

Received 3 June 2016 Accepted 12 July 2016

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina

Keywords: crystal structure; thiazolidine derivative; ferrocenyl; acenaphthylene; chromane; hydrogen bonding; $C \rightarrow H \cdots \pi$ interactions.

CCDC references: 1023737; 1023726

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structures of two substituted thiazolidine derivatives

Vijayan Viswanathan,^a Naga Siva Rao,^b Raghavachary Raghunathan^b and Devadasan Velmurugan^a*

^aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and ^bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India. *Correspondence e-mail: shirai2011@gmail.com

In the first of the compounds reported herein, namely 6'-ferrocenyl-6a'-nitro-6',6a',6b',7',9',11a'-hexahydro-2H-spiro[acenaphthylene-1,11'-chromeno[3',4':3,4]pyrrolo[1,2-c]thiazol]-2-one, [Fe(C₅H₅)(C₂₉H₂₁N₂O₄S)], (I), the thiazolidine ring adopts a twist conformation on the methine N-C atoms. In the second compound, viz. 6'-(4-methoxyphenyl)-6a'-nitro-6',6a',6b',7',9',11a'-hexahydro-2H-spiro[acenaphthylene-1,11'-chromeno[3',4':3,4]pyrrolo[1,2-c]thiazol]-2-one, $[Fe(C_5H_5)(C_{26}H_{19}N_2O_5S)]$, (II), the thiazolidine ring adopts an envelope conformation with a methine C atom as the flap. In both compounds, the pyrrolidine ring adopts a twist conformation on the thiazolidine and tetrahydropyran C atoms. The mean planes of the thiazolidine and pyrrolidine rings subtend angles of 67.30 (1) and 62.95 (7) $^{\circ}$ in (I) and (II), respectively, while the mean plane of the pyrrolidine ring makes dihedral angles of 76.53 (1) and $87.74(7)^{\circ}$ with the acenaphthylene ring system in (I) and (II), respectively. In both compounds, an intramolecular $C-H \cdots O$ hydrogen bond forms an S(7)ring motif. In the crystal of (I), molecules are linked via two different $C-H \cdots O$ hydrogen bonds, forming chains along [001] and [100]. In (II), they are linked through C-H···O hydrogen bonds, forming dimers with an $R_2^2(10)$ ring motif while $C-H\cdots\pi$ interactions link the molecules in a head-to-tail fashion, forming chains along the *a*-axis direction.

1. Chemical context

There are numerous biologically active molecules with fivemembered rings containing two hetero atoms. Among them, thiazolidines are the most extensively investigated class of compounds (Fun et al., 2011). Thiazolidine derivatives have attracted continuous interest over the years because of their varied biological activities (Shih et al., 2015). The special importance of the thiazolidine ring system derives from the fact that it plays an important role in medicinal chemistry. The presence of a thiazolidine ring in penicillin and related derivatives was the first recognition of its occurrence in nature (Čačić et al., 2010). Substituted thiazolidine derivatives represent important key intermediates for the synthesis of pharmacologically active drugs. The group has wide range of biological activities such as antifungal, antiproliferative, antiinflammatory, antimalarial, herbicidal, antiviral (Samadhiya et al., 2012), anticonvulsant (Pandey et al., 2011), anticancer and anti-oxidant, and also has interesting antimicrobial activity (influenza). In addition, antidiabetic properties (Majed & Abid, 2015) have been reported. Thiazolidine derivatives exhibit anti-HIV, antituberculotic (Fun et al., 2011), herbicidal, antineoplastic, hypolipidemic and anti-inflammatory activities

(Vennila *et al.*, 2011). Thiazolidines have many interesting activity profiles, namely as COX-1 inhibitors, inhibitors of the bacterial enzyme MurB, which is a precursor, acting during the biosynthesis of peptidoglycan, non-nucleoside inhibitors of HIV–RT and anti-histaminic agents (Čačić *et al.*, 2010).

2. Structural commentary

In the molecular structures of the compounds reported herein, 2'-ferrocenyl-6'-methyl-6a'-nitro-6',6a',6b',7',9',11a'namelv hexahydro-2H-spiro[acenaphthylene-1,11'-chromeno[3',4':-3,4]pyrrolo[1,2-c]thiazol]-2-one, (I) (Fig. 1), and 6'-(4-methoxyphenyl)-6a'-nitro-6',6a',6b',7',9',11a'-hexahydro-2H-spiro-[acenaphthylene-1,11'-chromeno[3',4':3,4]pyrrolo[1,2-c]thiazol]-2-one, (II) (Fig. 2), the pyrrolidine ring (C12/N1/C15-C17) is fused with the thiazolidine ring (N1/C13/S1/C14/C15), the chromane ring system (C16-C23/O2/C24) and the acenaphthylene ring system (C1-C12). The thiazolidine ring adopts a twist conformation on the N1-C15 bond with puckering parameters $q^2 = 0.3710$ (8) Å, $\Phi^2 = 96.7$ (3)° in (I) and an envelope conformation with atom C15 as the flap in (II). The pyrrolidine ring adopts a twist conformation on the C15-C16 bond with puckering parameters $q^2 = 0.3616$ (7) Å and $\Phi 2 = 131.3 (3)^{\circ}$, and q 2 = 0.3829 (8) Å and $\Phi 2 =$ $123.4 (3)^{\circ}$ in the structures of (I) and (II), respectively. The

Figure 1

The molecular structure of (I), showing the atom labelling and displacement ellipsoids drawn at 30% probability level. The C-H···O contact is shown as a thin dashed line.

mean planes of the thiazolidine and pyrrolidine rings are inclined to one another by 67.30 (1) and 62.95 (7)°, while the pyrrolidine and acenaphthylene ring systems are almost orthogonal to each other [dihedral angles = 76.53 (1) and 87.74 (7)°, respectively]. The chromane ring system adopts a distorted envelope conformation, the flaps being atom C24 in (I), displaced by -0.5585 (1) Å, and atom C16 in (II), displaced by 0.4076 (3) Å.

The pyrrolidine and the chromane ring systems subtend dihedral angles of 74.94 (8) and 67.68 (7)° in (I) and (II), respectively. In (I), the chromane and ferrocene ring systems lie in a plane [C17-C16-C24-C25 = 176.16 (13)° and C23-O2-C24-C25 = -177.50 (13)°]. In (II), the chromane ring system makes a dihedral angle of 62.58 (4)° with the phenyl ring. Atom O1 deviates from the acenaphthylene ring system by -0.0718 (4) and -0.2218 (3) Å in (I) and (II), respectively.

In both compounds, an intramolecular $C-H\cdots O$ hydrogen bond forms an S(7) ring motif (Figs. 1 and 2; Tables 1 and 2).

Figure 2

The molecular structure of (II), showing the atom labelling and displacement ellipsoids drawn at 30% probability level. The C-H···O contact is shown as a thin dashed line.

research communications

Table 1 Hydrogen-bond 3	geometry (Å, °)	for (I).	
$D - H \cdots A$	D-H	$H \cdots A$	D··

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C13-H13A\cdots O3^{i}$	0.97	2.50	3.417 (3)	157
$C20-H20\cdots O4^{ii}$	0.93	2.59	3.440 (3)	152
$C24-H24\cdots O1$	0.98	2.51	3.301 (3)	138

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.

 Table 2

 Hydrogen-bond geometry (Å, °) for (II).

Cg1 and Cg2 are the centroids of the C25-C30 and C2-C11 rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C17-H17\cdots O3^{i}$	0.98	2.47	3.412 (2)	161
C24-H24···O1	0.98	2.50	3.178 (19)	126
$C8-H8\cdots Cg1^{ii}$	0.93	2.82	3.759 (2)	148
$C27 - H27 \cdots Cg2^{iii}$	0.93	2.79	3.720 (3)	149

Symmetry codes: (i) -x, -y, -z + 1; (ii) x + 1, y, z; (iii) -x, -y, -z + 2.

3. Supramolecular features

In the crystal of (I), molecules are linked via $C-H\cdots O$ hydrogen bonds along [001] and [100] (Fig. 3 and Table 1), generating planes parallel to (010) with embedded $R_4^4(29)$ ring motifs. In the crystal of (II), molecules are linked via $C-H\cdots O$ hydrogen bonds, forming dimers with an $R_2^2(10)$ ring motif, as shown in Fig. 4 and Table 2. $C-H\cdots \pi$ interactions link the molecules in a head-to-tail fashion, forming chains extending along [100] (Fig. 5).

Figure 3

The crystal packing of (I). Note that the C-H···O hydrogen bonds (shown as dashed lines) run along [001] and [100] and generate an $R_4^4(29)$ ring motif. H atoms not involved in hydrogen bonds have been excluded for clarity.

4. Synthesis and crystallization

Both compounds were obtained through a similar procedure. To a solution of acenaphthoquinone (1.0 mmol) and thiazolidine-4-carboxylic acid (1.5 mmol) in dry toluene, were added under nitrogen atmosphere 3-nitro-2-ferrocenyl-2*H*chromene (1 mmol), for compound (I), or 2-(4-methoxyphenyl)-3-nitro-2*H*-chromene (1 mmol) for compound (II). The solutions were refluxed for 18 h in a Dean–Stark apparatus to give the corresponding cycloadduct. After completion

Figure 5

The compound (II) showing the $C-H\cdots\pi$ interactions linking molecules in a head-to-tail fashion, forming chains running along the *a* axis. H atoms not involved in hydrogen bonds are omitted for clarity.

