*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.00914 (14)	0.01448 (16)	0.01225 (16)	-0.00096 (12)	0.00324 (12)	-0.00052 (13)
Cu2	0.01008 (14)	0.01517 (16)	0.01420 (17)	-0.00047 (12)	0.00315 (12)	-0.00099 (13)
Cu3	0.01137 (15)	0.01748 (17)	0.01439 (17)	-0.00170 (12)	0.00540 (13)	-0.00102 (13)
S1	0.0095 (3)	0.0152 (3)	0.0120 (3)	-0.0015 (2)	0.0013 (2)	0.0007 (2)
Cl1	0.0364 (4)	0.0423 (5)	0.0444 (5)	0.0025 (4)	0.0326 (4)	-0.0004 (4)
Cl2	0.0273 (4)	0.0200 (4)	0.0715 (7)	-0.0091 (3)	0.0247 (4)	-0.0017 (4)
Cl3	0.0227 (3)	0.0219 (4)	0.0440 (5)	0.0035 (3)	0.0146 (3)	-0.0092 (3)

supporting information

01	0.0079 (8)	0.0164 (9)	0.0111 (10)	-0.0004 (7)	0.0010 (7)	-0.0014 (8)
O2	0.0103 (8)	0.0159 (9)	0.0139 (10)	-0.0013 (7)	0.0025 (7)	0.0031 (7)
O3	0.0127 (9)	0.0206 (10)	0.0144 (10)	-0.0021 (7)	-0.0039 (8)	0.0042 (8)
O4	0.0118 (8)	0.0215 (10)	0.0156 (10)	-0.0023 (7)	0.0052 (8)	-0.0007 (8)
O5	0.0130 (8)	0.0163 (9)	0.0156 (10)	-0.0003 (7)	0.0024 (7)	-0.0019 (8)
O6	0.0172 (9)	0.0256 (11)	0.0172 (11)	-0.0035 (8)	0.0088 (8)	-0.0015 (8)
O7	0.0145 (9)	0.0183 (10)	0.0205 (11)	0.0018 (7)	0.0006 (8)	-0.0050 (8)
08	0.0224 (10)	0.0286 (11)	0.0237 (12)	0.0038 (9)	0.0014 (9)	-0.0041 (9)
09	0.0201 (10)	0.0254 (11)	0.0236 (12)	0.0033 (8)	-0.0059 (9)	-0.0051 (9)
O10	0.0244 (12)	0.0337 (14)	0.0449 (16)	0.0136 (10)	-0.0152 (11)	-0.0228 (12)
N1	0.0117 (10)	0.0180 (11)	0.0149 (12)	-0.0020 (8)	0.0053 (9)	-0.0007 (9)
N2	0.0133 (10)	0.0160 (11)	0.0149 (12)	0.0002 (8)	0.0043 (9)	-0.0030 (9)
N3	0.0117 (10)	0.0182 (12)	0.0145 (12)	-0.0015 (8)	0.0015 (9)	0.0001 (9)
N4	0.0115 (10)	0.0198 (12)	0.0159 (12)	0.0005 (9)	0.0060 (9)	0.0016 (9)
N5	0.0115 (10)	0.0185 (12)	0.0172 (12)	-0.0012 (8)	0.0054 (9)	-0.0005 (9)
N6	0.0102 (10)	0.0181 (11)	0.0142 (12)	-0.0011 (8)	0.0040 (9)	0.0005 (9)
N7	0.0206 (12)	0.0241 (13)	0.0179 (13)	0.0045 (10)	0.0094 (10)	0.0009 (10)
N8	0.0191 (12)	0.0230 (13)	0.0195 (13)	0.0034 (10)	0.0015 (10)	0.0023 (10)
N9	0.0155 (11)	0.0210 (12)	0.0177 (13)	-0.0006 (9)	-0.0002 (10)	0.0024 (10)
C1	0.0143 (12)	0.0209 (14)	0.0164 (14)	0.0012 (10)	0.0039 (11)	-0.0029 (11)
C2	0.0148 (13)	0.0284 (15)	0.0189 (15)	0.0016 (11)	0.0101 (12)	-0.0021 (12)
C3	0.0155 (13)	0.0226 (14)	0.0188 (15)	-0.0024 (11)	0.0084 (11)	0.0005 (11)
C4	0.0122 (12)	0.0206 (14)	0.0238 (16)	-0.0019 (10)	0.0075 (11)	0.0015 (11)
C5	0.0135 (12)	0.0168 (14)	0.0310 (17)	-0.0026 (10)	0.0065 (12)	0.0027 (12)
C6	0.0163 (13)	0.0164 (14)	0.0254 (16)	0.0002 (10)	0.0040 (12)	0.0000 (12)
