CRYSTALLOGRAPHIC COMMUNICATIONS

Received 6 June 2016
Accepted 28 June 2016

Edited by I. D. Brown, McMaster University, Canada

Keywords: crystal structure; iron phosphate; rubidium; open-framework structure.

CCDC reference: 1488120

Supporting information: this article has supporting information at journals.iucr.org/e

$\mathrm{RbZnFe}\left(\mathrm{PO}_{4}\right)_{2}$: synthesis and crystal structure

Abdessalem Badri* and Mongi Ben Amara

Unité de recherche, Matériaux Inorganiques, Faculté des Sciences, Université de Monastir, 5019 Monastir, Tunisia.
*Correspondence e-mail: badri_abdessalem@yahoo.fr

A new iron phosphate, rubidium zinc iron(III) phosphate, $\mathrm{RbZnFe}\left(\mathrm{PO}_{4}\right)_{2}$, has been synthesized as single crystals by the flux method. This compound is isostructural to the previously reported $\mathrm{KCoAl}\left(\mathrm{PO}_{4}\right)_{2}$ [Chen et al. (1997). Acta Cryst. C53,1754-1756]. Its structure consists of a three-dimensional framework built up from corner-sharing PO_{4} and $(\mathrm{Zn}, \mathrm{Fe}) \mathrm{O}_{4}$ tetrahedra. This mode of linkage forms channels parallel to the [100], [010] and [001] directions in which the Rb^{+}ions are located.

1. Chemical context

Phosphates with open-framework structures, similar to other porous materials such as zeolites, are interesting because of their wide industrial and environmental applications ranging from catalysis to ion-exchange and separation (Gier \& Stucky, 1991; Maspoch et al., 2007). Among them, iron phosphates (Redrup \& Weller, 2009; Lajmi et al., 2009) are particularly attractive because of their rich crystal chemistry (Moore, 1970; Gleitzer, 1991) and they present interesting and variable physical properties (Elbouaanani et al., 2002; Riou-Cavellec et al., 1999). Among the variety of iron orthophosphates synthesized and characterized over the past three decades, only two rubidium-containing compounds have been reported, namely $\mathrm{Rb}_{9} \mathrm{Fe}_{7}\left(\mathrm{PO}_{4}\right)_{10}$ (Hidouri et al., 2010) and $\mathrm{RbCu}-$ $\mathrm{Fe}\left(\mathrm{PO}_{4}\right)_{2}$ (Badri et al., 2013). In this paper, we report the structure of a new rubidium iron orthophosphate, $\mathrm{RbZnFe}\left(\mathrm{PO}_{4}\right)_{2}$, synthesized during our investigation of the $\mathrm{Rb}_{3} \mathrm{PO}_{4}-\mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2}-\mathrm{FePO}_{4}$ quasi-system. This compound is isostructural to $\mathrm{KCoAl}\left(\mathrm{PO}_{4}\right)_{2}$ (Chen et al., 1997) and $\mathrm{KZnFe}\left(\mathrm{PO}_{4}\right)_{2}$ (Badri et al., 2014).

2. Structural commentary

The structure is made up of a three-dimensional assemblage of $M \mathrm{O}_{4}(M=0.5 \mathrm{Zn}+0.5 \mathrm{Fe})$ and PO_{4} tetrahedra through cornersharing. This framework delimits crossing channels along the [100] and [001] directions, in which the Rb^{+}ions are located (Figs. 1 and 2). A projection of the structure along [001] direction reveals that each $M \mathrm{O}_{4}$ tetrahedron is linked to four PO_{4} tetrahedra by sharing corners. In addition, it shows the presence of two kinds of rings through corner-sharing of MO_{4} and PO_{4} tetrahedra (Fig. 2). The first presents an elliptical form and comprises four MO_{4} and four PO_{4} tetrahedra, the second consists of two MO_{4} and two PO_{4} tetrahedra and has a quasi-rectangular form. From an examination of the interatomic distances (cation-oxygen), the $M(1)$ and $M(2)$ sites exhibit similar regular tetrahedral environments, as seen in the cation-oxygen distances which vary from 1.877 (5) to