Table 3Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	$[Fe(C_5H_5)(C_{20}H_{21}N_2O_4S)]$	$C_{31}H_{24}N_2O_5S$
M_r	614.48	536.58
Crystal system, space group	Monoclinic, $P2_1/n$	Triclinic, $P\overline{1}$
Temperature (K)	293	293
a, b, c (Å)	11.782 (5), 16.741 (5), 14.147 (5)	11.1123 (5), 11.6373 (2), 12.4095 (3)
α, β, γ (°)	90, 98.013 (5), 90	117.812 (1), 110.812 (1), 95.468 (1)
$V(\dot{A}^3)$	2763.1 (17)	1258.89 (7)
Ζ	4	2
Radiation type	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	0.67	0.18
Crystal size (mm)	$0.19 \times 0.16 \times 0.11$	$0.22 \times 0.18 \times 0.10$
Data collection		
Diffractometer	Bruker SMART APEXII area-detector	Bruker SMART APEXII area-detector
Absorption correction	Multi-scan (SADABS; Bruker, 2008)	Multi-scan (SADABS; Bruker, 2008)
T_{\min}, T_{\max}	0.746, 0.845	0.746, 0.845
No. of measured, independent and	25994, 6900, 5281	18670, 5157, 4192
observed $[I > 2\sigma(I)]$ reflections		
R _{int}	0.028	0.023
$(\sin \theta / \lambda)_{\max} (\dot{A}^{-1})$	0.668	0.626
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.035, 0.097, 1.03	0.037, 0.105, 1.04
No. of reflections	6900	5157
No. of parameters	379	353
H-atom treatment	H-atom parameters constrained	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.29, -0.33	0.25, -0.29

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009).

of the reaction as indicated by TLC, the solvent was evaporated under reduced pressure. The crude product obtained was purified by column chromatography using hexane/EtOAc (8:2) as eluent [Yields: 91% for (I), 88% for (II)].

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The hydrogen atoms were placed in calculated positions with C-H = 0.93-0.98 Å and refined using a riding model with fixed isotropic displacement parameters: $U_{iso}(H) = 1.5U_{eq}(C)$ for the methyl group and $U_{iso}(H)$ = $1.2U_{eq}(C)$ for the remaining H atoms.

Acknowledgements

VV and DV thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. VV thanks the DBT, Government of India, for a fellowship.

References

- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Čačić, M., Molnar, M., Šarkanj, B., Has-Schön, E. & Rajković, V. (2010). *Molecules*, **15**, 6795–6809.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Fun, H.-K., Hemamalini, M., Shanmugavelan, P., Ponnuswamy, A. & Jagatheesan, R. (2011). Acta Cryst. E67, o2706.
- Majed, A. A. & Abid, D. S. (2015). Basrah J. Sci. 33, 101-117.
- Pandey, Y., Sharma, P. K., Kumar, N. & Singh, A. (2011). Int. J. Pharm. Tech Res. 3, 980–985.
- Samadhiya, P., Sharma, R., Srivastava, S. K. & Srivastava, S. D. (2012). Leonardo J. Sci. 20, 37–58.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Shih, M. H., Xu, Y. Y., Yang, Y. S. & Lin, G. L. (2015). Molecules, 20, 6520–6532.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Vennila, J. P., Thiruvadigal, D. J., Kavitha, H. P., Chakkaravarthi, G. & Manivannan, V. (2011). *Acta Cryst.* E**67**, o1902.

Acta Cryst. (2016). E72, 1126-1129 [https://doi.org/10.1107/S2056989016011336]

Crystal structures of two substituted thiazolidine derivatives

Vijayan Viswanathan, Naga Siva Rao, Raghavachary Raghunathan and Devadasan Velmurugan

Computing details

For both compounds, data collection: *APEX2* (Bruker, 2008); cell refinement: *APEX2* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *SHELXL2014* (Sheldrick, 2015) and *PLATON* (Spek, 2009).

(I) 6'-Ferrocenyl-6a'-nitro-6',6a',6b',7',9',11a'-hexahydro-2*H*-spiro[acenaphthylene-1,11'chromeno[3',4':3,4]pyrrolo[1,2-c]thiazol]-2-one

Crystal data

 $[Fe(C_{5}H_{5})(C_{29}H_{21}N_{2}O_{4}S)]$ $M_{r} = 614.48$ Monoclinic, $P2_{1}/n$ a = 11.782 (5) Å b = 16.741 (5) Å c = 14.147 (5) Å $\beta = 98.013$ (5)° V = 2763.1 (17) Å³ Z = 4

Data collection

Bruker SMART APEXII area-detector diffractometer Radiation source: fine-focus sealed tube ω and φ scans Absorption correction: multi-scan (*SADABS*; Bruker, 2008) $T_{\min} = 0.746, T_{\max} = 0.845$ 25994 measured reflections

Refinement

Refinement on F^2 Hydrogen site
neighbourinLeast-squares matrix: fullneighbourin $R[F^2 > 2\sigma(F^2)] = 0.035$ H-atom paran $wR(F^2) = 0.097$ $w = 1/[\sigma^2(F_o^2)]$ S = 1.03where P = 0.0006900 reflections $(\Delta/\sigma)_{max} = 0.000$ 379 parameters $\Delta\rho_{max} = 0.29$ 0 restraints $\Delta\rho_{min} = -0.33$

F(000) = 1272 $D_x = 1.477 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6900 reflections $\theta = 1.9-28.3^{\circ}$ $\mu = 0.67 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.19 \times 0.16 \times 0.11 \text{ mm}$

6900 independent reflections 5281 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 28.3^\circ, \ \theta_{min} = 1.9^\circ$ $h = -15 \rightarrow 12$ $k = -22 \rightarrow 20$ $l = -16 \rightarrow 18$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0472P)^2 + 0.6353P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.29$ e Å⁻³ $\Delta\rho_{min} = -0.33$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.17168 (14)	0.29715 (10)	0.34129 (12)	0.0382 (4)
C2	0.27528 (15)	0.26349 (12)	0.30982 (13)	0.0437 (4)
C3	0.36894 (17)	0.29875 (15)	0.27815 (15)	0.0580 (5)
H3	0.3751	0.3540	0.2741	0.070*
C4	0.45406 (18)	0.24843 (19)	0.25235 (17)	0.0714 (7)
H4	0.5173	0.2713	0.2301	0.086*
C5	0.44852 (18)	0.16710 (18)	0.25835 (16)	0.0683 (7)
Н5	0.5081	0.1363	0.2412	0.082*
C6	0.35397 (17)	0.12899 (14)	0.29018 (14)	0.0536 (5)
C7	0.3351 (2)	0.04678 (15)	0.30007 (16)	0.0660 (6)
H7	0.3897	0.0103	0.2855	0.079*
C8	0.2377 (2)	0.02016 (13)	0.33066 (17)	0.0649 (6)
H8	0.2277	-0.0346	0.3372	0.078*
C9	0.15032 (19)	0.07272 (11)	0.35320 (15)	0.0528 (5)
H9	0.0834	0.0526	0.3720	0.063*
C10	0.16661 (15)	0.15301 (10)	0.34672 (12)	0.0397 (4)
C11	0.26808 (15)	0.18037 (11)	0.31521 (12)	0.0409 (4)
C12	0.09371 (13)	0.22504 (9)	0.36526 (11)	0.0327 (3)
C13	0.13859 (17)	0.19957 (12)	0.54151 (13)	0.0478 (4)
H13A	0.1502	0.2351	0.5961	0.057*
H13B	0.2128	0.1863	0.5235	0.057*
C14	-0.06611 (17)	0.13300 (11)	0.49327 (14)	0.0489 (5)
H14A	-0.0738	0.1007	0.4358	0.059*
H14B	-0.1330	0.1248	0.5250	0.059*
C15	-0.05289 (14)	0.22215 (9)	0.46914 (11)	0.0344 (3)
H15	-0.0782	0.2554	0.5193	0.041*
C16	-0.10955 (13)	0.25086 (9)	0.37114 (11)	0.0302 (3)
C17	-0.02634 (13)	0.22598 (9)	0.30174 (11)	0.0305 (3)
H17	-0.0450	0.1711	0.2810	0.037*
C18	-0.03280 (14)	0.27774 (10)	0.21409 (11)	0.0335 (3)
C19	0.02668 (16)	0.25728 (12)	0.13894 (13)	0.0445 (4)
H19	0.0699	0.2106	0.1426	0.053*
C20	0.02230 (19)	0.30546 (14)	0.05904 (14)	0.0562 (5)
H20	0.0621	0.2911	0.0093	0.067*
C21	-0.04142 (19)	0.37487 (13)	0.05351 (13)	0.0556 (5)
H21	-0.0439	0.4075	0.0000	0.067*
C22	-0.10152 (17)	0.39641 (11)	0.12664 (12)	0.0462 (4)
H22	-0.1445	0.4432	0.1228	0.055*
C23	-0.09665 (14)	0.34702 (10)	0.20609 (11)	0.0351 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C24	-0.12592 (14)	0.34274 (9)	0.36993 (10)	0.0310 (3)
H24	-0.0518	0.3674	0.3930	0.037*
C25	-0.21170 (15)	0.37219 (9)	0.43064 (11)	0.0360 (4)
C26	-0.1857 (2)	0.41094 (13)	0.52068 (13)	0.0546 (5)
H26	-0.1090	0.4222	0.5545	0.065*
C27	-0.2915 (2)	0.43003 (14)	0.55249 (15)	0.0691 (7)
H27	-0.3003	0.4579	0.6119	0.083*
C28	-0.3806 (2)	0.40483 (13)	0.48430 (18)	0.0621 (6)
H28	-0.4625	0.4114	0.4878	0.074*
C29	-0.33282 (16)	0.36859 (11)	0.40861 (16)	0.0476 (4)
H29	-0.3759	0.3454	0.3508	0.057*
C30	-0.1999 (2)	0.54692 (11)	0.33192 (16)	0.0600 (6)
H30	-0.1325	0.5299	0.3037	0.072*
C31	-0.1986 (2)	0.59003 (12)	0.41768 (18)	0.0629 (6)
H31	-0.1301	0.6078	0.4598	0.075*
C32	-0.3126 (2)	0.60257 (11)	0.43236 (16)	0.0586 (6)
H32	-0.3377	0.6305	0.4867	0.070*
C33	-0.3842 (2)	0.56757 (12)	0.35621 (16)	0.0595 (5)
H33	-0.4682	0.5671	0.3477	0.071*
C34	-0.3144 (2)	0.53302 (12)	0.29394 (14)	0.0591 (6)
H34	-0.3413	0.5048	0.2343	0.071*
N1	0.06793 (12)	0.23745 (8)	0.46323 (9)	0.0346 (3)
N2	-0.22575 (12)	0.21372 (8)	0.34208 (11)	0.0363 (3)
O1	0.14788 (12)	0.36653 (7)	0.35017 (10)	0.0508 (3)
O2	-0.16222 (11)	0.37057 (7)	0.27473 (8)	0.0390 (3)
O3	-0.26393 (11)	0.21596 (8)	0.25751 (9)	0.0492 (3)
O4	-0.27784 (11)	0.18748 (9)	0.40367 (11)	0.0580 (4)
S1	0.06376 (5)	0.10735 (3)	0.57181 (4)	0.06071 (16)
Fe1	-0.27986 (2)	0.48313 (2)	0.42494 (2)	0.03501 (8)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0313 (9)	0.0423 (9)	0.0401 (9)	-0.0019 (7)	0.0014 (7)	-0.0009 (7)
C2	0.0288 (9)	0.0600 (11)	0.0413 (9)	-0.0012 (8)	0.0016 (7)	-0.0017 (8)
C3	0.0392 (11)	0.0821 (15)	0.0526 (12)	-0.0127 (10)	0.0066 (9)	-0.0002 (10)
C4	0.0352 (11)	0.125 (2)	0.0563 (13)	-0.0084 (13)	0.0130 (10)	-0.0133 (14)
C5	0.0345 (11)	0.117 (2)	0.0537 (13)	0.0167 (12)	0.0063 (9)	-0.0229 (13)
C6	0.0384 (10)	0.0803 (15)	0.0400 (10)	0.0192 (10)	-0.0023 (8)	-0.0148 (9)
C7	0.0633 (15)	0.0755 (15)	0.0566 (13)	0.0355 (12)	-0.0007 (11)	-0.0184 (11)
C8	0.0830 (17)	0.0436 (11)	0.0657 (14)	0.0229 (11)	0.0015 (13)	-0.0096 (9)
C9	0.0585 (13)	0.0423 (10)	0.0584 (12)	0.0086 (9)	0.0105 (10)	-0.0052 (9)
C10	0.0375 (9)	0.0413 (9)	0.0400 (9)	0.0090 (7)	0.0044 (7)	-0.0042 (7)
C11	0.0312 (9)	0.0562 (11)	0.0340 (9)	0.0100 (8)	-0.0003 (7)	-0.0066 (7)
C12	0.0286 (8)	0.0324 (8)	0.0369 (8)	0.0029 (6)	0.0038 (6)	-0.0023 (6)
C13	0.0474 (11)	0.0517 (11)	0.0411 (10)	0.0094 (8)	-0.0045 (8)	0.0007 (8)
C14	0.0484 (11)	0.0448 (10)	0.0539 (11)	0.0039 (8)	0.0082 (9)	0.0155 (8)
C15	0.0358 (9)	0.0373 (8)	0.0307 (8)	0.0051 (7)	0.0072 (7)	0.0016 (6)

