

Received 1 April 2016 Accepted 7 April 2016

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; 1,2-cyclohexanediamine; tetrachloridozincate chloride double salt; chromium(III) complex; hydrogen bonding; synchrotron radiation.

CCDC reference: 1472901

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of tris(*trans*-1,2-cyclohexanediamine- $\kappa^2 N, N'$)chromium(III) tetrachloridozincate chloride trihydrate from synchrotron data

Dohyun Moon^a and Jong-Ha Choi^{b*}

^aPohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, and ^bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea. *Correspondence e-mail: jhchoi@anu.ac.kr

The structure of the title double salt, $[Cr(rac-chxn)_3][ZnCl_4]Cl·3H_2O$ (chxn is *trans*-1,2-cyclohexanediamine; $C_6H_{14}N_2$), has been determined from synchrotron data. The Cr^{III} ion is coordinated by six N atoms of three chelating chxn ligands, displaying a slightly distorted octahedral coordination environment. The distorted tetrahedral $[ZnCl_4]^{2-}$ anion, the isolated Cl⁻ anion and three lattice water molecules remain outside the coordination sphere. The Cr-N(chxn) bond lengths are in a narrow range between 2.0737 (12) and 2.0928 (12) Å; the mean N-Cr-N bite angle is 82.1 (4)°. The crystal packing is stabilized by hydrogen-bonding interactions between the amino groups of the chxn ligands and the water molecules as donor groups, and O atoms of the water molecules, chloride anions and Cl atoms of the [ZnCl_4]²⁻ anions as acceptor groups, leading to the formation of a three-dimensional network. The [ZnCl_4]²⁻ anion is disordered over two sets of sites with an occupancy ratio of 0.94:0.06.

1. Chemical context

trans-1,2-Cyclohexanediamine (chxn) can coordinate to a central metal ion as a bidentate ligand via the two nitrogen atoms, forming a five-membered chelate ring. The synthetic procedures, crystal structures and detailed spectroscopic properties of such $[Cr(chxn)_3]^{3+}$ complexes with chloride or nitrate anions have been reported previously (Morooka et al., 1992; Choi, 1994; Kalf et al., 2002). Since counter-anionic species play a very important role in coordination chemistry and supramolecular chemistry (Fabbrizzi & Poggi, 2013; Santos-Figueroa et al., 2013), changing the type of anion can also result in different structural properties. With respect to the tetrachloridozincate anion, [ZnCl₄]²⁻, the crystal structures of complexes with trivalent chromium have been determined for $[Cr(NH_3)_6][ZnCl_4]Cl$ (Clegg, 1976). [Cr(en)₃][ZnCl₄]Cl (en is ethylenediamine; Pons et al., 1988) and trans-[Cr(NH₃)₂(cyclam)][ZnCl₄]Cl·H₂O (cyclam is 1,4,8,11-tetraazacyclotetradecane; Moon & Choi, 2016). However, a combination of the $[Cr(chxn)_3]^{3+}$ cation with $[ZnCl_4]^{2-}$ and Cl^- as anions is unreported. In order to confirm that the resulting structure belongs to a double salt with $[ZnCl_4]^{2-}$ and Cl⁻ anions and does not contain a $[ZnCl_5]^{3-}$ anion, we prepared this material and report here on the molecular and crystal structure of [Cr(rac-chxn)₃][ZnCl₄]Cl--3H₂O, (I).

2. Structural commentary

First of all we performed a single-crystal structure analysis of the starting complex $[Cr(chxn)_3]Cl_3 \cdot 2H_2O$ with 98 K synchrotron data to determine the exact composition and coordination geometry of the Cr^{III} ion. The complex crystallizes in the space group $I\overline{4}2d$ with eight formula units in a cell of dimensions a = 18.893 (3) and c = 14.069 (3) Å. The Cr-N(chxn) bond lengths are in the range 2.0723 (19) to 2.0937 (19) Å, and the N-Cr-N bite angles are in the range 82.53 (7) to 82.69 (10)°. In comparison with the bond lengths and angles of the structure of this complex determined with 223 K data (Kalf *et al.*, 2002), there are no remarkable differences, and also the the crystal packing has virtually identical features.

