COMMUNICATIONS

Received 29 May 2016
Accepted 3 June 2016

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; discrete complex; zinc thiocyanate; isonicotinamide; hydrogen bonding.

CCDC reference: 1483379

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of bis(isonicotinamide- κN^{1})-bis(thiocyanato- κN)zinc

Tristan Neumann,* Inke Jess and Christian Näther

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Strasse 2, D-24118 Kiel, Germany. *Correspondence e-mail: t.neumann@ac.uni-kiel.de

The asymmetric unit of the title complex, $\left[\mathrm{Zn}(\mathrm{SCN})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}\right)_{2}\right]$, consists of one Zn^{2+} cation located on a twofold rotation axis, as well as of one thiocyanate anion and one neutral isonicotinamide ligand, both occupying general positions. The Zn^{2+} cation is tetrahedrally coordinated into a discrete complex by the N atoms of two symmetry-related thiocyanate anions and by the pyridine N atoms of two isonicotinamide ligands. The complexes are linked by intermolecular $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$, and weak intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen-bonding interactions into a three-dimensional network.

1. Chemical context

The synthesis of magnetic materials is still a major field in coordination chemistry (Liu et al., 2006). For their construction, paramagnetic cations can be linked by small anionic ligands such as thiocyanate anions to enable a magnetic exchange between the cations (Palion-Gazda et al., 2015; Banerjee et al., 2005). In this context we have reported on a number of coordination polymers with thiocyanato ligands that show different magnetic phenomena, including a slow relaxation of the magnetization which is indicative of singlechain magnetism (Werner et al., 2014; 2015a,b,c). In several cases, such phases can only be prepared by thermal decomposition of suitable precursor compounds (Näther et al., 2013), leading to microcrystalline powders for which a straightforward crystal structure determination is difficult. In order to avoid this scenario, compounds of the same composition based on cadmium or zinc can be prepared in the form of single crystals. In many cases, such zinc and cadmium compounds are isotypic to the paramagnetic analogues, and the structure of the latter can then easily be refined by the Rietveld method (Wöhlert et al., 2013). It should be mentioned that the structures of cadmium compounds are useful as prototypes for transition metal compounds with octahedral coordination spheres, whereas the structures of zinc compounds are useful prototypes for compounds with tetrahedral coordination spheres for the transition metal. The thermal decomposition of cobalt complexes is an example of the latter. In the course of our systematic investigation in this regard, we became interested in isonicotinamide as a co-ligand to be reacted with $\mathrm{Zn}(\mathrm{SCN})_{2}$. The synthesis and crystal structure of the resulting compound, $\left[\mathrm{Zn}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}\right)_{2}\right]$, are reported here.

2. Structural commentary

The asymmetric unit of the title compound consists of one Zn^{2+} cation, one thiocyanate anion and one neutral isonicotinamide ligand. The thiocyanate anion and the isonicotinamide ligand are located on general positions whereas the Zn^{2+} cation is located on a twofold rotation axis. The Zn^{2+} cation is tetrahedrally coordinated by two terminal N -bonded thiocyanato ligands and by two isonicotinamide ligands through their pyridine N atoms into a discrete complex (Fig. 1). As expected, the $\mathrm{Zn}-\mathrm{N}$ bond length involving the thiocyanate anion (N 1) is significantly shorter than that to the pyridine N atom (N11) of the neutral ligand (Table 1). The angular distortion of the ZnN_{4} tetrahedron is noticeable, with N -$\mathrm{Zn}-\mathrm{N}$ angles ranging from 104.32 (13) to 123.6 (2) ${ }^{\circ}$.

3. Supramolecular features

In the crystal structure, the discrete complexes are stacked along the c axis and are linked by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding between one of the two amide H atoms and the amide O atom of a neighboring complex (Fig. 2 and Table 2). There is a further weak contact between one aromatic H atom of the pyridine ring and the carbonyl O atom of a neighboring complex (Table 2). The second H atom of the NH_{2} group is involved in intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonding to the S atoms of the anionic ligand. In this way a three-dimensional hydrogen-bonded network is formed.

