research communications

Received 12 May 2016 Accepted 1 June 2016

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; vasarenes; ion-pair recognition; ninhydrin; supramolecular complex.

CCDC reference: 1479382

Supporting information: this article has supporting information at journals.iucr.org/e

Ravell Bengiat,^a* Maayan Gil,^a Asne Klein,^a Benny Bogoslavsky,^a Shmuel Cohen,^a Guy Yardeni,^b Israel Zilbermann^b and Joseph Almog^a

^aInstitute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel, and ^bDepartment of Chemistry, Nuclear Research Centre Negev, Beer Sheva, 84190, Israel. *Correspondence e-mail: ravell.bengiat@mail.huji.ac.il

The title compound, $[Cs(CH_3COO)(C_{28}H_{16}O_8)(C_2H_5OH)]\cdot C_2H_5OH$, is the product of the complexation between one vasarene analogue [1], bis ninhydrin naphthalene-1,3-diol and CsF, where the F⁻ ion has reacted with residual acetic acid (AcOH), to form a [1]·CsOAc complex. The intermolecular interactions with the multiple oxygen-containing functional groups of the ligand, as well as $O-H\cdots O$ hydrogen bonds involving the ethanol solvent molecules, stabilize the complex, forming a chain along [100]. Additional parallel-displaced $\pi-\pi$ stacking, with an interplanar distance of 3.669 (1) Å, connect several unit cells in a three-dimensional supramolecular structure, though, the larger size of AcO⁻ (1.60 Å) compared to F⁻ (1.33 Å) prevents the tight packing that was once achieved with other vasarene complexes of CsF.

1. Chemical context

The supramolecular reactions of ligands from the vasarene family with ion-pairs of type M^+F^- , provided M is a large monovalent cation, have been studied extensively by our group in the past years (Almog et al., 2009, 2012; Bengiat et al., 2016a,b,c). The prerequisite regarding the size of the cation rests in the key role of the fluoride ion in initiating the complex formation (Bengiat et al., 2016b), though the contribution of the F⁻ ion to the stability of the complex once formed has yet to be explored. In several cases, however, the F⁻ ions have been absent from the final complex which contained acetate ions instead. This observation can be explained by the presence of acetic acid (AcOH) residues from the synthesis of the ligand, but the exact mechanism is still unknown. Here, we review the structure of the title complex and the effect of the AcO⁻ anion on its supramolecular features.

2. Structural commentary

The complex was formed in the reaction of the bis ninhydrin naphthalene-1,3-diol ligand [1] (Fig. 1) with CsF. As mentioned earlier, we suggest that the presence of residual AcOH results in a selective precipitation with AcO^- rather

Figure 1

The molecular structure of the bis ninhydrin naphthalene-1,3-diol ligand [1], showing 50% probability ellipsoids for non-H atoms. Solvent molecules and the Cs^1 ion have been omitted for clarity.

than F^- in the final complex. Similar to the original vasarene complexes with CsF (Almog *et al.*, 2012; Bengiat *et al.*, 2016*b,c*), the Cs⁺ ion is stabilized by several interactions with the oxygen-containing functional groups of the ligand: hydroxyl (O3), carbonyl (O4) and etheric (O5), as well as by the additional EtOH solvate molecule (O1*E*) and the acetate counter-ion (O1*A*) (Scheme, Fig. 2).

Fig. 2 shows the hydrogen bonding between the different unit cells (Table 1) involving a second solvent molecule of EtOH, $O2E \cdots H-O1E$ and $O2E-H \cdots O2A$. Further stabilization of the lattice is achieved by the parallel-displaced $\pi-\pi$ stacking between the aromatic rings of the 'side-walls' of

The molecular structure of the bis ninhydrin naphthalene-1,3-diol [1] complex with CsOAc showing 50% probability ellipsoids for non-H atoms. Hydrogen bonding is represented by the orange dashed lines. Aromatic H atoms have been omitted for clarity. The codes for symmetry-related atoms are given in Table 1.

ily alogen condigeometry (11,).					
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$	
$O2-H2O\cdots O1A^{i}$	0.72 (4)	1.98 (4)	2.704 (3)	175 (4)	
$O3-H3O\cdots O2A^{i}$	0.72 (3)	1.92 (3)	2.643 (3)	179 (4)	
$O6-H6O\cdots O2A^{ii}$	0.68 (4)	1.98 (4)	2.650 (3)	175 (4)	
$O7 - H7O \cdot \cdot \cdot O6^{iii}$	0.70(4)	2.10 (4)	2.798 (3)	173 (4)	
$O1E - H1E \cdot \cdot \cdot O2E$	0.84 (4)	1.92 (5)	2.747 (4)	166 (4)	
$O2E - H2E \cdots O1A$	0.82 (4)	1.93 (4)	2.736 (3)	170 (4)	

Symmetry codes: (i) -x, -y, -z + 2; (ii) x + 1, y, z; (iii) -x + 1, -y, -z + 2.

ligands in different unit cells with an inter-planar distance of 3.669 (1) Å (Janiak, 2000) (Fig. 3). In other complexes of the vasarane analogues with CsF, there has been an alternating arrangement of ligand and salt layers, forming 'salt channels' that are held by supramolecular interactions of hydrogen bonds, cation– π and metal coordination with the ligands (Bengiat *et al.*, 2016*b*,*c*). In this case, however, it is suggested that the difference in the ionic radius between the F⁻ (1.33 Å) and AcO⁻ (1.60 Å) (Shannon, 1976; Manku, 1980) results in steric hindrance that prevents the tight packing of the lattice (Figs. 4 and 5).