Figure 1
A view of the crystal structure of $\mathrm{RbZnFe}\left(\mathrm{PO}_{4}\right)_{2}$ along [100]. Colour key: $M(1) \mathrm{O}_{4}$ tetrahedra are purple, $M(2) \mathrm{O}_{4}$ tetrahedra are red, $\mathrm{P}(1) \mathrm{O}_{4}$ tetrahedra are dark grey, $\mathrm{P}(2) \mathrm{O}_{4}$ tetrahedra are light grey and Rb^{+}cations are yellow spheres.
1.900 (5) \AA for $M(1)$ and from 1.860 (6) to 1.919 (5) \AA for $M(2)$. The average distances of 1.885 (2) and 1.888 (2) \AA are between the values of 1.926 (2) \AA observed for tetrahedrally coordinated Zn^{2+} ions in the zinc phosphate RbZnPO_{4} (Elammari \& Elouadi, 1991) and 1.865 Å reported for the Fe^{3+} ions with the same coordination in the iron phosphate in FePO_{4} (Long et al., 1983). The $\mathrm{P}-\mathrm{O}$ distances within the PO_{4} tetrahedra are between 1.514 (5) and 1.535 (5) \AA and with mean distances of 1.523 (9) \AA for $\mathrm{P}(1)$ and 1.520 (3) \AA for $\mathrm{P}(2)$, consistent with the value of $1.537 \AA$ calculated by Baur (1974) for orthophosphate groups.

The Rb^{+}ions occupy a single site at the intersection of the crossing tunnels. Their environment was determined assuming all cation-oxygen distances to be shorter than the shortest distance between Rb^{+}and its nearest cation. This environment (Fig. 3) then consists of ten O atoms with $\mathrm{Rb}-\mathrm{O}$ distances ranging from 2.925 (6) to 3.298 (7) \AA.

3. Synthesis and crystallization

Single crystals of $\mathrm{RbZnFe}\left(\mathrm{PO}_{4}\right)_{2}$ were grown in a flux of rubidium dimolybdate $\mathrm{Rb}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}$, in an atomic ratio $\mathrm{P}: \mathrm{Mo}=$ 4:1. Appropriate amounts of $\mathrm{Rb}_{2} \mathrm{CO}_{3}, \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ and MoO_{3} were used. All of the chemicals were analytically pure from commercial sources and used without further purification. The reagents were weighted in the atomic ratio $\mathrm{P}: \mathrm{Mo}=2: 1$ and dissolved in nitric acid and then dried for 24 h at 353 K . The dry residue was gradually heated to 873 K in a platinum crucible to remove the decomposition products. In a second step, the mixture was

Figure 2
A view of the crystal structure of $\mathrm{RbZnFe}\left(\mathrm{PO}_{4}\right)_{2}$ along [001], showing the elliptical and quasi-rectangular forms of corner-sharing MO_{4} and PO_{4} tetrahedra (edge with green colour). The colour key is as in Fig. 1.
ground, melted for 1 h at 1173 K and subsequently cooled at a rate of $10 \mathrm{~K} \mathrm{~h}^{-1}$ to 773 K , after which the furnace was turned off. The crystals obtained by washing the final product with warm water in order to dissolve the flux are essentially comprised of beige hexagonally shaped crystals of $\mathrm{RbZnFe}\left(\mathrm{PO}_{4}\right)_{2}$.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The application of direct methods

Figure 3
The environment of the Rb cations, showing displacement ellipsoids drawn at the 50% probability level. Authors: Define symmetry operators (in the Figure) and codes (in the caption)

Table 1
Experimental details.

Crystal data	
Chemical formula	$\mathrm{RbZnFe}\left(\mathrm{PO}_{4}\right)_{2}$
$M_{\text {r }}$	396.63
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	293
$a, b, c(\AA)$	13.601 (4), 13.304 (5), 8.978 (9)
β (${ }^{\circ}$)	100.76 (5)
$V\left(\mathrm{~A}^{3}\right)$	1596.0 (18)
Z	8
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	11.29
Crystal size (mm)	$0.43 \times 0.25 \times 0.18$
Data collection	
Diffractometer	Enraf-Nonius TurboCAD-4
Absorption correction	Part of the refinement model (ΔF) (Walker \& Stuart 1983)
$T_{\text {min }}, T_{\text {max }}$	0.054, 0.070
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	1409, 1409, 1227
$R_{\text {int }}$	0.089
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.594
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.036, 0.110, 1.05
No. of reflections	1409
No. of parameters	118
	$\begin{aligned} & w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0565 P)^{2}+\right. \\ & 31.2735 P] \text { where } P=\left(F_{\mathrm{o}}^{2}+\right. \\ & \left.2 F_{\mathrm{c}}^{2}\right) / 3 \end{aligned}$
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	$0.85,-0.76$