4. Database survey

To the best of our knowledge, there are only five coordination polymers with isonicotinamide and thiocyanate anions deposited in the Cambridge Structure Database (Version 5.37, last update 2015; Groom et al., 2016). This includes two clathrate-structures of Ni compounds with μ-1,3-bridging thiocyanate anions and with 9,10 -anthraquinone and pyrene as solvate molecules (Sekiya et al., 2009). Furthermore, a one-

Table 1
Selected bond lengths (\AA).

$\mathrm{Zn} 1-\mathrm{N} 1$	1.921 (3)	$\mathrm{Zn} 1-\mathrm{N} 11$	2.033 (3)

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{O} 11^{\mathrm{i}}$	0.95	2.54	$3.365(6)$	145
$\mathrm{~N} 12-\mathrm{H} 12 A \cdots \mathrm{~S} 1^{\mathrm{ii}}$	0.88	2.62	$3.407(3)$	150
$\mathrm{~N} 12-\mathrm{H} 12 B \cdots \mathrm{O} 11^{\mathrm{i}}$	0.88	1.97	$2.821(4)$	162

Symmetry codes: (i) $x+\frac{1}{4},-y+\frac{5}{4}, z+\frac{1}{4}$; (ii) $-x+\frac{3}{4}, y+\frac{1}{4}, z+\frac{7}{4}$.
dimensional μ-1,3-thiocyanate-bridged cadmium compound with 9,10 -dichloroanthracene as clathrate molecule (Sekiya \& Nishikiori, 2005) as well as a three-dimensional network of Cd with μ-1,3-bridging thiocyanate anions (Yang et al., 2001) are known. Finally, a compound consisting of $\mathrm{Cu}^{\mathrm{II}}-\mathrm{NCS}$ sheets has been reported (Đaković et al., 2010).

5. Synthesis and crystallization

$\mathrm{Ba}(\mathrm{NCS})_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}, \quad \mathrm{ZnSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ and isonicotinamide were purchased from Alfa Aesar. $\mathrm{Zn}(\mathrm{NCS})_{2}$ was synthesized by stirring $3.076 \mathrm{~g} \mathrm{Ba}(\mathrm{NCS})_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O} \quad(10 \mathrm{mmol})$ with 1.795 g

Figure 1
View of the discrete complex with labelling and displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) $-x+1,-y+1$, z.]

Table 3
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)

Data collection

Diffractometer
Absorption correction
$T_{\min }, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
No. of restraints
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
Absolute structure

Absolute structure parameter
$\left[\mathrm{Zn}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}\right)_{2}\right]$
425.79

Orthorhombic, Fdd2
200
19.1926 (9), 36.3044 (12),

$$
5.2930(2)
$$

3688.0 (3)

8
Mo $K \alpha$
1.58
$0.20 \times 0.16 \times 0.11$

Stoe IPDS2
Numerical (X-SHAPE and X -
RED32; Stoe, 2008)
0.595, 0.742

15338, 2132, 2012
0.035
0.662
$0.031,0.067,1.13$
2132
114
1
H -atom parameters constrained
$0.24,-0.27$
Flack x determined using 819 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$
(Parsons et al., 2013).
-0.005 (8)
$\mathrm{ZnSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(10 \mathrm{mmol})$ in 350 ml water. The white residue was filtered off and the filtrate was dried using a rotary evaporator. The homogenity was checked by X-ray powder diffraction and elemental analysis. Crystals of the title compound suitable for single crystal X-Ray diffraction were obtained by the reaction of $27.2 \mathrm{mg} \mathrm{Zn}(\mathrm{NCS})_{2}(0.15 \mathrm{mmol})$ with 36.64 mg isonicotinamide (0.3 mmol) in methylcyanide $(1.5 \mathrm{ml})$ within a few days.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. C- and N -bound H atoms were located in a difference Fourier map but were positioned with idealized geometry. They were refined with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ using a riding model with $\mathrm{C}-\mathrm{H}=0.95 \AA$ for aromatic and $\mathrm{N}-\mathrm{H}=0.88 \AA$ for the amide H atoms. The absolute structure was determined and is in agreement with the selected setting [Flack x parameter: 0.005 (19) by classical fit to all intensities (Flack, 1983) and -0.005 (8) from 819 selected quotients (Parsons et al., 2013)].