3. Database survey

The bowl-shaped compound formed upon reaction between ninhydrin and 1,3,5-benzenetriol was first reported by Kim

O2E

research communications

Figure 3

A fragment of the crystal packing of the [1]·CsOAc complex showing the parallel-displaced π - π stacking with an interplanar distance of 3.669 Å at 50% probability ellipsoids for non-H atoms. Aromatic H atoms and solvent molecules have been omitted for clarity.

and his co-workers (Na *et al.*, 2005), while other groups attempted similar reactions involving ninhydrin and polyhydroxy aromatics (Kundu *et al.*, 2004; Mahmood *et al.*, 2011). Since then, the reaction has been thoroughly explored by our group, expanding the family of these ligands, which we have named vasarenes (Almog *et al.*, 2009; Gil *et al.*, 2014; Bengiat *et al.*, 2016*c*,*d*). A comprehensive study of the supramolecular reactions of the vasarenes and their analogues with M^+F^- salts has also been carried out (Almog *et al.*, 2012; Bengiat *et al.*, 2016*a*,*b*,*c*). However, this is the first time that a complex with an anion other than fluoride has been reported.

Figure 5

The crystal packing of the complex of bis ninhydrin 1,3-benzenediol with CsF (Bengiat *et al.*, 2016*b*) showing $2 \times 2 \times 2$ unit cells. Aromatic H atoms and solvent molecules have been omitted for clarity.

4. Synthesis and crystallization

The ligand [1] was synthesized according to a recently reported procedure (Bengiat *et al.* 2016*c*) in a one-pot reaction in AcOH. Ligand [1] (151.0 mg, 0.314 mmol) was dissolved in warm EtOH (10 mL). An equivalent amount of CsF (50.1 mg, 0.329 mmol) was dissolved in warm EtOH (2 mL) with few drops of $H_2O_{dist.}$ and added to the solution of [1]. Upon

The crystal packing of the [1]-CsOAc complex showing $2 \times 2 \times 2$ unit cells. Aromatic H atoms and solvent molecules have been omitted for clarity.

Table 2Experimental details.

Crystal data Chemical formula

764.50 Μ. Crystal system, space group Triclinic, $P\overline{1}$ Temperature (K) 173 a, b, c (Å) 10.609 (2), 11.669 (2), 14.319 (2) α, β, γ (°) V (Å³) 74.741 (2), 70.932 (2), 89.095 (2) 1611.5 (4) Ζ Μο Κα Radiation type $\mu \,({\rm mm}^{-1})$ 1.21 Crystal size (mm) $0.64 \times 0.24 \times 0.13$ Data collection Diffractometer Bruker SMART CCD Absorption correction Multi-scan (SADABS; Bruker, 2002) 0.511, 0.858 T_{\min}, T_{\max} No. of measured, independent and 17584, 6917, 6818 observed $[I > 2\sigma(I)]$ reflections $R_{\rm int}$ 0.029 $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ 0.639 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.034, 0.085, 1.19 No. of reflections 6917 No. of parameters 451 H-atom treatment H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} \text{ (e Å}^{-3})$ 1.72, -0.66

[Cs(C2H3O2)(C28H16O8)-

 $(C_2H_6O)]\cdot C_2H_6O$

Computer programs: SMART and SAINT (Bruker, 2002), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

addition of the CsF solution an immediate color change to intense yellow was observed, later changing to bright orange. The mixture was left to crystallize at RT for a few days, forming a colorless crystalline precipitate suitable for single crystal X-ray diffraction.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydroxyl H atoms of the ligand molecules and H atoms of the EtOH molecule were located in a different Fourier map and all H-atom parameters refined. Other H atoms were placed in calculated positions with C–H = 0.95 (aromatic), 0.99 (methylene) and 0.98 Å (methyl), and refined in riding mode with $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic and aliphatic H atoms and $1.5U_{eq}(C)$ for the methyl H atoms.

Acknowledgements

This research was supported by the Pazy Research Foundation.

References

- Almog, J., Gavish-Abramovich, I., Rozin, R., Cohen, S., Yardeni, G. & Zilbermann, I. (2012). *Eur. J. Inorg. Chem.* pp. 4427–4432.
- Almog, J., Rozin, R., Klein, A., Shamuilov-Levinton, G. & Cohen, S. (2009). *Tetrahedron*, 65, 7954–7962.
- Bengiat, R., Gil, M., Klein, A., Bogoslavsky, B., Cohen, S. & Almog, J. (2016a). Acta Cryst. E72, 399–402.
- Bengiat, R., Gil, M., Klein, A., Bogoslavsky, B., Cohen, S., Dubnikova, F., Yardeni, G., Zilbermann, I. & Almog, J. (2016b). *Dalton Trans.* 45, 8734–8739.
- Bengiat, R., Gil, M., Klein, A., Cohen, O., Bogoslavsky, B., Cohen, S., Dubnikova, F. & Almog, J. (2016c). *Tetrahedron*, 72, 2429–2439.
- Bengiat, R., Klein, A., Gil, M., Bogoslavsky, B., Cohen, S., Yardeni, G., Zilbermann, I. & Almog, J. (2016d). *IUCrData*, 1, x160261.
- Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Gil, M., Almog, J., Dubnikova, F., Bogoslavski, B. & Cohen, S. (2014). Acta Cryst. E70, 0506.
- Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
- Kundu, S. K., Patra, A. & Pramanik, A. (2004). *ChemInform*, **35**, 604–611.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Mahmood, K., Yaqub, M., Tahir, M. N., Shafiq, Z. & Qureshi, A. M. (2011). Acta Cryst. E67, 0910–0911.
- Manku, G. S. (1980). In *Theoretical Principles of Inorganic Chemistry*. Tata McGraw-Hill.
- Na, J. E., Lee, K. Y., Seo, J. & Kim, J. N. (2005). *Tetrahedron Lett.* **46**, 4505–4508.
- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2016). E72, 884-887 [https://doi.org/10.1107/S2056989016008860]