C7	0.0131 (12)	0.0157 (13)	0.0219 (15)	0.0007 (10)	0.0036 (11)	-0.0001 (11)
C8	0.0138 (12)	0.0187 (14)	0.0248 (16)	0.0031 (10)	0.0061 (12)	-0.0033 (12)
C9	0.0150 (13)	0.0237 (15)	0.0191 (15)	0.0034 (11)	0.0077 (11)	-0.0014 (12)
C10	0.0197 (14)	0.0207 (14)	0.0226 (16)	-0.0017 (11)	0.0114 (12)	-0.0013 (12)
C11	0.0202 (15)	0.052 (2)	0.0276 (18)	0.0047 (14)	0.0125 (14)	0.0045 (15)
C12	0.0308 (16)	0.0405 (19)	0.0193 (16)	0.0059 (14)	0.0093 (13)	-0.0009 (14)
C13	0.0174 (13)	0.0245 (15)	0.0217 (16)	0.0035 (11)	0.0051 (12)	0.0018 (12)
C14	0.0251 (16)	0.039 (2)	0.043 (2)	0.0143 (14)	0.0026 (15)	0.0005 (16)
C15	0.0299 (17)	0.0330 (18)	0.0291 (19)	-0.0012 (14)	-0.0036 (14)	-0.0036 (15)
C16	0.0213 (14)	0.0230 (15)	0.0206 (16)	-0.0041 (11)	0.0035 (12)	-0.0012 (12)
C17	0.0187 (14)	0.0349 (18)	0.0221 (17)	-0.0027 (12)	-0.0013 (12)	0.0097 (13)
C18	0.0240 (15)	0.0244 (16)	0.0324 (19)	0.0040 (12)	0.0063 (14)	0.0025 (13)

Geometric parameters (Å, °)

Cu1—N1	1.944 (2)	N7—C10	1.313 (3)
Cu1—N6	1.948 (2)	N7—C12	1.457 (4)
Cu1—O2	1.9760 (17)	N7—C11	1.458 (3)
Cu1—O1	1.9761 (17)	N8—C13	1.319 (3)
Cu1—O2 ⁱ	2.2773 (17)	N8—C15	1.447 (4)
Cu2—N3	1.962 (2)	N8—C14	1.455 (4)
Cu2—N2	1.964 (2)	N9—C16	1.320 (3)
Cu2—O7	1.9895 (19)	N9—C18	1.455 (4)

a a at		NIA 015	1 4 (1 (2))
Cu2—O1	2.0061 (17)	N9—C17	1.461 (3)
Cu2—O5 ⁱ	2.2444 (18)	C1—C2	1.378 (4)
Cu3—N4	1.939 (2)	C1—H1	0.9300
Cu3—N5	1.954 (2)	C2—C3	1.380 (4)
Cu3—O1	1.9879 (18)	С3—Н3	0.9300
Cu3—06	1.9945 (18)	C4—C5	1.377 (4)
Cu3—O4 ⁱ	2,2759 (18)	C4—H4A	0.9300
S1-03	1 4579 (18)	C5—C6	1 382 (4)
S1_04	1.4691 (18)	С6—Н6	0.9300
S1_S1	1.4091(10) 1.4708(18)	$C7 C^{\circ}$	1.277(4)
S1_03	1.4700(10) 1.5055(10)	C_{1}	1.377(4)
SI02	1.5055 (18)	C/-H/	0.9300
	1.729 (3)	C8-C9	1.3//(4)
C12—C5	1.723 (3)	С9—Н9	0.9300
Cl3—C8	1.726 (3)	С10—Н10	0.9300
01—H10	0.775 (17)	C11—H11A	0.9600
O2—Cu1 ⁱ	2.2774 (17)	C11—H11B	0.9600
O4—Cu3 ⁱ	2.2759 (18)	C11—H11C	0.9600
O5—Cu2 ⁱ	2.2444 (18)	C12—H12A	0.9600
O6—C10	1.244 (3)	C12—H12B	0.9600
O7—H7A	0.801 (17)	C12—H12C	0.9600
O7—H7B	0.831 (17)	С13—Н13	0.9300
O8—C13	1.238 (3)	C14—H14A	0.9600
09—C16	1.245 (3)	C14—H14B	0.9600
010—H10A	0.808(18)	C14 - H14C	0.9600
O10_H10B	0.814(18)	C15-H15A	0.9600
N1_C3	1345(3)	C15—H15B	0.9600
NI N2	1.345(3) 1.264(2)	C15_H15C	0.9000
N2 C1	1.304(3) 1.242(2)		0.9000
N2 C(1.342(3)		0.9300
	1.545 (3)		0.9600
N3—N4	1.364 (3)		0.9600
N4—C4	1.340 (3)	С17—Н17С	0.9600
N5—C9	1.341 (3)	C18—H18A	0.9600
N5—N6	1.368 (3)	C18—H18B	0.9600