C16	0.0268 (8)	0.0320 (8)	0.0318 (8)	0.0013 (6)	0.0039 (6)	-0.0004 (6)
C17	0.0284 (8)	0.0312 (7)	0.0323 (8)	0.0007 (6)	0.0060 (6)	-0.0034 (6)
C18	0.0308 (8)	0.0406 (8)	0.0290 (8)	-0.0047 (7)	0.0039 (6)	-0.0044 (6)
C19	0.0424 (10)	0.0546 (11)	0.0384 (9)	-0.0024 (8)	0.0120 (8)	-0.0084 (8)
C20	0.0576 (13)	0.0762 (14)	0.0389 (10)	-0.0099 (11)	0.0215 (9)	-0.0057 (9)
C21	0.0658 (14)	0.0681 (13)	0.0338 (9)	-0.0130 (11)	0.0101 (9)	0.0091 (9)
C22	0.0532 (12)	0.0482 (10)	0.0364 (9)	-0.0053 (8)	0.0029 (8)	0.0054 (7)
C23	0.0352 (9)	0.0418 (9)	0.0284 (8)	-0.0051 (7)	0.0045 (6)	-0.0022 (6)
C24	0.0328 (8)	0.0317 (8)	0.0285 (7)	0.0022 (6)	0.0045 (6)	0.0005 (6)
C25	0.0406 (9)	0.0341 (8)	0.0341 (8)	0.0090 (7)	0.0083 (7)	0.0049 (6)
C26	0.0668 (13)	0.0656 (12)	0.0300 (9)	0.0278 (10)	0.0021 (9)	0.0005 (8)
C27	0.100 (2)	0.0739 (15)	0.0400 (11)	0.0418 (14)	0.0312 (13)	0.0130 (10)
C28	0.0616 (14)	0.0558 (12)	0.0778 (16)	0.0136 (10)	0.0413 (13)	0.0157 (11)
C29	0.0403 (10)	0.0371 (9)	0.0687 (12)	-0.0014 (8)	0.0191 (9)	-0.0013 (8)
C30	0.0800 (16)	0.0359 (10)	0.0717 (14)	-0.0013 (10)	0.0380 (13)	0.0044 (9)
C31	0.0682 (15)	0.0406 (10)	0.0811 (16)	-0.0106 (10)	0.0151 (12)	-0.0122 (10)
C32	0.0757 (15)	0.0358 (10)	0.0663 (14)	0.0118 (9)	0.0172 (12)	-0.0083 (9)
C33	0.0657 (14)	0.0489 (11)	0.0620 (13)	0.0194 (10)	0.0019 (11)	0.0094 (10)
C34	0.0931 (18)	0.0450 (11)	0.0387 (10)	0.0105 (11)	0.0074 (11)	0.0085 (8)
N1	0.0331 (7)	0.0372 (7)	0.0323 (7)	0.0056 (6)	0.0005 (6)	-0.0015 (5)
N2	0.0288 (7)	0.0346 (7)	0.0460 (8)	0.0028 (6)	0.0071 (6)	-0.0001 (6)
01	0.0481 (8)	0.0373 (7)	0.0668 (9)	-0.0048 (6)	0.0071 (7)	-0.0017 (6)
O2	0.0476 (7)	0.0409 (6)	0.0292 (6)	0.0123 (5)	0.0078 (5)	0.0049 (5)
O3	0.0339 (7)	0.0675 (9)	0.0444 (7)	-0.0035 (6)	-0.0003 (6)	-0.0090 (6)
O4	0.0411 (8)	0.0710 (9)	0.0645 (9)	-0.0105 (7)	0.0165 (7)	0.0170 (7)
S 1	0.0694 (4)	0.0521 (3)	0.0579 (3)	0.0147 (3)	-0.0006 (3)	0.0201 (2)
Fe1	0.03822 (15)	0.03383 (13)	0.03325 (13)	0.00572 (10)	0.00597 (10)	-0.00222 (9)

Geometric parameters (Å, °)

C1-01	1.205 (2)	C19—H19	0.9300
C1—C2	1.469 (2)	C20—C21	1.380 (3)
C1-C12	1.582 (2)	C20—H20	0.9300
С2—С3	1.380 (3)	C21—C22	1.380 (3)
C2—C11	1.397 (3)	C21—H21	0.9300
C3—C4	1.397 (3)	C22—C23	1.390 (2)
С3—Н3	0.9300	C22—H22	0.9300
C4—C5	1.366 (4)	C23—O2	1.3799 (19)
C4—H4	0.9300	C24—O2	1.4330 (19)
C5—C6	1.411 (3)	C24—C25	1.498 (2)
С5—Н5	0.9300	C24—H24	0.9800
C6—C7	1.404 (3)	C25—C29	1.419 (3)
C6—C11	1.410(2)	C25—C26	1.424 (3)
С7—С8	1.357 (4)	C25—Fe1	2.0206 (16)
С7—Н7	0.9300	C26—C27	1.419 (3)
С8—С9	1.424 (3)	C26—Fe1	2.0263 (19)
С8—Н8	0.9300	C26—H26	0.9800
C9—C10	1.363 (3)	C27—C28	1.388 (4)