Crystal structure of (acetato- κO)(ethanol- κO)[(9S,17S,21S,29S)-9,17,21,29-tetrahydroxy-18,30-dioxaoctacyclo-[18.10.0.0^{2,7}.0^{8,19}.0^{9,17}.0^{11,16}.0^{21,29}.0^{23,28}]triaconta-1,3,5,7,11(16),12,14,19,23(28)),24,26-undecaene-10,22-dione- $\kappa^3 O^{18}, O^{21}, O^{22}$]caesium ethanol monosolvate

Ravell Bengiat, Maayan Gil, Asne Klein, Benny Bogoslavsky, Shmuel Cohen, Guy Yardeni, Israel Zilbermann and Joseph Almog

Computing details

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT* (Bruker, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

 $(Acetato-\kappa O)(ethanol-\kappa O)[(9S,17S,21S,29S)-9,17,21,29-tetrahydroxy-18,30-dioxaoctacyclo[18.10.0.0^{2,7}.0^{8,19}.0^{9,17}.0^{11,16}.0^{21,29}.0^{23,28}]triaconta-1,3,5,7,11(16),12,14,19,23(28),24,26-undecaene-10,22-dione-<math>\kappa^3 O^{18}, O^{21}, O^{22}$]caesium ethanol monosolvate

Crystal data

$[Cs(C_2H_3O_2)(C_{28}H_{16}O_8)(C_2H_6O)] \cdot C_2H_6O$ $M_r = 764.50$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 10.609 (2) Å b = 11.669 (2) Å c = 14.319 (2) Å $a = 74.741 (2)^{\circ}$ $\beta = 70.932 (2)^{\circ}$ $\gamma = 89.095 (2)^{\circ}$ $V = 1611.5 (4) \text{ Å}^3$	Z = 2 F(000) = 772 $D_x = 1.576 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7362 reflections $\theta = 2.1-28.1^{\circ}$ $\mu = 1.21 \text{ mm}^{-1}$ T = 173 K Prisme, colorless $0.64 \times 0.24 \times 0.13 \text{ mm}$
Data collection Bruker SMART CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2002) $T_{min} = 0.511, T_{max} = 0.858$	17584 measured reflections 6917 independent reflections 6818 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{max} = 27.0^{\circ}, \theta_{min} = 2.1^{\circ}$ $h = -13 \rightarrow 13$ $k = -14 \rightarrow 14$ $l = -18 \rightarrow 18$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: inferred from
$wR(F^2) = 0.085$	neighbouring sites
S = 1.19	H atoms treated by a mixture of independent
6917 reflections	and constrained refinement
451 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0375P)^2 + 1.213P]$
0 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.007$
direct methods	$\Delta ho_{ m max} = 1.72 \ m e \ m \AA^{-3}$
	$\Delta \rho_{\rm min} = -0.66 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.2002 (2)	0.13669 (19)	1.17244 (17)	0.0175 (4)
C2	0.1777 (2)	0.1095 (2)	1.27587 (18)	0.0199 (4)
C3	0.2805 (2)	0.1067 (2)	1.31994 (18)	0.0209 (5)
C4	0.4154 (2)	0.1316 (2)	1.25043 (19)	0.0213 (5)
C5	0.4384 (2)	0.1527 (2)	1.14390 (18)	0.0194 (4)
C6	0.3334 (2)	0.15554 (19)	1.10705 (17)	0.0181 (4)
C7	0.2532 (3)	0.0832 (2)	1.4266 (2)	0.0264 (5)
H7	0.1638	0.0640	1.4725	0.032*
C8	0.3557 (3)	0.0882 (3)	1.4641 (2)	0.0316 (6)
H8	0.3375	0.0731	1.5359	0.038*
C9	0.4886 (3)	0.1158 (3)	1.3959 (2)	0.0327 (6)
H9	0.5586	0.1213	1.4226	0.039*
C10	0.5189 (3)	0.1348 (2)	1.2928 (2)	0.0273 (5)
H10	0.6095	0.1502	1.2489	0.033*
C11	-0.0331 (2)	0.1068 (2)	1.26594 (18)	0.0204 (4)
C12	0.0699 (2)	0.1299 (2)	1.15298 (18)	0.0186 (4)
C13	0.0413 (2)	0.2535 (2)	1.09573 (19)	0.0211 (5)
C14	-0.0449 (2)	0.3084 (2)	1.17370 (19)	0.0230 (5)
C15	-0.0903 (2)	0.2250 (2)	1.26866 (19)	0.0225 (5)
C16	-0.1744 (3)	0.2560 (3)	1.3541 (2)	0.0307 (6)
H16	-0.2059	0.1995	1.4195	0.037*
C17	-0.2108 (3)	0.3720 (3)	1.3405 (2)	0.0404 (7)
H17	-0.2678	0.3952	1.3979	0.048*
C18	-0.1660 (3)	0.4555 (3)	1.2449 (3)	0.0404 (7)