N6—C7	1.339 (3)	C18—H18C	0.9600
N1—Cu1—N6	168.69 (9)	C16—N9—C18	121.7 (2)
N1—Cu1—O2	92.66 (8)	C16—N9—C17	121.1 (3)
N6—Cu1—O2	91.53 (8)	C18—N9—C17	117.2 (2)
N1—Cu1—O1	88.49 (8)	N2—C1—C2	108.7(2)
N6—Cu1—O1	88.78 (8)	N2—C1—H1	125.7
02—Cu1—O1	172 22 (7)	C2—C1—H1	125.7
$N1-Cu1-O2^{i}$	96.06.(8)	C1 - C2 - C3	106.3(2)
$N6-Cu1-O2^{i}$	94 92 (8)	C1 - C2 - C11	127.0(2)
Ω^2 —Cu1— Ω^2^i	82.09(7)	C_{3} C_{2} C_{11}	1267(2)
$01 - Cu1 - 02^{i}$	90.14 (7)	N1 - C3 - C2	1084(2)
$N3 - Cu^2 - N^2$	167.22 (9)	N1_C3_H3	125.8
$N_3 C_{11} 2 O_7$	03.80(8)	$C_2 C_3 H_3$	125.0
N2 Cy2 O7	20.07 (0) 20.42 (0)	$C_2 = C_3 = 113$	123.0
1N2 - Cu2 - CU/	07.43 (0)	114-04-03	100.9 (2)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3—Cu2—O1	86.18 (8)	N4—C4—H4A	125.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2—Cu2—O1	88.44 (8)	C5—C4—H4A	125.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07—Cu2—O1	170.11 (8)	C4—C5—C6	106.1 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$N3$ — $Cu2$ — $O5^i$	96.85 (8)	C4—C5—C12	127.3 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N_2 —Cu2—O5 ⁱ	94.96 (8)	C6-C5-Cl2	126.6(2)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$07-Cu^2-05^{i}$	97 26 (7)	N3-C6-C5	1084(2)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$01 - Cu^2 - 05^i$	92.54 (7)	N3—C6—H6	125.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N4—Cu3—N5	165 39 (9)	C5-C6-H6	125.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N4—Cu3—O1	87 49 (8)	N6-C7-C8	109.0(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N5-Cu3-01	88 83 (8)	N6-C7-H7	125.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N4—Cu3—O6	90.70 (8)	C8-C7-H7	125.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N5-Cu3-06	91.08 (8)	C_{1}^{-}	125.5 105.8(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$01 - Cu^{3} - 06$	$172 \ 37 \ (7)$	C7 - C8 - C13	105.0(2) 126.3(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N_{4} C_{u3} O_{4}^{i}	96 70 (8)	$C_{9} = C_{8} = C_{13}$	120.3(2) 127.9(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N5 Cu3 $O4^{i}$	97.76 (8)	N5 C9 C8	127.9(2) 109.2(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Omega_1 = \Omega_2 = \Omega_4^{i}$	96.49 (7)	N5 C9 H9	109.2(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O_1 = Cu_3 = O_4^{i}$	90.49(7)		125.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 - cu - 04	91.08(7)	$C_{0} = C_{10} = N_{7}$	123.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	03 - 51 - 04	111.90(11) 110.78(11)	O_{0} C_{10} H_{10}	123.2 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	03-51-05	110.78 (11)	N7 C10 H10	110.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	04 - 51 - 03	110.20(10) 108.64(10)	N = C I U = H I U	118.4