С9—Н9	0.9300	C27—Fe1	2.033 (2)
C10—C11	1.409 (3)	С27—Н27	0.9800
C10—C12	1.524 (2)	C28—C29	1.414 (3)
C12—N1	1.474 (2)	C28—Fe1	2.027 (2)
C12—C17	1.566 (2)	C28—H28	0.9800
C13—N1	1.437 (2)	C29—Fe1	2.0197 (19)
C13—S1	1.857 (2)	С29—Н29	0.9800
С13—Н13А	0.9700	C30—C34	1.401 (3)
С13—Н13В	0.9700	C30—C31	1.410 (3)
C14—C15	1.544 (2)	C30—Fe1	2.026 (2)
C14—S1	1.813 (2)	С30—Н30	0.9800
C14—H14A	0.9700	C31—C32	1.403 (3)
C14—H14B	0.9700	C31—Fe1	2.039 (2)
C15—N1	1.460 (2)	С31—Н31	0.9800
C15—C16	1.530 (2)	C32—C33	1.401 (3)
С15—Н15	0.9800	C32—Fe1	2.042 (2)
C16—N2	1.508 (2)	С32—Н32	0.9800
C16—C17	1.538 (2)	C33—C34	1.410(3)
C16—C24	1.550 (2)	C33—Fe1	2.030(2)
C17—C18	1 506 (2)	C33—H33	0.9800
С17—Н17	0.9800	C34—Fe1	2.022.(2)
C18 - C23	1 378 (2)	C34—H34	0.9800
C18—C19	1.395 (2)	N2-04	1.2158 (19)
C19 - C20	1 384 (3)	N2-03	1 2186 (19)
017 020	1.501(5)	112 00	1.2100 (1))
01-C1-C2	128.05 (16)	C25—C26—H26	126.3
01-C1-C12	124 22 (15)	Fe1—C26—H26	126.3
$C_2 - C_1 - C_{12}$	107.71 (14)	C_{28} C_{27} C_{26}	108.86 (19)
C_{3} — C_{2} — C_{11}	120.08 (18)	C_{28} C27 Fe1	69.77 (12)
C_{3} — C_{2} — C_{1}	132.09 (19)	$C_{26} - C_{27} - F_{e1}$	69.27 (11)
$C_{11} = C_{2} = C_{1}$	107.83 (15)	$C_{28} = C_{27} = H_{27}$	125.6
$C_{2} - C_{3} - C_{4}$	117.6 (2)	С26—С27—Н27	125.6
C2—C3—H3	121.2	Fe1—C27—H27	125.6
C4-C3-H3	121.2	C_{27} C_{28} C_{29}	108 34 (19)
$C_{5}-C_{4}-C_{3}$	122.9(2)	C_{27} C_{28} F_{e1}	70 25 (13)
C5-C4-H4	118.6	C_{29} C_{28} Fe1	69 27 (11)
C3—C4—H4	118.6	C_{27} C_{28} H_{28}	125.8
C4-C5-C6	121 1 (2)	C_{29} C_{28} H_{28}	125.8
C4—C5—H5	119.4	Fe1—C28—H28	125.8
C6-C5-H5	119.4	C_{28} C_{29} C_{25}	108.0(2)
C7 - C6 - C11	1163(2)	$C_{28} = C_{29} = F_{e1}$	69.84(12)
C7 - C6 - C5	128.2(2)	$C_{25} = C_{29} = Fe1$	69 47 (10)
$C_{11} - C_{6} - C_{5}$	1155(2)	C_{28} C_{29} H_{29}	126.0
C_{8} C_{7} C_{6}	120 43 (19)	C_{25} C_{29} H_{29}	126.0
C8—C7—H7	119.8	Fe1_C29_H29	126.0
С6—С7—Н7	119.8	C_{34} C_{30} C_{31}	120.0 108.0(2)
C7 - C8 - C9	122 6 (2)	C_{34} C_{30} F_{e1}	69 59 (12)
	1107	C_{21} C_{20} E_{-1}	70.10(12)
$(\Box) \longrightarrow (\Box \otimes \Box \otimes \Box \otimes \Box)$			///////////////////////////////////////

С9—С8—Н8	118.7	С34—С30—Н30	126.0
C10—C9—C8	118.8 (2)	С31—С30—Н30	126.0
С10—С9—Н9	120.6	Fe1—C30—H30	126.0
С8—С9—Н9	120.6	C32—C31—C30	108.0 (2)
C9—C10—C11	118.39 (16)	C32—C31—Fe1	70.00 (12)
C9—C10—C12	132.91 (17)	C30—C31—Fe1	69.22 (11)
C11—C10—C12	108.70 (15)	C32—C31—H31	126.0
C_{2} $-C_{11}$ $-C_{10}$	113 68 (15)	C30—C31—H31	126.0
$C_2 - C_{11} - C_6$	122.87 (18)	Fe1—C31—H31	126.0
C10-C11-C6	122.07(10) 123.45(19)	C_{33} C_{32} C_{31}	120.0 108.0(2)
N1 C12 C10	125.45(17) 117.90(13)	C_{33} C_{32} C_{31} C_{31}	60.43(11)
N1 - C12 - C17	117.90(13) 104.47(12)	$C_{33} = C_{32} = F_{c1}$	60 70 (11)
N1 = C12 = C17	104.47(12) 112.24(12)	C_{22} C_{22} H_{22}	126.0
C10-C12-C17	113.24(13) 107.21(12)	С35—С32—Н32	120.0
	107.21 (13)	C31—C32—H32	126.0
	102.06 (13)	Fe1—C32—H32	126.0
C17—C12—C1	111.98 (13)	C32—C33—C34	108.1 (2)
N1—C13—S1	107.58 (13)	C32—C33—Fe1	70.32 (12)
N1—C13—H13A	110.2	C34—C33—Fe1	69.32 (12)
S1—C13—H13A	110.2	С32—С33—Н33	125.9
N1—C13—H13B	110.2	С34—С33—Н33	125.9
S1—C13—H13B	110.2	Fe1—C33—H33	125.9
H13A—C13—H13B	108.5	C30—C34—C33	107.9 (2)
C15—C14—S1	105.19 (13)	C30—C34—Fe1	69.93 (12)
C15—C14—H14A	110.7	C33—C34—Fe1	69.95 (12)
S1-C14-H14A	110.7	С30—С34—Н34	126.1
C15—C14—H14B	110.7	С33—С34—Н34	126.1
S1—C14—H14B	110.7	Fe1—C34—H34	126.1
H14A—C14—H14B	108.8	C13—N1—C15	110.07 (14)
N1—C15—C16	101.46 (12)	C13—N1—C12	119.29 (14)
N1-C15-C14	108.15 (13)	C15 - N1 - C12	111.06 (13)
C16-C15-C14	117 35 (14)	04—N2—03	124 10 (15)
N1_C15_H15	109.8	04 - N2 - C16	118 91 (14)
C_{16} C_{15} H_{15}	109.8	03 N2 C16	116.91(14) 116.87(13)
$C_{10} = C_{15} = H_{15}$	109.8	C_{23} C_{24}	116.67(13)
$N_{2} = C_{16} = C_{15}$	112 40 (13)	$C_{23} = 0_2 = 0_2 = 0_2 = 0_2$	110.43(12)
$N_2 = C_{10} = C_{13}$	112.49(13)	$C_{14} = S_{1} = C_{15}$	92.80 (9) 41.12 (8)
$N_2 = C_{10} = C_{17}$	110.40(12) 104.98(12)	C_{29} FeI C_{23}	41.12(6)
	104.88 (12)	C29—FeI—C34	105.54 (9)
$N_2 - C_{16} - C_{24}$	107.42 (12)	C_{25} —FeI— C_{34}	116.39 (8)
C15—C16—C24	111.08 (12)	C29—Fe1—C30	126.18 (8)
C17—C16—C24	110.55 (12)	C25—Fe1—C30	106.99 (8)
C18—C17—C16	113.96 (13)	C34—Fe1—C30	40.48 (10)
C18—C17—C12	114.58 (13)	C29—Fe1—C26	69.01 (9)
C16—C17—C12	103.97 (12)	C25—Fe1—C26	41.21 (7)
C18—C17—H17	108.0	C34—Fe1—C26	151.72 (9)
C16—C17—H17	108.0	C30—Fe1—C26	119.19 (10)
С12—С17—Н17	108.0	C29—Fe1—C28	40.89 (8)
C23—C18—C19	118.06 (16)	C25—Fe1—C28	68.99 (8)
C23—C18—C17	121.07 (14)	C34—Fe1—C28	126.31 (11)