H18	-0.1931	0.5344	1.2380	0.049*
C19	-0.0827 (3)	0.4247 (2)	1.1601 (2)	0.0320 (6)
H19	-0.0521	0.4811	1.0946	0.038*
C21	0.5131 (2)	0.1982 (2)	0.96238 (18)	0.0196 (4)
C22	0.5672 (2)	0.1622 (2)	1.05530 (18)	0.0208 (5)
C23	0.6674 (2)	0.2676 (2)	1.0343 (2)	0.0259 (5)
C24	0.6405 (2)	0.3677 (2)	0.9577 (2)	0.0251 (5)
C25	0.5503 (2)	0.3302 (2)	0.91796 (19)	0.0220 (5)
C26	0.5078 (3)	0.4087 (2)	0.8450 (2)	0.0290 (5)
H26	0.4445	0.3833	0.8192	0.035*
C27	0.5618 (3)	0.5262 (3)	0.8112 (2)	0.0364 (6)
H27	0.5346	0.5824	0.7614	0.044*
C28	0.6550(3)	0.5628 (2)	0.8490 (2)	0.0380(7)
H28	0.6919	0.6431	0.8232	0.046*
C29	0.6945 (3)	0.4858 (2)	0.9226 (2)	0.0340 (6)
H29	0.7568	0.5119	0.9490	0.041*
Cs1	0.191153 (14)	0.124796 (13)	0.862730(11)	0.02585 (7)
01	0.04685 (16)	0.08256 (15)	1.33507 (13)	0.0226 (3)
02	-0.12922(17)	0.01494 (17)	1.29727 (14)	0.0243 (4)
H2O	-0.099(3)	-0.041(3)	1.299 (3)	0.034 (10)*
03	0.06070 (17)	0.04548 (16)	1.10108 (13)	0.0212 (3)
H3O	0.093 (3)	-0.005(3)	1.122 (2)	0.021 (8)*
04	0.08513 (19)	0.29564 (16)	1.00382 (14)	0.0289(4)
05	0.36872 (15)	0.17430 (15)	1.00338 (12)	0.0197(3)
06	0.55495(19)	0.13249 (16)	0.89154 (14)	0.0229(4)
H6O	0.623 (4)	0.137 (3)	0.874 (3)	$0.031(10)^*$
07	0.63353 (19)	0.05673 (17)	1.06295 (15)	0.0262 (4)
H7O	0.584 (3)	0.013 (3)	1.071 (3)	$0.031(10)^*$
08	0.7534(2)	0.2654 (2)	1.07278 (17)	0.0417 (5)
C1A	-0.0995(3)	0.2127 (2)	0.7471 (2)	0.0292(5)
C2A	-0.1497 (4)	0.3298 (3)	0.7045 (3)	0.0605 (11)
H2A1	-0.1226	0.3911	0.7310	0.091*
H2A2	-0.2475	0.3214	0.7254	0.091*
H2A3	-0.1116	0.3529	0.6293	0.091*
01A	0.02108 (18)	0.19599(17)	0.70590(15)	0.0322(4)
02A	-0.18031(18)	0.13858 (16)	0.82327 (15)	0.0322(1) 0.0302(4)
C1E	0 4943 (4)	0.3196 (4)	0.52527(15)	0.0502(1)
H1E1	0.5492	0 3891	0.5951	0.073*
H1E2	0.4918	0.3275	0.5281	0.073*
C2E	0.5549(5)	0.2099 (5)	0.6319(3)	0.0800 (15)
U2E H2F1	0.5524	0.1999	0.7027	0.120*
H2E7	0.6479	0.2146	0.5869	0.120*
H2E2	0.5049	0.1418	0.6290	0.120*
O1E	0.3619(3)	0.3185 (3)	0.6270	0.120 0.0576(7)
HIE	0.3017(3) 0.319(4)	0.3105(3) 0.340(4)	0.0000(2)	0.0570(7)
C3E	0.317(7)	0.370(7) 0.3851(3)	0.025(3) 0.4560(2)	$0.003(13)^{-1}$
H3E1	0.2130 (3)	0.3031 (3)	0.4387	0.0419(7)
H3E1	0.2017	0.5271	0.4122	0.050*
117177	0.2331	0.+055	0.7122	0.050