Fig. 1 shows the molecular components of the title compound, (I), which consists of a discrete complex cation $[Cr(rac-chxn)_3]^{3+}$, three lattice water molecules, together with one tetrahedral $[ZnCl_4]^{2-}$ and one isolated Cl^- counter-ion. The nitrogen atoms of the three 1,2-cyclohexanediamine ligands define a distorted octahedral coordination environment around the Cr(III) ion with a mean N-Cr-N bite angle of 82.1 (4)°. The resulting five-membered chelate rings of chxn ligands have the expected stable *gauche* conformation. The Cr-N(chxn) bond lengths are in the range 2.0737 (12) to 2.0928 (12) Å, in good agreement with those determined in

Figure 1

S CI3A

CI5

CI2A

Zn1A

01W

CI4A

CI1A

The structures of the molecular components of the title double salt, drawn with displacement parameters at the 50% probability level. Dashed lines represent hydrogen-bonding interactions.

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N1-H1A\cdots Cl5^i$	0.91	2.40	3.2535 (15)	157
$N1-H1B\cdots O3W$	0.91	2.36	3.0178 (16)	129
$N2-H2A\cdots O2W$	0.91	2.01	2.9051 (17)	166
$N2-H2B\cdots Cl2A^{ii}$	0.91	2.45	3.2197 (14)	142
$N2-H2B\cdots Cl3B^{ii}$	0.91	2.36	3.180 (18)	150
$N3-H3A\cdots O2W$	0.91	2.13	2.9832 (16)	156
$N3-H3B\cdots Cl1A^{iii}$	0.91	2.52	3.2574 (13)	138
$N3-H3B\cdots Cl3A^{iii}$	0.91	2.77	3.4547 (16)	133
$N3-H3B\cdots Cl2B^{iii}$	0.91	2.67	3.471 (10)	147
$N3-H3B\cdots Cl4B^{iii}$	0.91	2.68	3.35 (2)	131
N4–H4 A ···Cl1 B^{iv}	0.91	2.74	3.473 (11)	138
N4–H4 B ···Cl2 A^{ii}	0.91	2.64	3.4267 (15)	146
$N4-H4B\cdotsO1W^{ii}$	0.91	2.39	2.9804 (17)	123
N5-H5 A ···Cl3 A ^{iv}	0.91	2.51	3.4245 (14)	178
N5-H5 A ···Cl4 B ^{iv}	0.91	2.73	3.634 (19)	173
$N5-H5B\cdots Cl1A^{iii}$	0.91	2.74	3.3664 (16)	127
$N5-H5B\cdots O3W$	0.91	2.22	2.9724 (17)	140
$N6-H6A\cdots Cl5^{i}$	0.91	2.39	3.2474 (14)	158
$O1W-H1O1\cdots Cl5$	0.85(1)	2.24 (1)	3.0878 (17)	179 (2)
$O1W - H2O1 \cdots Cl4A^{ii}$	0.84(1)	2.28(1)	3.1170 (13)	174 (2)
$O2W-H1O2\cdots Cl1A$	0.83(1)	2.28(1)	3.1140 (12)	175 (2)
$O2W-H1O2\cdots Cl2B$	0.83 (1)	2.45 (1)	3.271 (9)	167 (2)
$O2W - H2O2 \cdot \cdot \cdot O1W$	0.83(1)	1.92 (1)	2.7468 (19)	177 (2)
$O3W-H1O3\cdots Cl5^{iii}$	0.84(1)	2.41 (1)	3.2139 (13)	159 (2)
$O3W - H2O3 \cdot \cdot \cdot Cl2A^{iii}$	0.84(1)	2.38(1)	3.2153 (17)	175 (2)
$O3W-H2O3\cdots Cl3B^{iii}$	0.84 (1)	2.23 (2)	3.05 (2)	167 (2)

Symmetry codes: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (ii) $-x + 2, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (iv) x, y + 1, z.

 $[Cr(RR-chxn)_3](NO_3)_3\cdot 3H_2O$ (Morooka *et al.*, 1992) and $[Cr(rac-chxn)_3]Cl_3\cdot 2H_2O$ (Kalf *et al.*, 2002). The disordered tetrahedral $[ZnCl_4]^{2-}$ anion, the isolated Cl^- anion and the three water molecules remain outside the coordination sphere of Cr^{III} . The complex $[ZnCl_4]^{2-}$ anion is distorted due to its involvement in hydrogen-bonding interactions. The $[ZnCl_4]^{2-}$ and Cl^- anions are well separated by van der Waals contacts and consequently there is no basis for describing the Zn^{II} species as a distorted $[ZnCl_5]^{3-}$ anion.