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), XCAD4 (Harms \& Wocadlo, 1995), SIR92 (Altomare et al., 1993), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg, 1999) and WinGX (Farrugia, 2012).
revealed the Rb atoms and located two sites, labelled $M(1)$ and $M(2)$, statistically occupied by the Fe^{3+} and Zn^{2+} ions. This distribution was supported by the $M(1)-\mathrm{O}$ and $M(2)-\mathrm{O}$ distances which are between the classical pure $\mathrm{Zn}-\mathrm{O}$ and $\mathrm{Fe}-\mathrm{O}$ values. Succeeding difference Fourier syntheses led to the positions of all the remaining atoms.

Despite several synthesis attempts, all the obtained crystals of $\mathrm{RbZnFe}\left(\mathrm{PO}_{4}\right)_{2}$ were of poor quality, resulting in the large
discrepancies found in a number of reflections; hence in this study the refinement was performed using a filter of the reflections by $[\sin (\theta) / \lambda]$. The four reflections $(\overline{6} 85, \overline{9} 34, \overline{8} 85$ and $\overline{3} 75$) were omitted as the difference between the observed and calculated structure factors was larger than 10σ.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.

Badri, A., Hidouri, M. \& Ben Amara, M. (2013). Acta Cryst. E69, 152.
Badri, A., Hidouri, M., Wattiaux, A., López, M. L., Veiga, M. L. \& Ben Amara, M. (2014). Mater. Res. Bull. 55, 61-66.
Baur, W. H. (1974). Acta Cryst. B30, 1195-1215.
Brandenburg, K. (1999). DIAMOND. University of Bonn, Germany.
Chen, X.-A., Zhao, L., Li, Y., Guo, F. \& Chen, B.-M. (1997). Acta Cryst. C53, 1754-1756.
Elammari, L. \& Elouadi, B. (1991). J. Chim. Phys. Physico-Chim. Biol. 88, 1969-1974.
Elbouaanani, L. K., Malaman, B., Gérardin, R. \& Ijjaali, M. (2002). J. Solid State Chem. 163, 412-420.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Gier, T. E. \& Stucky, G. D. (1991). Nature, 349, 508-510.
Gleitzer, C. (1991). Eur. J. Solid State Inorg. Chem. 28, 77-91.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Hidouri, M., Wattiaux, A., López, M. L., Pico, C. \& Ben Amara, M. (2010). J. Alloys Compd. 506, 569-574.

Lajmi, B., Hidouri, M., Ben Hammouda, A., Wattiaux, A., Fournés, L., Darriet, J. \& Ben Amara, M. (2009). Mater. Chem. Phys. 113, 372-375.
Long, G. J., Cheetham, A. K. \& Battle, P. D. (1983). Inorg. Chem. 22, 3012-3016.
Maspoch, D., Ruiz-Molina, D. \& Veciana, J. (2007). Chem. Soc. Rev. 36, 770-818.
Moore, P. B. (1970). Am. Mineral. 55, 135-169.
Redrup, K. V. \& Weller, M. T. (2009). Dalton Trans. pp. 3786-3792.
Riou-Cavellec, M., Riou, D. \& Férey, G. (1999). Inorg. Chim. Acta, 291, 317-325.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

supporting information

Acta Cryst. (2016). E72, 1074-1076 [https://doi.org/10.1107/S205698901601046X]

$\mathrm{RbZnFe}\left(\mathrm{PO}_{4}\right)_{2}$: synthesis and crystal structure

Abdessalem Badri and Mongi Ben Amara

Computing details

Cell refinement: CAD-4 EXPRESS (Enraf-Nonius, 1994); data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Rubidium zinc Iron(III) phosphate

Crystal data

$\mathrm{RbZnFe}\left(\mathrm{PO}_{4}\right)_{2}$
$M_{r}=396.63$
Monoclinic, $C 2 / c$
$a=13.601$ (4) \AA
$b=13.304$ (5) \AA
$c=8.978(9) \AA$
$\beta=100.76$ (5) ${ }^{\circ}$
$V=1596.0(18) \AA^{3}$
$Z=8$