C4E	0.0925 (4)	0.3560 (3)	0.4324 (3)	0.0483 (8)
H4E1	0.0530	0.2762	0.4748	0.072*
H4E2	0.1180	0.3584	0.3596	0.072*
H4E3	0.0271	0.4146	0.4474	0.072*
O2E	0.1861 (2)	0.3825 (2)	0.56062 (18)	0.0436 (5)
H2E	0.131 (4)	0.329 (4)	0.600 (3)	0.056 (12)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0179 (10)	0.0144 (10)	0.0202 (11)	0.0014 (8)	-0.0073 (8)	-0.0036 (8)
C2	0.0186 (10)	0.0173 (10)	0.0221 (11)	0.0024 (8)	-0.0057 (9)	-0.0038 (9)
C3	0.0225 (11)	0.0184 (11)	0.0210 (11)	0.0028 (8)	-0.0088 (9)	-0.0025 (9)
C4	0.0210 (11)	0.0171 (11)	0.0248 (12)	0.0021 (8)	-0.0088 (9)	-0.0026 (9)
C5	0.0169 (10)	0.0157 (10)	0.0244 (12)	-0.0002 (8)	-0.0060(9)	-0.0048 (9)
C6	0.0203 (11)	0.0130 (10)	0.0201 (11)	0.0014 (8)	-0.0064 (9)	-0.0034 (8)
C7	0.0258 (12)	0.0272 (12)	0.0239 (12)	0.0045 (10)	-0.0082 (10)	-0.0035 (10)
C8	0.0355 (14)	0.0364 (15)	0.0242 (13)	0.0058 (11)	-0.0151 (11)	-0.0041 (11)
C9	0.0318 (14)	0.0391 (15)	0.0314 (14)	0.0029 (11)	-0.0194 (11)	-0.0053 (12)
C10	0.0229 (12)	0.0284 (13)	0.0300 (13)	0.0023 (10)	-0.0118 (10)	-0.0034 (10)
C11	0.0173 (10)	0.0225 (11)	0.0206 (11)	0.0017 (8)	-0.0057 (9)	-0.0055 (9)
C12	0.0162 (10)	0.0185 (11)	0.0206 (11)	0.0015 (8)	-0.0052 (8)	-0.0058 (9)
C13	0.0185 (10)	0.0198 (11)	0.0256 (12)	0.0024 (8)	-0.0091 (9)	-0.0053 (9)
C14	0.0210 (11)	0.0230 (12)	0.0267 (12)	0.0053 (9)	-0.0091 (9)	-0.0083 (10)
C15	0.0178 (10)	0.0238 (12)	0.0278 (12)	0.0019 (9)	-0.0079 (9)	-0.0099 (10)
C16	0.0255 (12)	0.0344 (14)	0.0301 (14)	0.0027 (10)	-0.0030 (10)	-0.0131 (11)
C17	0.0386 (16)	0.0392 (16)	0.0418 (17)	0.0116 (13)	-0.0039 (13)	-0.0211 (14)
C18	0.0453 (17)	0.0292 (15)	0.0471 (18)	0.0155 (12)	-0.0113 (14)	-0.0167 (13)
C19	0.0349 (14)	0.0252 (13)	0.0349 (15)	0.0079 (11)	-0.0108 (11)	-0.0080 (11)
C21	0.0154 (10)	0.0189 (11)	0.0234 (11)	0.0004 (8)	-0.0038 (8)	-0.0074 (9)
C22	0.0179 (10)	0.0184 (11)	0.0247 (12)	0.0014 (8)	-0.0065 (9)	-0.0043 (9)
C23	0.0201 (11)	0.0275 (13)	0.0276 (13)	-0.0035 (9)	-0.0042 (9)	-0.0078 (10)
C24	0.0224 (11)	0.0237 (12)	0.0256 (12)	-0.0026 (9)	-0.0023 (9)	-0.0079 (10)
C25	0.0193 (11)	0.0197 (11)	0.0227 (12)	0.0022 (8)	-0.0006 (9)	-0.0069 (9)
C26	0.0291 (13)	0.0259 (13)	0.0275 (13)	0.0048 (10)	-0.0055 (10)	-0.0048 (10)
C27	0.0418 (16)	0.0249 (13)	0.0324 (15)	0.0093 (11)	-0.0030 (12)	-0.0036 (11)
C28	0.0459 (17)	0.0169 (12)	0.0388 (16)	-0.0022 (11)	0.0014 (13)	-0.0066 (11)
C29	0.0333 (14)	0.0278 (14)	0.0358 (15)	-0.0069 (11)	-0.0012 (11)	-0.0128 (12)
Cs1	0.02629 (10)	0.02675 (10)	0.02485 (10)	0.00161 (6)	-0.01049 (6)	-0.00509 (6)
01	0.0181 (8)	0.0271 (9)	0.0194 (8)	0.0011 (6)	-0.0046 (6)	-0.0032 (7)
O2	0.0197 (8)	0.0216 (9)	0.0273 (9)	-0.0019 (7)	-0.0034 (7)	-0.0053 (7)
O3	0.0224 (8)	0.0179 (8)	0.0249 (9)	0.0026 (7)	-0.0096 (7)	-0.0066 (7)
O4	0.0327 (9)	0.0260 (9)	0.0232 (9)	0.0066 (7)	-0.0065 (7)	-0.0026 (7)
O5	0.0154 (7)	0.0229 (8)	0.0191 (8)	0.0000 (6)	-0.0040 (6)	-0.0050 (6)
O6	0.0181 (9)	0.0226 (9)	0.0262 (9)	0.0009 (7)	-0.0022 (7)	-0.0099 (7)
O7	0.0199 (9)	0.0219 (9)	0.0353 (10)	0.0055 (7)	-0.0085 (7)	-0.0064 (8)
08	0.0324 (10)	0.0480 (13)	0.0437 (12)	-0.0132 (9)	-0.0196 (9)	-0.0014 (10)
C1A	0.0294 (13)	0.0248 (13)	0.0281 (13)	0.0048 (10)	-0.0062 (10)	-0.0029 (10)