3. Supramolecular features

Extensive hydrogen-bonding interactions occur in the crystal structure (Table 1), involving the N–H groups of the chxn ligands and the O–H groups of the lattice water molecules as donors, and the chloride ions and Cl atoms of the disordered $[ZnCl_4]^{2-}$ anions and water O atoms as acceptors. The supramolecular architecture gives rise to a three-dimensional network structure (Fig. 2).

4. Database survey

A search of the Cambridge Structural Database (Version 5.36, May 2015 with last update; Groom *et al.*, 2016) shows that there are three previous reports for Cr^{III} complexes containing three chelating chxn ligands, *viz*. $[Cr(RR-chxn)_3](NO_3)_3 \cdot 3H_2O$ (Morooka *et al.*, 1992), $[Cr(rac-chxn)_3]Cl_3 \cdot 2H_2O$ (Kalf *et al.*, 2002), and $[Cr(RR-chxn)_3][Co(SS-chxn)_3]Cl_6 \cdot 4H_2O$ (Kalf *et al.*, 2002). The structure of any double salt of $[Cr(chxn)_3]^{3+}$ with an additional $[ZnCl_4]^{2-}$ anion has not been deposited.

C10

C8

02W

C11

C7

N3 C6

C12

N2

C1

C2

N1

O3W

C17

C16

Figure 2

The crystal packing in the title double salt viewed perpendicular to the *bc* plane. Dashed lines represent hydrogen-bonding interactions: $N-H\cdots Cl$ (pink), $N-H\cdots O$ (cyan), $O-H\cdots O$ (light green) and $O-H\cdots Cl$ (orange). The minor disorder components of the $[ZnCl_4]^{2-}$ anion have been omitted for clarity.

5. Synthesis and crystallization

Commercially available (Aldrich) racemic trans-1,2-cyclohexanediamine was used as provided. All other chemicals with the best analytical grade available were used. The starting material, $[Cr(rac-chxn)_3]Cl_3\cdot 2H_2O$ was prepared according to the literature (Pedersen, 1970). The crude trichloride salt (0.22 g) was dissolved in 10 mL of 1 *M* HCl at 313 K and 5 mL of 1 *M* HCl containing 0.5 g of solid ZnCl₂ were added to this solution. The resulting solution was filtered and allowed to stand at room temperature for one week to give block-like yellow crystals of the tetrachloridozincate(II) chloride salt suitable for X-ray structural analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were found from difference maps but were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C-H = 0.99-1.00 Å and N-H = 0.91 Å, and with $U_{iso}(H)$ values of 1.2 or $1.5U_{eq}$ of the parent atoms. The hydrogen atoms of water molecules were restrained using DFIX and DANG commands during the least-squares refinement (Sheldrick, 2015*b*). The [ZnCl₄]²⁻ anion was refined as positionally disordered over two sets of sites with a refined occupancy ratio constrained to 0.94:0.06 in the last refinement cycles.

lable	2	
Experi	mental	details

r
Crystal data
Chemical formula
M _r
Crystal system, space group
Temperature (K)
a, b, c (Å)
β (°)
$V(Å^3)$
Z
Radiation type
$\mu \text{ (mm}^{-1})$
Crystal size (mm)

Data collection Diffractometer Absorption correction

 T_{\min} , T_{\max} No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections

 $\begin{array}{c} R_{\rm int} \\ (\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1}) \end{array}$

Refinement $R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S No. of reflections No. of parameters No. of restraints H-atom treatment

 $\Delta \rho_{\rm max}, \, \Delta \rho_{\rm min} \, ({\rm e} \, {\rm \AA}^{-3})$

 $[Cr(C_6H_{14}N_2)_3][ZnCl_4]Cl\cdot 3H_2O$ 691.24 Monoclinic, $P2_1/c$ 100 10.594 (2), 13.075 (3), 22.384 (5) 100.87 (3) 3045.0 (11) Synchrotron, $\lambda = 0.62998$ Å 1.15 $0.25 \times 0.15 \times 0.05$ ADSC Q210 CCD area detector Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997) 0.762, 0.945

23113, 8090, 7647

0.034 0.696

0.027, 0.073, 1.05
8090
371
15
H atoms treated by a mixture of
independent and constrained
refinement
1.07, -1.14

Computer programs: PAL BL2D-SMDC (Shin et al., 2016), HKL3000sm (Otwinowski & Minor, 1997), SHELXT2014 (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), DIAMOND (Putz & Brandenburg, 2014) and publCIF (Westrip, 2010).