Acknowledgements

This project was supported by the Deutsche Forschungsgemeinschaft (Project No. NA 720/5-1) and the State of Schleswig-Holstein. We thank Professor Dr Wolfgang Bensch

for access to his experimental facilities.

Computer programs: X-AREA (Stoe, 2008), SHELXS97 and XP in SHELXTL (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg, 1999) and publCIF (Westrip, 2010).

Figure 2
The packing of the complexes in the title compound, in a view along the c axis. Intermolecular hydrogen bonding is shown as dashed lines.

References

Banerjee, S., Drew, M. G. B., Lu, C.-Z., Tercero, J., Diaz, C. \& Ghosh, A. (2005). Eur. J. Inorg. Chem. pp. 2376-2383.

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Đaković, M., Jagličić, Z., Kozlevčar, B. \& Popović, Z. (2010). Polyhedron, 29, 1910-1917.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Liu, X.-T., Wang, W.-Z., Zhang, W.-X., Cui, P. \& Gao, S. (2006). $A d v$. Mater. 18, 2852-2856.
Näther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. \& Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696-2714.
Palion-Gazda, J., Machura, B., Lloret, F. \& Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.
Parsons, S., Flack, H. D. \& Wagner, T. (2013). Acta Cryst. B69, 249259.

Sekiya, R. \& Nishikiori, S. (2005). Chem. Lett. 34, 1076-1077.

Sekiya, R., Nishikiori, S. \& Kuroda, R. (2009). CrystEngComm, 11, 2251-2253.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe \& Cie, Darmstadt, Germany.
Werner, J., Rams, M., Tomkowicz, Z. \& Näther, C. (2014). Dalton Trans. 43, 17333-17342.
Werner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. \& Näther, C. (2015a). Inorg. Chem. 54, 2893-2901.
Werner, J., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G., Suckert, S. \& Näther, C. (2015b). Eur. J. Inorg. Chem. 2015, 32363245.

Werner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. \& Näther, C. (2015c). Dalton Trans. 44, 14149-14158.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Wöhlert, S., Peters, L. \& Näther, C. (2013). Dalton Trans. 42, 1074610758.

Yang, G., Zhu, H.-G., Liang, B.-H. \& Chen, X.-M. (2001). J. Chem. Soc. Dalton Trans. pp. 580-585.

supporting information

Acta Cryst. (2016). E72, 922-925 [https://doi.org/10.1107/S2056989016008963]

Crystal structure of bis(isonicotinamide- κN^{1})bis(thiocyanato- κN)zinc

Tristan Neumann, Inke Jess and Christian Näther

Computing details

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(isonicotinamide- κN^{1})bis(thiocyanato- κN)zinc

Crystal data

$\left[\mathrm{Zn}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=425.79$
Orthorhombic, Fdd2
$a=19.1926$ (9) \AA
$b=36.3044$ (12) \AA
$c=5.2930(2) \AA$
$V=3688.0(3) \AA^{3}$
$Z=8$
$F(000)=1728$
Data collection
Stoe IPDS-2
diffractometer
ω scans
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe, 2008)
$T_{\min }=0.595, T_{\text {max }}=0.742$
15338 measured reflections
$D_{\mathrm{x}}=1.534 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 15683 reflections
$\theta=4.2-56.2^{\circ}$
$\mu=1.58 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Block, colorless
$0.20 \times 0.16 \times 0.11 \mathrm{~mm}$

2132 independent reflections
2012 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=28.1^{\circ}, \theta_{\text {min }}=2.2^{\circ}$
$h=-25 \rightarrow 25$
$k=-47 \rightarrow 47$
$l=-6 \rightarrow 6$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0282 P)^{2}+4.6943 P\right]$
where $P=\left(F_{0}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.24$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.27 \mathrm{e}^{-3}$
Absolute structure: Flack x determined using 819 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$(Parsons et al., 2013).