C2A	0.0462 (19)	0.0423 (19)	0.056 (2)	0.0219 (15)	0.0086 (16)	0.0148 (16)
OIA O2A	0.0238 (9) 0.0249 (9)	0.0281 (9)	0.0381 (10)	0.0034 (7) 0.0031 (7)	-0.0023(8) -0.0015(7)	-0.0003(8) -0.0019(8)
C1E C2E	0.050 (2) 0.092 (3)	0.068 (3) 0.105 (4)	0.048 (2) 0.049 (2)	0.0046 (18) 0.049 (3)	-0.0024 (16) -0.025 (2)	-0.0071 (19) -0.033 (2)
O1E	0.0424 (13)	0.0750 (19)	0.0410 (14)	0.0083 (13)	-0.0057 (11)	-0.0026 (13)
C3E C4E O2E	0.0445(17) 0.055(2) 0.0448(13)	0.0315(15) 0.0434(18) 0.0393(12)	0.0380(17) 0.0427(18) 0.0366(12)	0.0020(12) 0.0000(15) -0.0098(10)	-0.0029(13) -0.0115(15) -0.0067(10)	-0.0036(13) -0.0115(15) -0.0015(10)
021	0.0770 (15)	0.0373(12)	0.0500 (12)	0.0098 (10)	0.0007 (10)	0.0013 (10)

Geometric parameters (Å, °)

C1—C2	1.369 (3)	C26—C27	1.392 (4)
C1—C6	1.399 (3)	C26—H26	0.9500
C1-C12	1.504 (3)	C27—C28	1.392 (5)
C2-01	1.360 (3)	C27—H27	0.9500
C2—C3	1.423 (3)	C28—C29	1.368 (5)
C3—C7	1.409 (3)	C28—H28	0.9500
C3—C4	1.434 (3)	C29—H29	0.9500
C4—C5	1.417 (3)	Cs1—O7 ⁱ	3.0101 (18)
C4—C10	1.422 (3)	Cs1—O3	3.1163 (18)
C5—C6	1.377 (3)	Cs1—O1E	3.121 (3)
C5—C22	1.512 (3)	Cs1—O4	3.1441 (18)
C6—O5	1.364 (3)	Cs1—O3 ⁱⁱ	3.1744 (17)
С7—С8	1.369 (4)	Cs1—O1A	3.257 (2)
С7—Н7	0.9500	Cs1—O5	3.3263 (16)
С8—С9	1.412 (4)	Cs1—O2 ⁱⁱ	3.3650 (19)
С8—Н8	0.9500	Cs1—Cs1 ⁱⁱ	4.9310 (5)
C9—C10	1.361 (4)	Cs1—H3O	3.43 (3)
С9—Н9	0.9500	O2—Cs1 ⁱⁱ	3.3650 (19)
C10—H10	0.9500	O2—H2O	0.72 (4)
C11—O2	1.368 (3)	O3—Cs1 ⁱⁱ	3.1744 (17)
C11—O1	1.474 (3)	O3—H3O	0.72 (3)
C11—C15	1.503 (3)	O6—H6O	0.68 (4)
C11—C12	1.584 (3)	O7—Cs1 ⁱ	3.0101 (18)
C12—O3	1.402 (3)	O7—H7O	0.70 (4)
C12—C13	1.539 (3)	C1A—O1A	1.258 (3)
C13—O4	1.207 (3)	C1A—O2A	1.261 (3)
C13—C14	1.478 (3)	C1A—C2A	1.507 (4)
C14—C15	1.385 (4)	C2A—H2A1	0.9800
C14—C19	1.392 (4)	C2A—H2A2	0.9800
C15—C16	1.390 (3)	C2A—H2A3	0.9800
C16—C17	1.383 (4)	C1E—O1E	1.424 (4)
C16—H16	0.9500	C1E—C2E	1.462 (6)
C17—C18	1.391 (5)	C1E—H1E1	0.9900
С17—Н17	0.9500	C1E—H1E2	0.9900
C18—C19	1.379 (4)	C2E—H2E1	0.9800
C18—H18	0.9500	C2E—H2E2	0.9800