Data collection

Enraf-Nonius TurboCAD-4
diffractometer
Radiation source: fine-focus sealed tube non-profiled $\omega / 2 \tau$ scans
Absorption correction: part of the refinement model (ΔF)
(Walker \& Stuart 1983)
$T_{\min }=0.054, T_{\max }=0.070$
1409 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.110$
$S=1.05$
1409 reflections
118 parameters
$F(000)=1496$
$D_{\mathrm{x}}=3.301 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=8.1-11.1^{\circ}$
$\mu=11.29 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, brown
$0.43 \times 0.25 \times 0.18 \mathrm{~mm}$

1409 independent reflections
1227 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.089$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.2^{\circ}$
$h=-16 \rightarrow 15$
$k=0 \rightarrow 15$
$l=0 \rightarrow 10$
2 standard reflections every 120 min
intensity decay: 1%

$$
\begin{aligned}
& 0 \text { restraints } \\
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0565 P)^{2}+31.2735 P\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.85 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.76 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Rb	$0.18260(6)$	$0.24668(6)$	$0.22827(9)$	$0.0316(3)$	
Zn 1	$0.87122(6)$	$0.55912(6)$	$0.11383(9)$	$0.0169(3)$	0.5
Fe 1	$0.87122(6)$	$0.55912(6)$	$0.11383(9)$	$0.0169(3)$	0.5
Zn 2	$0.92406(6)$	$0.12098(6)$	$-0.05652(9)$	$0.0166(3)$	0.5
Fe 2	$0.92406(6)$	$0.12098(6)$	$-0.05652(9)$	$0.0166(3)$	0.5
P 1	$0.14761(12)$	$0.06205(13)$	$-0.08572(19)$	$0.0166(4)$	
O11	$0.1420(4)$	$-0.0526(4)$	$-0.0852(6)$	$0.0295(12)$	
O12	$0.2450(3)$	$0.1026(4)$	$0.0096(6)$	$0.0243(11)$	
O13	$0.3570(5)$	$0.3996(5)$	$0.2456(6)$	$0.0397(15)$	
O14	$0.0638(4)$	$0.1055(5)$	$-0.0151(7)$	$0.0385(14)$	
P2	$0.92645(12)$	$0.36174(12)$	$-0.03358(18)$	$0.0144(4)$	
O21	$0.8903(5)$	$0.2550(4)$	$-0.0146(7)$	$0.0323(13)$	
O22	$0.0389(4)$	$0.3613(4)$	$-0.0253(6)$	$0.0269(11)$	
O23	$0.3731(4)$	$0.0942(5)$	$0.3168(6)$	$0.0367(14)$	
O24	$0.8990(4)$	$0.4217(4)$	$0.0972(6)$	$0.0252(11)$	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Rb	$0.0383(5)$	$0.0321(5)$	$0.0259(4)$	$0.0006(3)$	$0.0097(3)$	$-0.0044(3)$
Zn 1	$0.0197(4)$	$0.0151(5)$	$0.0149(4)$	$0.0019(3)$	$0.0006(3)$	$-0.0023(3)$
Fe 1	$0.0197(4)$	$0.0151(5)$	$0.0149(4)$	$0.0019(3)$	$0.0006(3)$	$-0.0023(3)$
Zn 2	$0.0194(5)$	$0.0149(5)$	$0.0149(4)$	$-0.0013(3)$	$0.0021(3)$	$-0.0026(3)$
Fe 2	$0.0194(5)$	$0.0149(5)$	$0.0149(4)$	$-0.0013(3)$	$0.0021(3)$	$-0.0026(3)$
P 1	$0.0191(8)$	$0.0138(8)$	$0.0156(8)$	$-0.0026(7)$	$-0.0004(6)$	$0.0035(6)$
O 11	$0.043(3)$	$0.014(3)$	$0.033(3)$	$-0.003(2)$	$0.013(2)$	$0.003(2)$
O 12	$0.019(2)$	$0.023(3)$	$0.028(3)$	$-0.0014(19)$	$-0.003(2)$	$-0.003(2)$
O 13	$0.059(4)$	$0.043(3)$	$0.015(3)$	$-0.011(3)$	$0.002(3)$	$0.011(2)$
O 14	$0.021(3)$	$0.042(3)$	$0.052(4)$	$0.000(2)$	$0.007(3)$	$-0.017(3)$
P 2	$0.0211(9)$	$0.0095(8)$	$0.0127(8)$	$-0.0020(6)$	$0.0031(6)$	$0.0001(6)$
O 21	$0.053(4)$	$0.016(3)$	$0.034(3)$	$-0.010(2)$	$0.024(3)$	$-0.010(2)$
O 22	$0.023(3)$	$0.023(3)$	$0.037(3)$	$0.000(2)$	$0.010(2)$	$0.006(2)$
O 23	$0.037(3)$	$0.056(4)$	$0.016(3)$	$-0.006(3)$	$0.004(2)$	$-0.011(2)$
O 24	$0.040(3)$	$0.014(2)$	$0.023(3)$	$0.005(2)$	$0.009(2)$	$-0.0051(19)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{Rb}-\mathrm{O} 21^{\mathrm{i}}$	$2.925(6)$	$\mathrm{Zn} 1-\mathrm{O} 22^{\text {vi }}$	$1.900(5)$
$\mathrm{Rb}-\mathrm{O} 12$	$2.979(5)$	$\mathrm{Zn} 2-\mathrm{O}^{\text {vii }}$	$1.860(6)$