C19—C18—C17	120.87 (15)	C30—Fe1—C28	164.13 (11)
C20-C19-C18	120.93 (19)	C26—Fe1—C28	68.58 (10)
C20-C19-H19	119.5	C29—Fe1—C33	116.71 (9)
C18—C19—H19	119.5	C25—Fe1—C33	150.45 (8)
C21—C20—C19	119.68 (17)	C34—Fe1—C33	40.73 (9)
C21—C20—H20	120.2	C30—Fe1—C33	68.12 (10)
С19—С20—Н20	120.2	C26—Fe1—C33	166.86 (8)
C20—C21—C22	120.62 (18)	C28—Fe1—C33	107.36 (10)
C20—C21—H21	119.7	C29—Fe1—C27	68.18 (10)
C22—C21—H21	119.7	C_{25} —Fe1—C27	68.80 (7)
$C_{21} - C_{22} - C_{23}$	118 88 (19)	C34—Fe1—C27	$164\ 63\ (11)$
C21—C22—H22	120.6	C_{30} Fe1 C_{27}	154.40(12)
C_{23} C_{22} H_{22}	120.6	C_{26} Fe1 C_{27}	40.93 (9)
$C_{18} - C_{23} - O_{2}^{2}$	122.36 (14)	C_{28} Fe1 C_{27}	39.98(10)
C_{18} C_{23} C_{22} C_{23} C_{22}	122.30 (14)	C_{33} Fe1 C_{27}	128 18 (9)
$0^{2}-0^{2}$	115 78 (15)	C^{29} Fe1 C^{31}	165 30 (8)
02 - 023 - 022	107.16(13)	C_{2} Fe1 C_{3}	128 46 (9)
02 - 024 - 023	110.69 (12)	C_{23} F_{e1} C_{31}	68 11 (10)
$C_{2}^{-} C_{2}^{-} C_{10}^{-} C_{10}^{-}$	110.09(12) 114.40(13)	C_{30} Fe1 C31	40.58 (9)
$C_{23} = C_{24} = C_{10}$	108.1	C_{26}^{-1} C_{21}^{-1}	40.38(9)
$C_2 = C_2 + H_2 + H_2$	108.1	C_{20} F_{e1} C_{31}	109.88(10) 153.45(0)
$C_{23} - C_{24} - H_{24}$	108.1	$C_{23} = F_{e1} = C_{21}$	133.43(9)
$C_{10} = C_{24} = 1124$	108.1	C_{33} C_{31} C_{31} C_{31} C_{31}	121.25(11)
$C_{29} = C_{25} = C_{20}$	107.44 (10)	C_{2}^{2} C_{2}^{2} C_{2}^{2} C_{2}^{2} C_{2}^{2} C_{2}^{2}	121.23(11) 151.41(0)
$C_{29} = C_{23} = C_{24}$	120.70(10) 125.70(17)	C_{29} Fe1 C_{32}	151.41(9) 167.14(9)
$C_{20} = C_{23} = C_{24}$	125.79(17)	C_{23} Fe1 C_{32}	107.14(9)
$C_{29} = C_{23} = Fe1$	69.41(10)	C_{34} FeI C_{32}	68.01(9)
C_{20} C_{23} $-rel$	09.01(10)	C_{30} Fe1 C_{32}	120.74(0)
C_{24} C_{25} $-ref$	123.13(11) 107.2(2)	C_{20} Fe1 C_{32}	129.74 (9)
$C_{27} = C_{26} = C_{25}$	107.3(2)	C_{28} —FeI—C ₃₂	119.10 (9)
C27—C26—Fel	69.80 (12)	C_{33} —FeI—C ₃₂	40.25 (9)
C25—C26—Fel	69.18 (10)	$C_2/=Fe_1=C_{32}$	110.24 (9)
C27—C26—H26	126.3	C31—Fe1—C32	40.22 (9)
01 - C1 - C2 - C3	-35(3)	C_{21} C_{22} C_{23} C_{18}	0.6(3)
C_{12} C_{1} C_{2} C_{3}	177.9 (2)	$C_{21} - C_{22} - C_{23} - O_{2}$	-177.60(17)
01-C1-C2-C11	177.00 (18)	N2-C16-C24-O2	-65.60(15)
C_{12} C_{1} C_{2} C_{11} C_{2} C_{11}	-1.61(19)	$C_{15} - C_{16} - C_{24} - O_{2}$	171.00 (12)
$C_{11} - C_{2} - C_{3} - C_{4}$	0.0 (3)	C17-C16-C24-O2	54.99 (17)
C1-C2-C3-C4	-179.4(2)	N2-C16-C24-C25	55.58 (17)
$C_{2} - C_{3} - C_{4} - C_{5}$	-0.8(3)	$C_{15} - C_{16} - C_{24} - C_{25}$	-67.83(18)
$C_{3} - C_{4} - C_{5} - C_{6}$	10(4)	C17 - C16 - C24 - C25	176 16 (13)
C4-C5-C6-C7	179.8 (2)	O2-C24-C25-C29	46.3 (2)
C4-C5-C6-C11	-0.3(3)	C16—C24—C25—C29	-76.8(2)
C11—C6—C7—C8	1.1 (3)	O2-C24-C25-C26	-132.02(17)
C5—C6—C7—C8	-179.0(2)	C16—C24—C25—C26	104.88 (19)
C6-C7-C8-C9	0.6 (4)	O2-C24-C25-Fe1	-43.03(18)
C7—C8—C9—C10	-2.1(3)	C16—C24—C25—Fe1	-166.13(11)
C8-C9-C10-C11	1.8 (3)	C29—C25—C26—C27	0.3 (2)

C0 C0 C10 C12	170 70 (10)	C24 C25 C2(C27	170.02(10)
C8_C9_C10_C12	-1/9.0(19)	024-025-026-027	1/8.93 (16)
C3—C2—C11—C10	-178.66 (17)	Fe1—C25—C26—C27	59.64 (14)
C1—C2—C11—C10	0.9 (2)	C29—C25—C26—Fe1	-59.33 (12)
C3—C2—C11—C6	0.6 (3)	C24—C25—C26—Fe1	119.29 (16)
C1—C2—C11—C6	-179.89 (16)	C25—C26—C27—C28	-0.6 (2)
C9—C10—C11—C2	179.08 (17)	Fe1—C26—C27—C28	58.67 (15)
C12—C10—C11—C2	0.3 (2)	C25-C26-C27-Fe1	-59.25 (13)
C9—C10—C11—C6	-0.1 (3)	C26—C27—C28—C29	0.6 (2)
C12—C10—C11—C6	-178.96 (16)	Fe1—C27—C28—C29	58.98 (14)
C7—C6—C11—C2	179.51 (18)	C26—C27—C28—Fe1	-58.37 (15)
C5-C6-C11-C2	-0.4(3)	C_{27} C_{28} C_{29} C_{25}	-0.4(2)
C7 - C6 - C11 - C10	-13(3)	Fe1-C28-C29-C25	59.17(12)
C_{5} C_{6} C_{11} C_{10}	178 75 (18)	$C_{27} C_{28} C_{29} E_{21}$	-50.50(15)
C_{0} C_{10} C_{12} N_{1}	(10)	$C_{26} = C_{26} = C_{29} = C_{28}$	0.1(2)
$C_{11} = C_{10} = C_{12} = N_1$	119 29 (16)	$C_{20} = C_{23} = C_{29} = C_{28}$	179.55(16)
C11 - C10 - C12 - N1	-116.26(10)	$C_{24} - C_{25} - C_{29} - C_{28}$	-178.33(10)
C_{9} C_{10} C_{12} C_{17}	-39.2(3)	FeI-C23-C29-C28	-39.40(13)
	119.36 (15)	C26—C25—C29—Fel	59.46 (13)
C9—C10—C12—C1	-179.8 (2)	C24—C25—C29—Fel	-119.15 (16)
C11—C10—C12—C1	-1.18 (17)	C34—C30—C31—C32	0.0 (2)
01—C1—C12—N1	-52.4 (2)	Fe1—C30—C31—C32	-59.50 (15)
C2-C1-C12-N1	126.23 (14)	C34—C30—C31—Fe1	59.54 (14)
O1—C1—C12—C10	-177.00 (17)	C30—C31—C32—C33	-0.1 (2)
C2-C1-C12-C10	1.68 (17)	Fe1—C31—C32—C33	-59.08 (15)
O1—C1—C12—C17	61.6 (2)	C30-C31-C32-Fe1	59.01 (15)
C2-C1-C12-C17	-119.74 (15)	C31—C32—C33—C34	0.1 (2)
S1-C14-C15-N1	34.99 (16)	Fe1—C32—C33—C34	-59.23 (14)
S1-C14-C15-C16	148.88 (12)	C31—C32—C33—Fe1	59.30 (15)
N1-C15-C16-N2	157.43 (12)	C31—C30—C34—C33	0.0 (2)
C14—C15—C16—N2	39.87 (19)	Fe1—C30—C34—C33	59.93 (14)
N1-C15-C16-C17	37.33 (15)	C31—C30—C34—Fe1	-59.92(15)
C14-C15-C16-C17	-80.23(17)	C_{32} C_{33} C_{34} C_{30}	-0.1(2)
N1-C15-C16-C24	-82.12(14)	F_{e1} C_{33} C_{34} C_{30}	-59.91(14)
C_{14} C_{15} C_{16} C_{24}	160.32(14)	$C_{32}^{32} C_{33}^{33} C_{34}^{34} F_{e1}^{1}$	50.86 (15)
$N_2 = C_{16} = C_{17} = C_{18}$	85 38 (16)	$C_{32} = C_{33} = C_{34} = 101$	31.86 (16)
12-10-17-18	-153 10 (13)	S1 = C13 = N1 = C13	-08.21(16)
$C_{13} = C_{10} = C_{17} = C_{18}$	133.19(13)	S1 - C15 - N1 - C12	36.21(10)
$C_{24} = C_{10} = C_{17} = C_{18}$	-33.38(18)	C10 - C15 - N1 - C13	-108.30(13)
$N_2 - C_{16} - C_{17} - C_{12}$	-149.19 (12)	C14— $C15$ — $N1$ — $C13$	-44.33 (18)
C15—C16—C17—C12	-27.75 (15)	C16—C15—N1—C12	-34.03 (15)
C24—C16—C17—C12	92.05 (14)	C14—C15—N1—C12	90.01 (16)
N1—C12—C17—C18	132.57 (13)	C10—C12—N1—C13	19.8 (2)
C10-C12-C17-C18	-97.87 (16)	C17—C12—N1—C13	146.48 (15)
C1—C12—C17—C18	16.87 (18)	C1—C12—N1—C13	-94.53 (17)
N1-C12-C17-C16	7.54 (15)	C10-C12-N1-C15	-109.86 (16)
C10-C12-C17-C16	137.10 (14)	C17—C12—N1—C15	16.86 (16)
C1—C12—C17—C16	-108.16 (14)	C1-C12-N1-C15	135.85 (13)
C16—C17—C18—C23	8.6 (2)	C15—C16—N2—O4	22.38 (19)
C12—C17—C18—C23	-111.04 (17)	C17—C16—N2—O4	139.20 (15)
C16—C17—C18—C19	-172.07 (15)	C24—C16—N2—O4	-100.16 (16)

C_{17} C_{18} C_{23} C_{22} C_{23} C_{22} C_{23} C	C12C17C18C19 C23C18C19C20 C17C18C19C20 C18C19C20C21 C19C20C21C22 C20C21C22C23 C19C18C23O2 C19C18C23C22 C17C18C23C22 C17C18C23C22	68.33 (19) 0.4 (3) -178.95 (17) 0.2 (3) -0.5 (3) 0.1 (3) 177.22 (15) -3.4 (2) -0.8 (3) 178 54 (15) $-68.33 (19) -68.33 (19) -78.95 (17) -78.95 (15) -78.95$	C15—C16—N2—O3 C17—C16—N2—O3 C24—C16—N2—O3 C18—C23—O2—C24 C22—C23—O2—C24 C25—C24—O2—C23 C16—C24—O2—C23 C16—C24—O2—C23 C15—C14—S1—C13 N1—C13—S1—C14	-161.40 (13) -44.58 (18) 76.06 (16) 26.5 (2) -155.38 (15) -177.50 (13) -52.13 (18) -14.50 (13) -8.95 (14)
--	---	---	--	---

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
C13—H13A····O3 ⁱ	0.97	2.50	3.417 (3)	157
C20—H20…O4 ⁱⁱ	0.93	2.59	3.440 (3)	152
C24—H24…O1	0.98	2.51	3.301 (3)	138

Symmetry codes: (i) x+1/2, -y+1/2, z+1/2; (ii) x+1/2, -y+1/2, z-1/2.