С19—Н19	0.9500	C2E—H2E3	0.9800
C21—O6	1.385 (3)	O1E—H1E	0.84 (4)
C21—O5	1.452 (3)	C3E—O2E	1.420 (4)
C21—C25	1.508 (3)	C3E—C4E	1.509 (5)
C21—C22	1.572 (3)	C3E—H3E1	0.9900
C22—O7	1.405 (3)	C3E—H3E2	0.9900
C22—C23	1.540 (3)	C4E—H4E1	0.9800
C23—O8	1.207 (3)	C4E—H4E2	0.9800
C23—C24	1.472 (4)	C4E—H4E3	0.9800
C24—C25	1.389 (4)	O2E—H1E	1.92 (5)
C_{24} C_{29}	1 398 (4)	O2E—H2E	0.82(4)
C_{25} C_{25} C_{26}	1 387 (4)		0.02(1)
025 020	1.507 (4)		
C2—C1—C6	117.4 (2)	O3—Cs1—O4	54.35 (5)
C2-C1-C12	110.02 (19)	O1E—Cs1—O4	97.22 (7)
C6-C1-C12	132.4 (2)	O7 ⁱ —Cs1—O3 ⁱⁱ	99.87 (5)
01-C2-C1	114.2 (2)	$03-Cs1-03^{ii}$	76.77 (5)
01-C2-C3	121.7(2)	$01E$ $Cs1$ $O3^{ii}$	130.26(7)
C1 - C2 - C3	124.1(2)	$04-Cs1-03^{ii}$	105.20(7)
$C_{1}^{-}C_{2}^{-}C_{3}^{-}C_{2}^{-}$	121.1(2) 1225(2)	07^{i} Cs1 $-01A$	103.00(5) 143.97(5)
C7 - C3 - C4	122.5(2) 120.5(2)	$O_3 - C_{s1} - O_{1A}$	143.97(5) 123 70(5)
C_{2} C_{3} C_{4}	120.5(2) 1170(2)	01E $Cs1$ $01A$	71 34 (6)
$C_2 - C_3 - C_4$	117.0(2) 123.7(2)	$O_{1} = C_{1} = O_{1} A$	71.34(0)
$C_{5} = C_{4} = C_{10}$	123.7(2) 118.6(2)	O^{2ii} C_{2}^{1} O^{1}	101.41(3)
$C_{3} - C_{4} - C_{3}$	110.0(2)	$O_{7i} = C_{81} = O_{7i}$	58.07(5)
$C_{10} - C_{4} - C_{3}$	117.7(2)	0^{-1}	38.07(3)
$C_{0} = C_{3} = C_{4}$	120.9(2)	03-Cs1-05	61.73(4)
$C_{6} - C_{5} - C_{22}$	108.2(2)	OIE - CsI - OS	93.43 (6)
C4—C5—C22	130.6 (2)	04 - Cs1 - 05	61.33 (4)
05	115.3 (2)	$O3^{\mu}$ —Cs1—O5	136.30 (4)
05	122.8 (2)	OIA—CsI—O5	156.10 (4)
C5—C6—C1	121.9 (2)	$O7^{n}$ —Cs1—O2 ⁿ	95.85 (5)
C8—C7—C3	119.9 (2)	$O3-Cs1-O2^n$	124.63 (4)
С8—С7—Н7	120.1	$O1E$ — $Cs1$ — $O2^n$	86.84 (7)
С3—С7—Н7	120.1	$O4$ — $Cs1$ — $O2^{ii}$	146.21 (5)
C7—C8—C9	120.0 (2)	$O3^{ii}$ — $Cs1$ — $O2^{ii}$	50.73 (4)
С7—С8—Н8	120.0	O1A—Cs1—O2 ⁱⁱ	48.17 (5)
С9—С8—Н8	120.0	O5—Cs1—O2 ⁱⁱ	152.22 (4)
С10—С9—С8	121.6 (2)	O7 ⁱ —Cs1—Cs1 ⁱⁱ	86.79 (4)
С10—С9—Н9	119.2	O3—Cs1—Cs1 ⁱⁱ	38.81 (3)
С8—С9—Н9	119.2	O1E—Cs1—Cs1 ⁱⁱ	162.27 (5)
C9—C10—C4	120.3 (2)	O4—Cs1—Cs1 ⁱⁱ	78.79 (4)
С9—С10—Н10	119.9	O3 ⁱⁱ —Cs1—Cs1 ⁱⁱ	37.97 (3)
C4—C10—H10	119.9	O1A—Cs1—Cs1 ⁱⁱ	92.36 (3)
O2—C11—O1	108.65 (18)	O5—Cs1—Cs1 ⁱⁱ	99.56 (3)
O2—C11—C15	113.02 (19)	O2 ⁱⁱ —Cs1—Cs1 ⁱⁱ	87.23 (3)
O1—C11—C15	107.72 (19)	O7 ⁱ —Cs1—H3O	63.4 (5)
O2—C11—C12	116.42 (19)	O3—Cs1—H3O	11.5 (5)
O1—C11—C12	106.32 (17)	O1E—Cs1—H3O	150.9 (5)