$\begin{array}{llllllllllllllllllllllllllllllllllll$	03 - 51 - 02	108.04(10) 107.86(10)	N/CIIHIIA	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	04 - 51 - 02	107.80(10) 107.20(10)	N/CIIHIIB	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	05 - 51 - 02	107.30(10)		109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cul=01=Cu3	111.97 (8)		109.5
Cu3-O1-Cu2112.15 (8)H11B-C11-H11C109.5Cu1-O1-H1O107 (2)N7-C12-H12A109.5Cu3-O1-H1O107 (2)N7-C12-H12B109.5Cu2-O1-H1O105 (2)H12A-C12-H12B109.5S1-O2-Cu1134.93 (11)N7-C12-H12C109.5S1-O2-Cu1i127.14 (10)H12A-C12-H12C109.5Cu1-O2-Cu1i97.91 (7)H12B-C12-H12C109.5S1-O4-Cu3i118.91 (11)08-C13-N8126.4 (3)S1-O5-Cu2i125.29 (10)08-C13-H13116.8Cu2-O7-H7A121 (2)N8-C14-H14A109.5Cu2-O7-H7B125 (2)N8-C14-H14B109.5H10A-O10-H10B118 (4)N8-C14-H14B109.5C3-N1-N2108.4 (2)H14A-C14-H14C109.5C3-N1-Cu1131.89 (19)H14B-C14-H14C109.5C1-N2-N1108.2 (2)N8-C15-H15A109.5C1-N2-Cu2131.42 (18)H15A-C15-H15B109.5N1-N2-Cu2120.19 (15)N8-C15-H15C109.5C6-N3-N4108.4 (2)H15A-C15-H15C109.5	Cul = Ol = Cu2	112.98 (8)	HIIA—CII—HIIC	109.5
Cu1—O1—H1O $107 (2)$ N7—C12—H12A 109.5 Cu3—O1—H1O $107 (2)$ N7—C12—H12B 109.5 Cu2—O1—H1O $105 (2)$ $H12A$ —C12—H12B 109.5 S1—O2—Cu1 $134.93 (11)$ N7—C12—H12C 109.5 S1—O2—Cu1 ⁱ $127.14 (10)$ $H12A$ —C12—H12C 109.5 Cu1—O2—Cu1 ⁱ $97.91 (7)$ $H12B$ —C12—H12C 109.5 S1—O4—Cu3 ⁱ $118.91 (11)$ $O8$ —C13—N8 $126.4 (3)$ S1—O5—Cu2 ⁱ $125.29 (10)$ $O8$ —C13—H13 116.8 Cu2—O7—H7A $121 (2)$ $N8$ —C14—H14A 109.5 Cu2—O7—H7B $125 (2)$ $N8$ —C14—H14B 109.5 H7A—O7—H7B $108 (3)$ $H14A$ —C14—H14B 109.5 Cu3—N1—N2 $108.4 (2)$ $H14A$ —C14—H14C 109.5 Cu3—N1—Cu1 $131.89 (19)$ $H14B$ —C14—H14C 109.5 Cu3—N1—Cu1 $119.18 (16)$ $N8$ —C15—H15A 109.5 Cu1—N2—Cu2 $131.42 (18)$ $H15A$ —C15—H15B 109.5 N1—N2—Cu2 $120.19 (15)$ $N8$ —C15—H15C 109.5	Cu3—01—Cu2	112.15 (8)	HIIB—CII—HIIC	109.5
Cu3-O1-HIO $107(2)$ $N7-C12-H12B$ 109.5 Cu2-O1-HIO $105(2)$ $H12A-C12-H12B$ 109.5 SI-O2-Cu1 $134.93(11)$ $N7-C12-H12C$ 109.5 SI-O2-Cu1i $127.14(10)$ $H12A-C12-H12C$ 109.5 Cu1-O2-Cu1i $97.91(7)$ $H12B-C12-H12C$ 109.5 SI-O4-Cu3i $118.91(11)$ $O8-C13-N8$ $126.4(3)$ SI-O5-Cu2i $125.29(10)$ $O8-C13-H13$ 116.8 Cu2-O7-H7A $121(2)$ $N8-C14-H14A$ 109.5 Cu2-O7-H7B $125(2)$ $N8-C14-H14B$ 109.5 H10A-O10-H10B $118(4)$ $N8-C14-H14B$ 109.5 C3-N1-N2 $108.4(2)$ $H14A-C14-H14C$ 109.5 C3-N1-Cu1 $131.89(19)$ $H14B-C14-H14C$ 109.5 C1-N2-N1 $108.2(2)$ $N8-C15-H15B$ 109.5 C1-N2-Cu2 $131.42(18)$ $H15A-C15-H15B$ 109.5 N1-N2-Cu2 $120.19(15)$ $N8-C15-H15C$ 109.5	Cul—Ol—HIO	107 (2)	N/C12H12A	109.5