(II) 6'-(4-Methoxyphenyl)-6a'-nitro-6',6a',6b',7',9',11a'-hexahydro-2*H*-spiro[acenaphthylene-1,11'-chromeno[3',4':3,4]pyrrolo[1,2-c]thiazol]-2-one

Crystal data

 $C_{31}H_{24}N_2O_5S$ $M_r = 536.58$ Triclinic, *P*1 *a* = 11.1123 (5) Å *b* = 11.6373 (2) Å *c* = 12.4095 (3) Å *a* = 117.812 (1)° *β* = 110.812 (1)° *y* = 95.468 (1)° *V* = 1258.89 (7) Å³

Data collection

Bruker SMART APEXII area-detector diffractometer ω and φ scans Absorption correction: multi-scan (*SADABS*; Bruker, 2008) $T_{\min} = 0.746, T_{\max} = 0.845$ 18670 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.105$ S = 1.045157 reflections 353 parameters 0 restraints Z = 2 F(000) = 560 $D_x = 1.416 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5157 reflections $\theta = 2.0-26.4^{\circ}$ $\mu = 0.18 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.22 \times 0.18 \times 0.10 \text{ mm}$

5157 independent reflections 4192 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$ $\theta_{max} = 26.4^\circ, \ \theta_{min} = 2.0^\circ$ $h = -13 \rightarrow 13$ $k = -14 \rightarrow 14$ $l = -15 \rightarrow 15$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0497P)^2 + 0.3546P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.25$ e Å⁻³ $\Delta\rho_{min} = -0.29$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.16234 (14)	0.21087 (14)	1.00050 (14)	0.0303 (3)	
C2	0.29371 (14)	0.31519 (15)	1.06617 (14)	0.0334 (3)	
C3	0.35025 (16)	0.44717 (16)	1.17791 (16)	0.0426 (4)	
H3	0.3036	0.4866	1.2273	0.051*	
C4	0.48101 (18)	0.52074 (18)	1.2151 (2)	0.0555 (5)	
H4	0.5204	0.6108	1.2895	0.067*	
C5	0.55205 (18)	0.46379 (19)	1.1449 (2)	0.0596 (5)	
H5	0.6383	0.5160	1.1729	0.071*	
C6	0.49749 (16)	0.32733 (18)	1.03078 (18)	0.0466 (4)	
C7	0.55832 (18)	0.2539 (2)	0.9491 (2)	0.0587 (5)	
H7	0.6456	0.2956	0.9691	0.070*	
C8	0.48953 (18)	0.1227 (2)	0.8415 (2)	0.0567 (5)	
H8	0.5320	0.0765	0.7898	0.068*	
C9	0.35631 (16)	0.05349 (18)	0.80482 (17)	0.0456 (4)	
H9	0.3117	-0.0359	0.7297	0.055*	
C10	0.29429 (14)	0.12055 (15)	0.88192 (15)	0.0338 (3)	
C11	0.36606 (14)	0.25606 (15)	0.99389 (15)	0.0350 (3)	
C12	0.15158 (13)	0.08333 (14)	0.86708 (14)	0.0296 (3)	
C17	0.04423 (13)	0.07120 (14)	0.73580 (14)	0.0300 (3)	
H17	0.0788	0.0420	0.6679	0.036*	
C18	0.01547 (14)	0.20175 (15)	0.76059 (14)	0.0330 (3)	
C19	0.10115 (16)	0.30340 (17)	0.76795 (17)	0.0422 (4)	
H19	0.1760	0.2885	0.7529	0.051*	
C20	0.07654 (18)	0.42587 (18)	0.7973 (2)	0.0537 (5)	
H20	0.1339	0.4925	0.8008	0.064*	
C21	-0.03321 (18)	0.44951 (18)	0.8216 (2)	0.0539 (5)	
H21	-0.0484	0.5331	0.8437	0.065*	
C22	-0.12025 (16)	0.34983 (16)	0.81319 (17)	0.0464 (4)	
H22	-0.1941	0.3659	0.8300	0.056*	
C23	-0.09723 (14)	0.22551 (15)	0.77958 (15)	0.0358 (3)	
C24	-0.17388 (14)	0.00433 (14)	0.75027 (14)	0.0326 (3)	
H24	-0.1306	0.0227	0.8431	0.039*	
C25	-0.31406 (14)	-0.09614 (14)	0.67748 (14)	0.0320 (3)	
C30	-0.41836 (15)	-0.10188 (16)	0.56946 (16)	0.0396 (3)	
H30	-0.4010	-0.0438	0.5410	0.047*	
C29	-0.54640 (16)	-0.19207 (17)	0.50438 (17)	0.0453 (4)	
H29	-0.6151	-0.1937	0.4332	0.054*	
C28	-0.57380 (15)	-0.28045 (17)	0.54407 (16)	0.0426 (4)	
C31	-0.7326 (2)	-0.4772 (2)	0.4878 (2)	0.0693 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

H31A	-0.6753	-0.5323	0.4670	0.104*
H31B	-0.8259	-0.5322	0.4271	0.104*
H31C	-0.7160	-0.4419	0.5806	0.104*
C27	-0.47286 (17)	-0.27538 (18)	0.65139 (18)	0.0481 (4)
H27	-0.4906	-0.3335	0.6797	0.058*
C26	-0.34419 (15)	-0.18291 (18)	0.71723 (16)	0.0420 (4)
H26	-0.2765	-0.1795	0.7902	0.050*
C16	-0.07894 (14)	-0.04652 (14)	0.68327 (13)	0.0313 (3)
C15	-0.01600 (15)	-0.14060 (14)	0.72294 (15)	0.0355 (3)
H15	-0.0812	-0.1964	0.7299	0.043*
C14	0.04383 (17)	-0.23249 (16)	0.63316 (17)	0.0456 (4)
H14A	0.0794	-0.1880	0.5964	0.055*
H14B	-0.0246	-0.3194	0.5579	0.055*
C13	0.18494 (18)	-0.11019 (17)	0.90177 (18)	0.0451 (4)
H13A	0.1559	-0.1419	0.9510	0.054*
H13B	0.2769	-0.0476	0.9621	0.054*
N1	0.09591 (12)	-0.04224 (12)	0.85801 (12)	0.0338 (3)
N2	-0.16219 (13)	-0.11755 (14)	0.53086 (13)	0.0409 (3)
01	0.07738 (10)	0.21597 (11)	1.04066 (10)	0.0397 (3)
O2	-0.19534 (11)	0.12778 (11)	0.76151 (12)	0.0450 (3)
O3	-0.17443 (13)	-0.04707 (14)	0.48225 (12)	0.0574 (3)
O4	-0.21819 (13)	-0.24098 (12)	0.46534 (12)	0.0571 (3)
O5	-0.70369 (12)	-0.36725 (14)	0.47129 (14)	0.0640 (4)
S1	0.17845 (6)	-0.25726 (5)	0.74712 (6)	0.06168 (16)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0301 (7)	0.0321 (7)	0.0293 (7)	0.0130 (6)	0.0119 (6)	0.0175 (6)
C2	0.0312 (7)	0.0345 (8)	0.0328 (7)	0.0120 (6)	0.0114 (6)	0.0187 (6)
C3	0.0398 (8)	0.0347 (8)	0.0419 (8)	0.0123 (7)	0.0141 (7)	0.0157 (7)
C4	0.0441 (9)	0.0352 (9)	0.0585 (11)	0.0029 (7)	0.0138 (8)	0.0135 (8)
C5	0.0361 (9)	0.0491 (11)	0.0702 (12)	-0.0016 (8)	0.0169 (8)	0.0235 (10)
C6	0.0313 (8)	0.0496 (10)	0.0552 (10)	0.0094 (7)	0.0171 (7)	0.0280 (8)
C7	0.0335 (9)	0.0705 (13)	0.0716 (12)	0.0135 (9)	0.0282 (9)	0.0353 (11)
C8	0.0428 (9)	0.0705 (13)	0.0626 (11)	0.0248 (9)	0.0348 (9)	0.0309 (10)
C9	0.0397 (8)	0.0479 (10)	0.0469 (9)	0.0175 (7)	0.0242 (7)	0.0198 (8)
C10	0.0295 (7)	0.0388 (8)	0.0360 (7)	0.0137 (6)	0.0151 (6)	0.0215 (7)
C11	0.0291 (7)	0.0377 (8)	0.0383 (8)	0.0115 (6)	0.0133 (6)	0.0219 (7)
C12	0.0293 (7)	0.0296 (7)	0.0312 (7)	0.0114 (6)	0.0147 (6)	0.0162 (6)
C17	0.0293 (7)	0.0315 (7)	0.0285 (7)	0.0087 (6)	0.0140 (5)	0.0153 (6)
C18	0.0320 (7)	0.0331 (7)	0.0294 (7)	0.0081 (6)	0.0090 (6)	0.0175 (6)
C19	0.0386 (8)	0.0416 (9)	0.0494 (9)	0.0092 (7)	0.0171 (7)	0.0292 (8)
C20	0.0474 (10)	0.0427 (10)	0.0685 (12)	0.0070 (8)	0.0164 (9)	0.0366 (9)
C21	0.0479 (10)	0.0341 (9)	0.0647 (11)	0.0123 (7)	0.0108 (8)	0.0266 (8)
C22	0.0367 (8)	0.0380 (9)	0.0515 (9)	0.0139 (7)	0.0124 (7)	0.0200 (8)
C23	0.0308 (7)	0.0315 (7)	0.0349 (7)	0.0068 (6)	0.0088 (6)	0.0157 (6)
C24	0.0317 (7)	0.0324 (7)	0.0315 (7)	0.0098 (6)	0.0152 (6)	0.0151 (6)