$\mathrm{Rb}-\mathrm{O} 14$
$\mathrm{Rb}-\mathrm{O} 13$
$\mathrm{Rb}-\mathrm{O} 22$
$\mathrm{Rb}-\mathrm{O} 24^{\mathrm{i}}$
$\mathrm{Rb}-\mathrm{O} 11^{\mathrm{ii}}$
$\mathrm{Rb}-\mathrm{O} 12^{\mathrm{iii}}$
$\mathrm{Rb}-\mathrm{O} 23$
$\mathrm{Rb}-\mathrm{O} 21^{\mathrm{iv}}$
$\mathrm{Zn} 1-\mathrm{O} 23 \mathrm{v}$
$\mathrm{Zn} 1-\mathrm{O} 24$
$\mathrm{Zn} 1-\mathrm{O} 12^{\mathrm{v}}$

3.098 (6)	$\mathrm{Zn} 2-\mathrm{O} 14^{\text {viii }}$	1.878 (5)
3.107 (6)	Zn2-O21	1.897 (5)
3.109 (5)	$\mathrm{Zn} 2-\mathrm{O} 11^{\text {ix }}$	1.919 (5)
3.123 (5)	P1-O13 ${ }^{\text {iii }}$	1.514 (5)
3.181 (5)	P1-O14	1.519 (6)
3.215 (6)	P1-O11	1.527 (5)
3.269 (6)	P1-O12	1.535 (5)
3.298 (7)	$\mathrm{P} 2-\mathrm{O} 22^{\text {viii }}$	1.517 (5)
1.877 (5)	$\mathrm{P} 2-\mathrm{O} 23{ }^{\text {vii }}$	1.520 (5)
1.879 (5)	$\mathrm{P} 2-\mathrm{O} 24$	1.523 (5)
1.886 (5)	$\mathrm{P} 2-\mathrm{O} 21$	1.522 (5)
142.06 (14)	$\mathrm{O} 122^{\text {iii- }} \mathrm{Rb}-\mathrm{O} 23$	102.79 (14)
115.16 (17)	$\mathrm{O} 21^{\mathrm{i}}-\mathrm{Rb}-\mathrm{O} 21^{\mathrm{iv}}$	76.81 (19)
47.17 (13)	$\mathrm{O} 12-\mathrm{Rb}-\mathrm{O} 21^{\mathrm{iv}}$	98.31 (14)
108.19 (16)	$\mathrm{O} 14-\mathrm{Rb}-\mathrm{O} 21^{\text {iv }}$	139.07 (14)
98.37 (15)	$\mathrm{O} 13-\mathrm{Rb}-\mathrm{O} 21^{\mathrm{iv}}$	54.77 (14)
136.49 (16)	$\mathrm{O} 22-\mathrm{Rb}-\mathrm{O} 21^{\mathrm{iv}}$	148.78 (13)
110.80 (16)	$\mathrm{O} 24-\mathrm{Rb}-\mathrm{O} 21^{\mathrm{iv}}$	89.55 (14)
92.90 (15)	$\mathrm{O} 11^{\mathrm{ii}}-\mathrm{Rb}-\mathrm{O} 21^{\mathrm{iv}}$	80.58 (14)
66.86 (16)	$\mathrm{O} 12{ }^{\text {iii }}-\mathrm{Rb}-\mathrm{O} 21^{\mathrm{iv}}$	98.09 (13)
94.89 (14)	$\mathrm{O} 23-\mathrm{Rb}-\mathrm{O} 21^{\text {iv }}$	44.69 (13)
47.19 (13)	$\mathrm{O} 23{ }^{\mathrm{v}}-\mathrm{Zn} 1-\mathrm{O} 24$	110.7 (3)
169.12 (13)	$\mathrm{O} 23{ }^{\text {v }}-\mathrm{Zn} 1-\mathrm{O} 12^{\text {v }}$	104.6 (2)
128.20 (14)	$\mathrm{O} 24-\mathrm{Zn} 1-\mathrm{O} 12{ }^{\text {v }}$	115.9 (2)