Cu2—O1—H1O105 (2)H12A—C12—H12B109.5S1—O2—Cu1134.93 (11)N7—C12—H12C109.5S1—O2—Cu1i127.14 (10)H12A—C12—H12C109.5Cu1—O2—Cu1i97.91 (7)H12B—C12—H12C109.5S1—O4—Cu3i118.91 (11)O8—C13—N8126.4 (3)S1—O5—Cu2i125.29 (10)O8—C13—H13116.8Cu2—O7—H7A121 (2)N8—C14—H14A109.5Cu2—O7—H7B125 (2)N8—C14—H14B109.5H10A—O10—H10B118 (4)N8—C14—H14B109.5C3—N1—N2108.4 (2)H14A—C14—H14C109.5C3—N1—Cu1131.89 (19)H14B—C14—H14C109.5C1—N2—N1108.2 (2)N8—C15—H15A109.5C1—N2—Cu2131.42 (18)H15A—C15—H15B109.5N1—N2—Cu2120.19 (15)N8—C15—H15C109.5C6—N3—N4108.4 (2)H15A—C15—H15C109.5	Cu3—OI—HIO	107 (2)	N/—C12—H12B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu2—O1—H1O	105 (2)	H12A—C12—H12B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\$1—O2—Cu1	134.93 (11)	N7—C12—H12C	109.5
Cu1-O2-Cu1i97.91 (7)H12B-C12-H12C109.5S1-O4-Cu3i118.91 (11)O8-C13-N8126.4 (3)S1-O5-Cu2i125.29 (10)O8-C13-H13116.8C10-O6-Cu3120.80 (17)N8-C13-H13116.8Cu2-O7-H7A121 (2)N8-C14-H14A109.5Cu2-O7-H7B125 (2)N8-C14-H14B109.5H7A-O7-H7B108 (3)H14A-C14-H14B109.5H10A-O10-H10B118 (4)N8-C14-H14C109.5C3-N1-N2108.4 (2)H14A-C14-H14C109.5C3-N1-Cu1131.89 (19)H14B-C14-H14C109.5C1-N2-N1108.2 (2)N8-C15-H15A109.5C1-N2-Cu2131.42 (18)H15A-C15-H15B109.5N1-N2-Cu2120.19 (15)N8-C15-H15C109.5C6-N3-N4108.4 (2)H15A-C15-H15C109.5	S1—O2—Cu1 ⁱ	127.14 (10)	H12A—C12—H12C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Cu1 - O2 - Cu1^{i}$	97.91 (7)	H12B—C12—H12C	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S1—O4—Cu3 ⁱ	118.91 (11)	O8—C13—N8	126.4 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$S1-O5-Cu2^{i}$	125.29 (10)	O8—C13—H13	116.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10—O6—Cu3	120.80 (17)	N8—C13—H13	116.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu2—O7—H7A	121 (2)	N8—C14—H14A	109.5
H7A—O7—H7B108 (3)H14A—C14—H14B109.5H10A—O10—H10B118 (4)N8—C14—H14C109.5C3—N1—N2108.4 (2)H14A—C14—H14C109.5C3—N1—Cu1131.89 (19)H14B—C14—H14C109.5N2—N1—Cu1119.18 (16)N8—C15—H15A109.5C1—N2—N1108.2 (2)N8—C15—H15B109.5C1—N2—Cu2131.42 (18)H15A—C15—H15B109.5N1—N2—Cu2120.19 (15)N8—C15—H15C109.5C6—N3—N4108.4 (2)H15A—C15—H15C109.5	Cu2—O7—H7B	125 (2)	N8—C14—H14B	109.5