C25	0.0299 (7)	0.0331 (7)	0.0316 (7)	0.0105 (6)	0.0142 (6)	0.0162 (6)
C30	0.0368 (8)	0.0396 (8)	0.0413 (8)	0.0091 (7)	0.0123 (7)	0.0255 (7)
C29	0.0347 (8)	0.0464 (9)	0.0422 (9)	0.0078 (7)	0.0054 (7)	0.0245 (8)
C28	0.0327 (8)	0.0390 (8)	0.0441 (9)	0.0042 (6)	0.0141 (7)	0.0176 (7)
C31	0.0636 (12)	0.0463 (11)	0.0810 (14)	-0.0031 (9)	0.0374 (11)	0.0227 (10)
C27	0.0418 (9)	0.0533 (10)	0.0589 (10)	0.0097 (8)	0.0215 (8)	0.0389 (9)
C26	0.0352 (8)	0.0543 (10)	0.0431 (8)	0.0129 (7)	0.0145 (7)	0.0334 (8)
C16	0.0310 (7)	0.0304 (7)	0.0269 (7)	0.0069 (6)	0.0132 (6)	0.0118 (6)
C15	0.0376 (8)	0.0282 (7)	0.0392 (8)	0.0090 (6)	0.0203 (6)	0.0151 (6)
C14	0.0523 (10)	0.0332 (8)	0.0487 (9)	0.0159 (7)	0.0277 (8)	0.0163 (7)
C13	0.0530 (10)	0.0438 (9)	0.0514 (9)	0.0249 (8)	0.0262 (8)	0.0311 (8)
N1	0.0363 (6)	0.0312 (6)	0.0373 (6)	0.0129 (5)	0.0174 (5)	0.0198 (5)
N2	0.0362 (7)	0.0433 (8)	0.0306 (6)	0.0059 (6)	0.0147 (5)	0.0126 (6)
01	0.0362 (5)	0.0429 (6)	0.0366 (6)	0.0130 (5)	0.0201 (5)	0.0162 (5)
O2	0.0356 (6)	0.0318 (6)	0.0648 (7)	0.0117 (5)	0.0261 (5)	0.0214 (5)
O3	0.0608 (8)	0.0663 (8)	0.0370 (6)	0.0120 (6)	0.0136 (6)	0.0296 (6)
O4	0.0537 (7)	0.0416 (7)	0.0383 (6)	-0.0039 (6)	0.0137 (5)	0.0034 (5)
O5	0.0394 (6)	0.0582 (8)	0.0674 (8)	-0.0082 (6)	0.0094 (6)	0.0297 (7)
S1	0.0781 (4)	0.0513 (3)	0.0716 (3)	0.0425 (3)	0.0426 (3)	0.0342 (3)

Geometric parameters (Å, °)

C1-01	1.2085 (17)	C22—H22	0.9300
C1—C2	1.471 (2)	C23—O2	1.3728 (18)
C1-C12	1.5783 (19)	C24—O2	1.4291 (18)
C2—C3	1.373 (2)	C24—C25	1.5090 (19)
C2—C11	1.402 (2)	C24—C16	1.5612 (19)
C3—C4	1.405 (2)	C24—H24	0.9800
С3—Н3	0.9300	C25—C26	1.376 (2)
C4—C5	1.367 (3)	C25—C30	1.394 (2)
C4—H4	0.9300	C30—C29	1.373 (2)
C5—C6	1.415 (3)	С30—Н30	0.9300
С5—Н5	0.9300	C29—C28	1.383 (2)
C6—C11	1.404 (2)	С29—Н29	0.9300
C6—C7	1.415 (3)	C28—O5	1.3652 (18)
С7—С8	1.359 (3)	C28—C27	1.374 (2)
С7—Н7	0.9300	C31—O5	1.413 (2)
C8—C9	1.414 (2)	C31—H31A	0.9600
С8—Н8	0.9300	C31—H31B	0.9600
C9—C10	1.369 (2)	C31—H31C	0.9600
С9—Н9	0.9300	C27—C26	1.388 (2)
C10-C11	1.408 (2)	С27—Н27	0.9300
C10—C12	1.5242 (19)	C26—H26	0.9300
C12—N1	1.4682 (18)	C16—N2	1.5061 (18)
C12—C17	1.5714 (19)	C16—C15	1.528 (2)
C17—C18	1.494 (2)	C15—N1	1.4572 (19)
C17—C16	1.5331 (19)	C15—C14	1.542 (2)
С17—Н17	0.9800	C15—H15	0.9800

C18—C23	1.384 (2)	C14—S1	1.8111 (18)
C18—C19	1.392 (2)	C14—H14A	0.9700
C19—C20	1.378 (2)	C14—H14B	0.9700
С19—Н19	0.9300	C13—N1	1.438 (2)
C20—C21	1.379 (3)	C13—S1	1.8521 (17)
С20—Н20	0.9300	C13—H13A	0.9700
$C_{21} - C_{22}$	1 376 (2)	C13—H13B	0.9700
C21—H21	0.9300	N2-03	1 2164 (18)
C^{22} C^{23}	1384(2)	N2-04	1.2104(10) 1.2215(17)
022-025	1.564 (2)	112 07	1.2213 (17)
O1—C1—C2	127.79 (13)	O2—C24—C25	105.19 (11)
O1—C1—C12	124.36 (12)	O2—C24—C16	113.86 (11)
C2—C1—C12	107.80 (11)	C25—C24—C16	114.99 (11)
C3—C2—C11	120.59 (14)	O2—C24—H24	107.5
C3—C2—C1	132.13 (14)	C25—C24—H24	107.5
C11—C2—C1	107.27 (12)	C16—C24—H24	107.5
C2—C3—C4	117.80 (16)	$C_{26} - C_{25} - C_{30}$	117.72 (13)
C2—C3—H3	121.1	$C_{26} = C_{25} = C_{24}$	121.29(13)
C4—C3—H3	121.1	C_{30} C_{25} C_{24}	120.97(13)
C_{5} C_{4} C_{3}	121.01 (16)	C_{29} C_{20} C_{25} C_{25}	120.97(13) 120.97(14)
C_{5} C_{4} H_{4}	119.0	$C_{29} = C_{30} = H_{30}$	119.5
$C_3 - C_4 - H_4$	119.0	$C_{25} = C_{30} = H_{30}$	119.5
C_{4} C_{5} C_{6}	121.62 (16)	$C_{23} = C_{30} = C_{30}$	119.3 120.37(15)
$C_{4} = C_{5} = C_{0}$	110.2	C_{30} C_{29} H_{29}	120.37 (13)
$C_{4} = C_{5} = H_{5}$	119.2	$C_{29} = C_{29} = H_{29}$	119.8
	119.2	С28—С29—П29	119.0
$C_{11} = C_0 = C_3$	115.09 (10)	05 - 028 - 027	124.78(13)
$C_1 = C_0 = C_1$	110.01 (10)	05-028-029	115.62 (15)
C_{3}	128.30 (16)	$C_2/-C_{28}-C_{29}$	119.60 (14)
	120.19 (16)	05—C31—H31A	109.5
C8—C/—H7	119.9	US-C31-H31B	109.5
С6—С/—Н/	119.9	H31A—C31—H31B	109.5
C7—C8—C9	122.90 (16)	O5—C31—H31C	109.5
С7—С8—Н8	118.6	H31A—C31—H31C	109.5
С9—С8—Н8	118.6	H31B—C31—H31C	109.5
C10—C9—C8	118.72 (16)	C28—C27—C26	119.50 (15)
С10—С9—Н9	120.6	С28—С27—Н27	120.2
С8—С9—Н9	120.6	С26—С27—Н27	120.2
C9—C10—C11	118.31 (14)	C25—C26—C27	121.81 (14)
C9—C10—C12	132.99 (14)	С25—С26—Н26	119.1
C11—C10—C12	108.51 (12)	C27—C26—H26	119.1
C2-C11-C6	122.37 (14)	N2—C16—C15	111.92 (12)
C2-C11-C10	113.76 (13)	N2-C16-C17	110.50 (11)
C6—C11—C10	123.87 (14)	C15—C16—C17	103.66 (11)
N1-C12-C10	120.51 (12)	N2-C16-C24	107.57 (11)
N1-C12-C17	104.32 (11)	C15—C16—C24	111.11 (11)
C10-C12-C17	110.66 (11)	C17—C16—C24	112.14 (11)
N1—C12—C1	108.87 (11)	N1-C15-C16	101.78 (11)
C10—C12—C1	101.87 (11)	N1—C15—C14	107.69 (12)