C15—C11—C12	104.20 (19)	O4—Cs1—H3O	63.9 (5)
O3—C12—C1	114.48 (18)	O3 ⁱⁱ —Cs1—H3O	78.1 (5)
O3—C12—C13	110.29 (19)	O1A—Cs1—H3O	131.6 (5)
C1—C12—C13	110.50 (18)	O5—Cs1—H3O	58.5 (5)
O3—C12—C11	115.78 (18)	O2 ⁱⁱ —Cs1—H3O	121.5 (5)
C1—C12—C11	100.72 (18)	Cs1 ⁱⁱ —Cs1—H3O	41.2 (5)
C13—C12—C11	104.30 (18)	C2-01-C11	107.60 (17)
O4—C13—C14	127.9 (2)	C11—O2—Cs1 ⁱⁱ	123.60 (14)
O4—C13—C12	124.6 (2)	C11—O2—H2O	110 (3)
C14—C13—C12	107.4 (2)	Cs1 ⁱⁱ —O2—H2O	68 (3)
C15—C14—C19	121.5 (2)	C12—O3—Cs1	116.40 (13)
C15—C14—C13	110.2 (2)	C12—O3—Cs1 ⁱⁱ	128.36 (13)
C19—C14—C13	128.3 (2)	Cs1—O3—Cs1 ⁱⁱ	103.23 (5)
C14—C15—C16	120.6 (2)	C12—O3—H3O	105 (2)
C14—C15—C11	112.3 (2)	Cs1 - O3 - H3O	110(2)
C16—C15—C11	127.1(2)	$Cs1^{ii}$ —O3—H3O	90 (2)
C17 - C16 - C15	1177(3)	$C_{13} - O_{4} - C_{81}$	118 88 (15)
C17—C16—H16	121.1	C6-O5-C21	106.32(17)
C15—C16—H16	121.1	C6-O5-Cs1	130.11(13)
$C_{16} - C_{17} - C_{18}$	121.7 (3)	$C_{21} = 05 = C_{81}$	122.45(12)
С16—С17—Н17	119.2	$C_{21} = 06 = H_{60}$	107 (3)
C18—C17—H17	119.2	$C_{22} = 07 = C_{81}^{i}$	156 51 (16)
C19 - C18 - C17	120.6 (3)	$C_{22} = 07 = 001$	104 (3)
C19—C18—H18	1197	$Cs1^{i}$ $O7$ $H7O$	92 (3)
C17—C18—H18	119.7	01A - C1A - 02A	1240(2)
C18 - C19 - C14	117.9 (3)	O1A— $C1A$ — $C2A$	118.1(2)
C18—C19—H19	121.1	O2A— $C1A$ — $C2A$	118.0(2)
С14—С19—Н19	121.1	C1A-C2A-H2A1	109.5
06—C21—O5	104.28 (18)	C1A - C2A - H2A2	109.5
06-C21-C25	114.35 (19)	H2A1— $C2A$ — $H2A2$	109.5
05-C21-C25	110.50 (18)	C1A—C2A—H2A3	109.5
06-C21-C22	115.48 (19)	H2A1—C2A—H2A3	109.5
05-C21-C22	107.60 (18)	H2A2—C2A—H2A3	109.5
C25—C21—C22	104.53 (18)	C1A—O1A—Cs1	114.97 (17)
07—C22—C5	113.06 (19)	01E-C1E-C2E	110.5 (4)
07-C22-C23	108.95 (19)	O1E—C1E—H1E1	109.6
C5—C22—C23	115.6 (2)	C2E-C1E-H1E1	109.6
07—C22—C21	115.02 (19)	O1E—C1E—H1E2	109.6
C5—C22—C21	100.30 (17)	C2E—C1E—H1E2	109.6
C23—C22—C21	103.53 (19)	H1E1—C1E—H1E2	108.1
O8—C23—C24	127.4 (2)	C1E—C2E—H2E1	109.5
O8—C23—C22	125.3 (2)	C1E—C2E—H2E2	109.5
C24—C23—C22	107.3 (2)	H2E1—C2E—H2E2	109.5
C25—C24—C29	120.6 (3)	C1E—C2E—H2E3	109.5
C25—C24—C23	110.6 (2)	H2E1—C2E—H2E3	109.5
C29—C24—C23	128.8 (2)	H2E2—C2E—H2E3	109.5
C26—C25—C24	121.5 (2)	C1E—O1E—Cs1	131.0 (2)
C26—C25—C21	127.6 (2)	C1E—O1E—H1E	101 (3)
	. /		× /

C24 - C25 - C21	110.9(2)	Cs101EH1E	111 (3)
024 025 021	110.9 (2)		111 (5)
C25—C26—C27	117.3 (3)	O2E—C3E—C4E	112.8 (3)
С25—С26—Н26	121.4	O2E—C3E—H3E1	109.0
С27—С26—Н26	121.4	C4E—C3E—H3E1	109.0
C26—C27—C28	121.1 (3)	O2E—C3E—H3E2	109.0
С26—С27—Н27	119.5	C4E—C3E—H3E2	109.0
С28—С27—Н27	119.5	H3E1—C3E—H3E2	107.8
C29—C28—C27	121.5 (3)	C3E—C4E—H4E1	109.5
С29—С28—Н28	119.2	C3E—C4E—H4E2	109.5
С27—С28—Н28	119.2	H4E1—C4E—H4E2	109.5
C28—C29—C24	118.0 (3)	C3E—C4E—H4E3	109.5
С28—С29—Н29	121.0	H4E1—C4E—H4E3	109.5
С24—С29—Н29	121.0	H4E2—C4E—H4E3	109.5
O7 ⁱ —Cs1—O3	74.74 (5)	C3E—O2E—H1E	120.1 (14)
O7 ⁱ —Cs1—O1E	110.43 (6)	C3E—O2E—H2E	113 (3)
O3—Cs1—O1E	148.09 (7)	H1E—O2E—H2E	96 (3)
O7 ⁱ —Cs1—O4	113.67 (5)		

Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x, -y, -z+2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
02—H2 <i>O</i> ···O1 <i>A</i> ⁱⁱ	0.72 (4)	1.98 (4)	2.704 (3)	175 (4)
O3—H3 <i>O</i> ···O2 <i>A</i> ⁱⁱ	0.72 (3)	1.92 (3)	2.643 (3)	179 (4)
O6—H6 <i>O</i> ···O2 <i>A</i> ⁱⁱⁱ	0.68 (4)	1.98 (4)	2.650 (3)	175 (4)
O7—H7 <i>O</i> ···O6 ⁱ	0.70 (4)	2.10 (4)	2.798 (3)	173 (4)
O1 <i>E</i> —H1 <i>E</i> ···O2 <i>E</i>	0.84 (4)	1.92 (5)	2.747 (4)	166 (4)
O2E—H2E…O1A	0.82 (4)	1.93 (4)	2.736 (3)	170 (4)

Symmetry codes: (i) -*x*+1, -*y*, -*z*+2; (ii) -*x*, -*y*, -*z*+2; (iii) *x*+1, *y*, *z*.