H10A-O10-H10B118 (4)N8-C14-H14C109.5C3-N1-N2108.4 (2)H14A-C14-H14C109.5C3-N1-Cu1131.89 (19)H14B-C14-H14C109.5N2-N1-Cu1119.18 (16)N8-C15-H15A109.5C1-N2-N1108.2 (2)N8-C15-H15B109.5C1-N2-Cu2131.42 (18)H15A-C15-H15B109.5N1-N2-Cu2120.19 (15)N8-C15-H15C109.5C6-N3-N4108.4 (2)H15A-C15-H15C109.5	H7A—O7—H7B	108 (3)	H14A—C14—H14B	109.5
C3—N1—N2 108.4 (2) H14A—C14—H14C 109.5 C3—N1—Cu1 131.89 (19) H14B—C14—H14C 109.5 N2—N1—Cu1 119.18 (16) N8—C15—H15A 109.5 C1—N2—N1 108.2 (2) N8—C15—H15B 109.5 C1—N2—Cu2 131.42 (18) H15A—C15—H15B 109.5 N1—N2—Cu2 120.19 (15) N8—C15—H15C 109.5 C6—N3—N4 108.4 (2) H15A—C15—H15C 109.5	H10A—O10—H10B	118 (4)	N8—C14—H14C	109.5
C3-N1-Cu1131.89 (19)H14B-C14-H14C109.5N2-N1-Cu1119.18 (16)N8-C15-H15A109.5C1-N2-N1108.2 (2)N8-C15-H15B109.5C1-N2-Cu2131.42 (18)H15A-C15-H15B109.5N1-N2-Cu2120.19 (15)N8-C15-H15C109.5C6-N3-N4108.4 (2)H15A-C15-H15C109.5	C3—N1—N2	108.4 (2)	H14A—C14—H14C	109.5
N2—N1—Cu1119.18 (16)N8—C15—H15A109.5C1—N2—N1108.2 (2)N8—C15—H15B109.5C1—N2—Cu2131.42 (18)H15A—C15—H15B109.5N1—N2—Cu2120.19 (15)N8—C15—H15C109.5C6—N3—N4108.4 (2)H15A—C15—H15C109.5	C3—N1—Cu1	131.89 (19)	H14B—C14—H14C	109.5
C1—N2—N1108.2 (2)N8—C15—H15B109.5C1—N2—Cu2131.42 (18)H15A—C15—H15B109.5N1—N2—Cu2120.19 (15)N8—C15—H15C109.5C6—N3—N4108.4 (2)H15A—C15—H15C109.5	N2—N1—Cu1	119.18 (16)	N8—C15—H15A	109.5
C1—N2—Cu2131.42 (18)H15A—C15—H15B109.5N1—N2—Cu2120.19 (15)N8—C15—H15C109.5C6—N3—N4108.4 (2)H15A—C15—H15C109.5	C1—N2—N1	108.2 (2)	N8—C15—H15B	109.5
N1—N2—Cu2120.19 (15)N8—C15—H15C109.5C6—N3—N4108.4 (2)H15A—C15—H15C109.5	C1—N2—Cu2	131.42 (18)	H15A—C15—H15B	109.5
C6—N3—N4 108.4 (2) H15A—C15—H15C 109.5	N1—N2—Cu2	120.19 (15)	N8—C15—H15C	109.5
	C6—N3—N4	108.4 (2)	H15A—C15—H15C	109.5
C6—N3—Cu2 132.94 (19) H15B—C15—H15C 109.5	C6—N3—Cu2	132.94 (19)	H15B—C15—H15C	109.5
N4—N3—Cu2 118.57 (16) 09—C16—N9 125.8 (3)				

C4—N4—N3	108.2 (2)	O9—C16—H16	117.1
C4—N4—Cu3	130.49 (18)	N9—C16—H16	117.1
N3—N4—Cu3	121.01 (15)	N9—C17—H17A	109.5
C9—N5—N6	107.8 (2)	N9—C17—H17B	109.5
C9—N5—Cu3	133.20 (18)	H17A—C17—H17B	109.5
N6—N5—Cu3	118.53 (16)	N9—C17—H17C	109.5
C7—N6—N5	108.2 (2)	H17A—C17—H17C	109.5
C7—N6—Cu1	131.22 (18)	H17B—C17—H17C	109.5
N5—N6—Cu1	120.33 (16)	N9—C18—H18A	109.5
C10—N7—C12	121.5 (2)	N9—C18—H18B	109.5
C10—N7—C11	120.0 (2)	H18A—C18—H18B	109.5
C12—N7—C11	118.4 (2)	N9—C18—H18C	109.5
C13—N8—C15	121.4 (2)	H18A—C18—H18C	109.5
C13—N8—C14	121.6 (3)	H18B—C18—H18C	109.5
C15—N8—C14	116.9 (2)		

Symmetry code: (i) -x+2, -y+2, -z+2.