Absolute structure parameter: -0.005 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iss }} * / U_{\text {eq }}$
Zn1	0.5000	0.5000	$0.00134(10)$	$0.04197(15)$
N1	$0.41911(18)$	$0.48143(9)$	$-0.1702(7)$	$0.0562(8)$
C1	$0.3688(2)$	$0.46990(10)$	$-0.2648(9)$	$0.0514(9)$
S1	$0.29987(6)$	$0.45456(4)$	$-0.4003(3)$	$0.0802(4)$
N11	$0.46205(13)$	$0.53943(7)$	$0.2367(6)$	$0.0399(6)$
C11	$0.39419(17)$	$0.54254(10)$	$0.2958(8)$	$0.0465(9)$
H11	0.3616	0.5266	0.2164	0.056^{*}
C12	$0.37026(17)$	$0.56804(10)$	$0.4673(8)$	$0.0466(8)$
H12	0.3219	0.5697	0.5036	0.056^{*}
C13	$0.41714(16)$	$0.59132(9)$	$0.5870(7)$	$0.0373(7)$
C14	$0.48690(15)$	$0.58811(9)$	$0.5240(9)$	$0.0438(8)$
H14	0.5205	0.6037	0.6011	0.053^{*}
C15	$0.50720(17)$	$0.56217(10)$	$0.3489(7)$	$0.0428(8)$
H15	0.5552	0.5604	0.3063	0.051^{*}
C16	$0.39066(16)$	$0.61924(9)$	$0.7711(8)$	$0.0429(7)$
N12	$0.43541(15)$	$0.63295(9)$	$0.9372(6)$	$0.0486(8)$
H12A	0.4215	0.6495	1.0479	0.058^{*}
H12B	0.4791	0.6255	0.9367	0.058^{*}
O11	$0.32905(12)$	$0.62889(8)$	$0.7653(7)$	$0.0590(8)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	$0.0442(3)$	$0.0394(2)$	$0.0424(3)$	$0.0020(3)$	0.000	0.000
N1	$0.059(2)$	$0.0546(19)$	$0.055(2)$	$0.0028(16)$	$-0.0093(16)$	$-0.0096(15)$
C1	$0.056(2)$	$0.0481(18)$	$0.050(2)$	$0.0044(16)$	$0.0007(19)$	$-0.011(2)$
S1	$0.0496(6)$	$0.0997(10)$	$0.0914(10)$	$-0.0051(6)$	$-0.0034(6)$	$-0.0432(8)$
N11	$0.0374(13)$	$0.0388(13)$	$0.0434(16)$	$0.0011(10)$	$-0.0010(13)$	$-0.0002(13)$
C11	$0.0353(16)$	$0.0455(17)$	$0.059(3)$	$-0.0030(14)$	$-0.0043(16)$	$-0.0088(17)$
C12	$0.0311(15)$	$0.0500(17)$	$0.059(2)$	$-0.0009(13)$	$-0.0041(15)$	$-0.0082(18)$
C13	$0.0330(15)$	$0.0381(15)$	$0.0408(17)$	$0.0017(12)$	$-0.0052(13)$	$0.0017(13)$
C14	$0.0296(16)$	$0.0491(16)$	$0.053(2)$	$-0.0052(12)$	$-0.0021(17)$	$-0.0081(19)$
C15	$0.0341(16)$	$0.0471(18)$	$0.047(2)$	$-0.0004(13)$	$-0.0007(15)$	$-0.0036(15)$
C16	$0.0327(14)$	$0.0492(17)$	$0.0467(19)$	$0.0021(12)$	$-0.0048(15)$	$-0.0069(17)$