C17—C12—C1	110.56 (11)	C16—C15—C14	116.88 (13)
C18—C17—C16	114.61 (12)	N1—C15—H15	110.0
C18—C17—C12	114.00 (11)	C16—C15—H15	110.0
C16—C17—C12	103.47 (11)	C14—C15—H15	110.0
C18—C17—H17	108.1	C15-C14-S1	104.77 (11)
C16—C17—H17	108.1	C15—C14—H14A	110.8
С12—С17—Н17	108.1	S1—C14—H14A	110.8
C23—C18—C19	118.15 (14)	C15—C14—H14B	110.8
C23—C18—C17	120.18 (13)	S1—C14—H14B	110.8
C19—C18—C17	121.66 (14)	H14A—C14—H14B	108.9
C_{20} C_{19} C_{18}	120.87 (16)	N1—C13—S1	107 70 (11)
C20-C19-H19	119.6	N1—C13—H13A	110.2
C18 - C19 - H19	119.6	S1-C13-H13A	110.2
C19-C20-C21	119.03 (16)	N1—C13—H13B	110.2
C19 - C20 - H20	120.0	S1_C13_H13B	110.2
$C_{21} C_{20} H_{20}$	120.0	H13A C13 H13B	108.5
$C_{21} = C_{20} = H_{20}$	120.0 120.20(16)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.5
$C_{22} = C_{21} = C_{20}$	120.20 (10)	C12 N1 C12	110.12(12)
C22—C21—H21	119.9	C13— $N1$ — $C12$	120.18 (12)
C20—C21—H21	119.9	C15-N1-C12	111.07 (11)
C21—C22—C23	119.54 (16)	03—N2—04	124.37 (14)
C21—C22—H22	120.2	03—N2—C16	117.71 (13)
C23—C22—H22	120.2	O4—N2—C16	117.82 (13)
O2—C23—C18	123.07 (13)	C23—O2—C24	121.41 (11)
O2—C23—C22	115.68 (14)	C28—O5—C31	118.60 (15)
C18—C23—C22	121.20 (14)	C14—S1—C13	92.72 (7)
O1—C1—C2—C3	-7.6 (3)	O2—C24—C25—C26	-138.70 (14)
C12—C1—C2—C3	174.87 (16)	C16—C24—C25—C26	95.21 (17)
O1—C1—C2—C11	171.08 (14)	O2—C24—C25—C30	39.81 (17)
C12—C1—C2—C11	-6.50 (15)	C16—C24—C25—C30	-86.28 (17)
C11—C2—C3—C4	1.2 (2)	C26—C25—C30—C29	-0.6(2)
C1—C2—C3—C4	179.63 (16)	C24—C25—C30—C29	-179.14 (14)
C2—C3—C4—C5	-1.1 (3)	C25—C30—C29—C28	-0.8 (3)
C3—C4—C5—C6	0.0 (3)	C30—C29—C28—O5	-179.01 (16)
C4—C5—C6—C11	0.9 (3)	C30—C29—C28—C27	1.5 (3)
C4—C5—C6—C7	-179.3(2)	Q5—C28—C27—C26	179.69 (16)
C11 - C6 - C7 - C8	0.5(3)	$C_{29} C_{28} C_{27} C_{26}$	-0.9(3)
C_{5} C_{6} C_{7} C_{8}	-1793(2)	C_{30} C_{25} C_{26} C_{27} C_{26} C_{27}	12(2)
C6-C7-C8-C9	0.5(3)	C_{24} C_{25} C_{26} C_{27} C_{26} C_{27}	1.2(2) 17976(15)
$C_7 C_8 C_9 C_{10}$	-10(3)	$C_{24}^{-2} = C_{25}^{-2} = C_{26}^{-2} = C_{25}^{-2}$	-0.5(3)
$C_{1}^{2} = C_{1}^{2} = C_{1}^{2} = C_{1}^{2}$	1.0(3)	$C_{20} = C_{27} = C_{20} = C_{23}$	0.5(3)
$C_{8} = C_{9} = C_{10} = C_{12}$	0.3(2)	C12 - C17 - C16 - N2	82.79 (14) 152 48 (11)
$C_{8} = C_{9} = C_{10} = C_{12}$	1/4.0/(10)	C12 - C17 - C16 - N2	-152.48 (11)
$C_{1} = C_{2} = C_{11} = C_{6}$	-0.2 (2)	U18-U1/-U16-U15	-137.13(11)
CI-C2-CII-C6	170 06 (1.4)	010 017 016 015	20.40 (12)
	-179.06 (14)	C12—C17—C16—C15	-32.42 (13)
C3—C2—C11—C10	-179.06 (14) -179.84 (14)	C12—C17—C16—C15 C18—C17—C16—C24	-32.42 (13) -37.21 (16)
C3-C2-C11-C10 C1-C2-C11-C10	-179.06 (14) -179.84 (14) 1.34 (17)	C12—C17—C16—C15 C18—C17—C16—C24 C12—C17—C16—C24	-32.42 (13) -37.21 (16) 87.52 (13)
C3-C2-C11-C10 C1-C2-C11-C10 C5-C6-C11-C2	-179.06 (14) -179.84 (14) 1.34 (17) -0.8 (2)	C12—C17—C16—C15 C18—C17—C16—C24 C12—C17—C16—C24 O2—C24—C16—N2	-32.42 (13) -37.21 (16) 87.52 (13) -79.34 (14)

C5—C6—C11—C10	178.78 (16)	O2—C24—C16—C15	157.84 (11)
C7—C6—C11—C10	-1.0 (2)	C25-C24-C16-C15	-80.67 (15)
C9—C10—C11—C2	-179.85 (14)	O2—C24—C16—C17	42.35 (16)
C12—C10—C11—C2	4.61 (17)	C25-C24-C16-C17	163.83 (12)
C9—C10—C11—C6	0.6 (2)	N2-C16-C15-N1	158.74 (11)
C12—C10—C11—C6	-174.99 (14)	C17-C16-C15-N1	39.65 (13)
C9-C10-C12-N1	56.9 (2)	C24—C16—C15—N1	-80.99 (13)
C11—C10—C12—N1	-128.44 (13)	N2-C16-C15-C14	41.75 (17)
C9—C10—C12—C17	-65.0(2)	C17—C16—C15—C14	-77.34 (15)
C11—C10—C12—C17	109.62 (13)	C24—C16—C15—C14	162.02 (12)
C9—C10—C12—C1	177.43 (17)	N1-C15-C14-S1	37.43 (14)
C11—C10—C12—C1	-7.94 (15)	C16-C15-C14-S1	151.13 (11)
O1-C1-C12-N1	-40.63 (18)	S1—C13—N1—C15	30.38 (15)
C2-C1-C12-N1	137.05 (11)	S1—C13—N1—C12	-100.60 (13)
O1—C1—C12—C10	-168.95 (13)	C16-C15-N1-C13	-168.37 (12)
C2-C1-C12-C10	8.73 (14)	C14—C15—N1—C13	-44.91 (16)
O1—C1—C12—C17	73.41 (17)	C16-C15-N1-C12	-32.75 (14)
C2-C1-C12-C17	-108.91 (12)	C14—C15—N1—C12	90.71 (14)
N1—C12—C17—C18	138.20 (12)	C10-C12-N1-C13	18.04 (19)
C10-C12-C17-C18	-90.79 (14)	C17—C12—N1—C13	143.01 (13)
C1—C12—C17—C18	21.31 (16)	C1—C12—N1—C13	-98.94 (14)
N1—C12—C17—C16	13.06 (13)	C10-C12-N1-C15	-112.52 (14)
C10—C12—C17—C16	144.08 (11)	C17—C12—N1—C15	12.44 (14)
C1—C12—C17—C16	-103.82 (12)	C1—C12—N1—C15	130.49 (12)
C16—C17—C18—C23	20.89 (18)	C15—C16—N2—O3	-152.92 (13)
C12—C17—C18—C23	-98.09 (15)	C17—C16—N2—O3	-37.95 (17)
C16—C17—C18—C19	-160.37 (13)	C24—C16—N2—O3	84.76 (15)
C12—C17—C18—C19	80.65 (17)	C15—C16—N2—O4	30.56 (18)
C23-C18-C19-C20	1.9 (2)	C17—C16—N2—O4	145.53 (13)
C17—C18—C19—C20	-176.89 (15)	C24—C16—N2—O4	-91.76 (15)
C18—C19—C20—C21	0.8 (3)	C18—C23—O2—C24	13.6 (2)
C19—C20—C21—C22	-1.7 (3)	C22—C23—O2—C24	-168.94 (13)
C20—C21—C22—C23	-0.3 (3)	C25—C24—O2—C23	-157.98 (12)
C19—C18—C23—O2	173.50 (14)	C16—C24—O2—C23	-31.20 (18)
C17—C18—C23—O2	-7.7 (2)	C27—C28—O5—C31	-12.7 (3)
C19—C18—C23—C22	-3.9 (2)	C29—C28—O5—C31	167.94 (17)
C17—C18—C23—C22	174.92 (14)	C15—C14—S1—C13	-17.28 (12)
C21—C22—C23—O2	-174.43 (15)	N1-C13-S1-C14	-6.37 (12)
C21—C22—C23—C18	3.1 (2)		

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C25-C30 and C2-C11 rings, respectively.

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C17—H17···O3 ⁱ	0.98	2.47	3.412 (2)	161
C24—H24…O1	0.98	2.50	3.178 (19)	126

			supportin	supporting information		
C8—H8…Cg1 ⁱⁱ	0.93	2.82	3.759 (2)	148		
C27—H27····Cg2 ⁱⁱⁱ	0.93	2.79	3.720 (3)	149		

Symmetry codes: (i) -x, -y, -z+1; (ii) x+1, y, z; (iii) -x, -y, -z+2.