Hydrogen-bond geometry (Å, °)

	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C18—H18 <i>B</i> ····O3 ⁱⁱ	0.96	2.64	3.494 (4)	148
С17—Н17С…О5 ^{іі}	0.96	2.56	3.360 (3)	141
C15—H15C···N2 ⁱⁱⁱ	0.96	2.63	3.406 (4)	138
C13—H13····O5 ^{iv}	0.93	2.23	3.155 (3)	170
$C10$ — $H10$ ···· $O4^{i}$	0.93	2.30	2.971 (3)	128
С7—Н7…О5	0.93	2.65	3.483 (3)	149
C7—H7…S1	0.93	2.95	3.610 (3)	129
C6—H6…O10 ^v	0.93	2.38	3.234 (4)	153
C4—H4A····Cl3 ^{vi}	0.93	2.93	3.484 (3)	119
С3—Н3…О4	0.93	2.64	3.411 (3)	140
C3—H3…S1	0.93	2.99	3.616 (3)	126
O10—H10 <i>B</i> ···O9 ^{vii}	0.81 (2)	1.96 (2)	2.751 (3)	165 (4)
O10—H10A···O3 ⁱⁱⁱ	0.81 (2)	1.91 (2)	2.700 (3)	165 (4)
O7— $H7B$ ···O8 ^{viii}	0.83 (2)	1.83 (2)	2.658 (3)	175 (3)
O7—H7 <i>A</i> ···O10 ^v	0.80 (2)	1.83 (2)	2.625 (3)	172 (3)
01—H1 <i>O</i> ····O9 ^{ix}	0.78 (2)	1.95 (2)	2.711 (3)	166 (3)
O1—H1 <i>O</i> ····O9 ^{ix}	0.78 (2)	1.95 (2)	2.711 (3)	166 (3)
O7—H7 <i>A</i> ···O10 ^v	0.80 (2)	1.83 (2)	2.625 (3)	172 (3)
O7— $H7B$ ···O8 ^{viii}	0.83 (2)	1.83 (2)	2.658 (3)	175 (3)
O10—H10A···O3 ⁱⁱⁱ	0.81 (2)	1.91 (2)	2.700 (3)	165 (4)
O10—H10 <i>B</i> ···O9 ^{vii}	0.81 (2)	1.96 (2)	2.751 (3)	165 (4)
C3—H3…S1	0.93	2.99	3.616 (3)	126
С3—Н3…О4	0.93	2.64	3.411 (3)	140
C4—H4A····Cl3 ^{vi}	0.93	2.93	3.484 (3)	119
C6—H6…O10 ^v	0.93	2.38	3.234 (4)	153
C7—H7…S1	0.93	2.95	3.610 (3)	129
С7—Н7…О5	0.93	2.65	3.483 (3)	149

supporting information

$C10$ — $H10$ ···· $O4^{i}$	0.93	2.30	2.971 (3)	128	
C13—H13…O5 ^{iv}	0.93	2.23	3.155 (3)	170	
C15—H15C···N2 ⁱⁱⁱ	0.96	2.63	3.406 (4)	138	
С17—Н17С…О5 ^{іі}	0.96	2.56	3.360 (3)	141	
C18—H18 <i>B</i> ···O3 ⁱⁱ	0.96	2.64	3.494 (4)	148	

Symmetry codes: (i) -*x*+2, -*y*+2, -*z*+2; (ii) *x*-1, *y*-1, *z*; (iii) *x*-1/2, -*y*+3/2, *z*-1/2; (iv) -*x*+1, -*y*+2, -*z*+1; (v) -*x*+1, -*y*+1, -*z*+1; (vi) -*x*+1, -*y*+2, -*z*+2; (vii) -*x*, -*y*+1, -*z*+1; (viii) *x*+1, *y*, *z*+1; (ix) -*x*+1/2, *y*+1/2, -*z*+3/2.