N12	$0.0349(14)$	$0.0582(18)$	$0.053(2)$	$0.0051(13)$	$-0.0076(13)$	$-0.0151(15)$
O11	$0.0322(12)$	$0.0719(17)$	$0.0728(19)$	$0.0104(11)$	$-0.0097(14)$	$-0.0258(18)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Zn} 1-\mathrm{N} 1^{\text {i }}$	1.921 (3)	C12-H12	0.9500
$\mathrm{Zn} 1-\mathrm{N} 1$	1.921 (3)	C13-C14	1.385 (4)
Zn1-N11	2.033 (3)	C13-C16	1.495 (5)
Zn1-N11 ${ }^{\text {i }}$	2.033 (3)	C14-C15	1.378 (5)
N1-C1	1.165 (5)	C14-H14	0.9500
C1-S1	1.605 (4)	C15-H15	0.9500
N11-C15	1.336 (4)	C16-O11	1.233 (4)
N11-C11	1.344 (4)	C16-N12	1.326 (5)
C11-C12	1.376 (5)	N12-H12A	0.8800
C11-H11	0.9500	N12-H12B	0.8800
C12-C13	1.387 (5)		
N1 ${ }^{\text {i }}$ - $\mathrm{Zn} 1-\mathrm{N} 1$	123.6 (2)	C13-C12-H12	120.2
N1 ${ }^{\text {i }}$ - Zn1-N11	109.39 (13)	C14-C13-C12	117.8 (3)
N1-Zn1-N11	104.32 (13)	C14-C13-C16	122.9 (3)
N1- ${ }^{\text {i }}$ Zn1-N11 ${ }^{\text {i }}$	104.32 (13)	C12-C13-C16	119.3 (3)
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 11^{\text {i }}$	109.40 (13)	C15-C14-C13	119.5 (3)
N11-Zn1-N11 ${ }^{\text {i }}$	104.42 (17)	C15-C14-H14	120.2
C1-N1-Zn1	177.2 (4)	C13-C14-H14	120.2
N1-C1-S1	178.8 (5)	N11-C15-C14	122.6 (3)
C15-N11-C11	118.2 (3)	N11-C15-H15	118.7
C15-N11-Zn1	118.4 (2)	C14-C15-H15	118.7
C11-N11-Zn1	123.3 (2)	$\mathrm{O} 11-\mathrm{C} 16-\mathrm{N} 12$	122.1 (4)
N11-C11-C12	122.3 (3)	$\mathrm{O} 11-\mathrm{C} 16-\mathrm{C} 13$	120.1 (3)
N11-C11-H11	118.9	N12-C16-C13	117.8 (3)
C12-C11-H11	118.9	C16-N12-H12A	120.0
C11-C12-C13	119.7 (3)	C16-N12-H12B	120.0
C11-C12-H12	120.2	H12A-N12-H12B	120.0

Symmetry code: (i) $-x+1,-y+1, z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 14 — \mathrm{H} 14 \cdots \mathrm{O} 11^{\mathrm{ii}}$	0.95	2.54	$3.365(6)$	145
$\mathrm{~N} 12 — \mathrm{H} 12 A \cdots \mathrm{~S} 1^{\mathrm{iii}}$	0.88	2.62	$3.407(3)$	150
$\mathrm{~N} 12 — \mathrm{H} 12 B \cdots \mathrm{O} 11^{\mathrm{ii}}$	0.88	1.97	$2.821(4)$	162

Symmetry codes: (ii) $x+1 / 4,-y+5 / 4, z+1 / 4$; (iii) $-x+3 / 4, y+1 / 4, z+7 / 4$.