79.99 (16)	$\mathrm{O} 23^{\mathrm{v}}-\mathrm{Zn} 1-\mathrm{O} 22^{\text {vi }}$	112.0 (3)
76.59 (15)	$\mathrm{O} 24-\mathrm{Zn} 1-\mathrm{O} 22^{\text {vi }}$	110.8 (2)
56.47 (13)	$\mathrm{O} 12^{\mathrm{v}}-\mathrm{Zn} 1-\mathrm{O} 22^{\text {vi }}$	102.6 (2)
85.60 (14)	O13 ${ }^{\text {vii }} \mathrm{Zn} 2-\mathrm{O} 14{ }^{\text {viii }}$	118.1 (3)
76.11 (17)	O13 ${ }^{\text {vii }}-\mathrm{Zn} 2-\mathrm{O} 21$	103.5 (3)
135.33 (15)	O14 ${ }^{\text {viii- }} \mathrm{Zn} 2-\mathrm{O} 21$	109.7 (3)
129.51 (14)	O13 ${ }^{\text {vii }} \mathrm{Z} \mathrm{Zn} 2-\mathrm{O} 11^{\text {ix }}$	110.9 (3)
103.19 (13)	O14 ${ }^{\text {viii- }} \mathrm{Zn} 2-\mathrm{O} 11^{\text {ix }}$	113.5 (3)
139.13 (14)	$\mathrm{O} 21-\mathrm{Zn} 2-\mathrm{O} 11^{\text {ix }}$	98.8 (2)
78.67 (16)	O13ii--P1-O14	111.5 (4)
95.38 (16)	O13 ${ }^{\text {iii- }} \mathrm{P} 1-\mathrm{O} 11$	110.3 (3)
45.51 (13)	O14-P1-O11	109.7 (3)
55.68 (13)	$\mathrm{O} 13{ }^{\text {iiii-P1-P12 }}$	106.8 (3)
92.85 (14)	O14-P1-O12	105.7 (3)
163.87 (13)	$\mathrm{O} 11-\mathrm{P} 1-\mathrm{O} 12$	112.8 (3)
101.14 (15)	$\mathrm{O} 22^{\text {viii }} \mathrm{P} 2-\mathrm{O} 23^{\text {vii }}$	110.8 (3)
56.67 (14)	$\mathrm{O} 22{ }^{\text {viii- }} \mathrm{P} 2-\mathrm{O} 24$	110.8 (3)
94.63 (15)	$\mathrm{O} 23{ }^{\text {vii }} \mathrm{P} 2-\mathrm{O} 24$	109.5 (3)
80.27 (17)	$\mathrm{O} 22{ }^{\text {viii }}$ - $\mathrm{P} 2-\mathrm{O} 21$	109.5 (3)
147.51 (14)	$\mathrm{O} 23{ }^{\text {vii }} \mathrm{P} 2-\mathrm{O} 21$	110.3 (3)

supporting information

$\mathrm{O} 24-\mathrm{Rb}-\mathrm{O} 23$	$132.85(14)$	$\mathrm{O} 24-\mathrm{P} 2-\mathrm{O} 21$	105.7 (3)

$\mathrm{O} 11^{1 i} — \mathrm{Rb}-\mathrm{O} 23 \quad 64.93$ (15)
Symmetry codes: (i) $-x+1, y,-z+1 / 2$; (ii) $x,-y, z+1 / 2$; (iii) $-x+1 / 2,-y+1 / 2,-z$; (iv) $x-1 / 2,-y+1 / 2, z+1 / 2$; (v) $x+1 / 2, y+1 / 2, z$; (vi) $-x+1,-y+1,-z$; (vii) $x+1 / 2,-y+1 / 2, z-1 / 2$; (viii) $x+1, y, z$; (ix) $-x+1,-y,-z$.