Acknowledgements

This work was supported by a grant from 2016 Research Funds of Andong National University. The X-ray crystallography experiment at PLS-II BL2D-SMC beamline was supported in part by MSIP and POSTECH.

References

- Choi, J.-H. (1994). Bull. Korean Chem. Soc. 15, 145-150.
- Clegg, W. (1976). Acta Cryst. B32, 2907–2909.
- Fabbrizzi, L. & Poggi, A. (2013). Chem. Soc. Rev. 42, 1681-1699.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). *Acta Cryst.* B**72**, 171–179.
- Kalf, I., Calmuschi, B. & Englert, U. (2002). CrystEngComm, 4, 548-551.
- Moon, D. & Choi, J.-H. (2016). Acta Cryst. E72, 456-459.

- Morooka, M., Ohba, S. & Miyamae, H. (1992). Acta Cryst. B48, 667–672.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Pedersen, E. (1970). Acta Chem. Scand. 24, 3362-3372.
- Pons, J., Casabó, J., Palacio, F., Morón, M. C., Solans, X. & Carlin, R. L. (1988). *Inorg. Chim. Acta*, 146, 161–165.
- Putz, H. & Brandenburg, K. (2014). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Santos-Figueroa, L. E., Moragues, M. E., Climent, E., Agostini, A., Martínez-Máñez, R. & Sancenón, F. (2013). Chem. Soc. Rev. 42, 3489–3613.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369– 373.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2016). E72, 671-674 [doi:10.1107/S2056989016005788]

Crystal structure of tris(*trans*-1,2-cyclohexanediamine- $\kappa^2 N$,N')chromium(III) tetrachloridozincate chloride trihydrate from synchrotron data

Dohyun Moon and Jong-Ha Choi

Computing details

Data collection: *PAL BL2D-SMDC* (Shin *et al.*, 2016); cell refinement: *HKL3000sm* (Otwinowski & Minor, 1997); data reduction: *HKL3000sm* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXT2014* (Sheldrick, 2015*a*); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015*b*); molecular graphics: *DIAMOND* (Putz & Brandenburg, 2014); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Tris(*trans*-1,2-cyclohexanediamine- $\kappa^2 N, N'$) chromium(III) tetrachloridozincate chloride trihydrate

Crystal data [Cr(C₆H₁₄N₂)₃][ZnCl₄]Cl·3H₂O F(000) = 1444 $M_r = 691.24$ $D_{\rm x} = 1.508 {\rm Mg} {\rm m}^{-3}$ Monoclinic, $P2_1/c$ Synchrotron radiation, $\lambda = 0.62998$ Å a = 10.594 (2) Å Cell parameters from 39315 reflections b = 13.075 (3) Å $\theta = 0.4 - 33.6^{\circ}$ c = 22.384(5) Å $\mu = 1.15 \text{ mm}^{-1}$ $\beta = 100.87 (3)^{\circ}$ T = 100 K $V = 3045.0 (11) \text{ Å}^3$ Block, yellow $0.25\times0.15\times0.05~mm$ Z = 4Data collection ADSC Q210 CCD area detector 23113 measured reflections diffractometer 8090 independent reflections Radiation source: PLSII 2D bending magnet 7647 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.034$ ω scan Absorption correction: empirical (using $\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$ intensity measurements) $h = -14 \rightarrow 13$ (HKL3000sm SCALEPACK; Otwinowski & $k = -18 \rightarrow 18$ Minor, 1997) $l = -31 \rightarrow 23$ $T_{\rm min} = 0.762, T_{\rm max} = 0.945$ Refinement Refinement on F^2 Hydrogen site location: mixed H atoms treated by a mixture of independent Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.027$ and constrained refinement $wR(F^2) = 0.073$ $w = 1/[\sigma^2(F_0^2) + (0.0353P)^2 + 1.582P]$ where $P = (F_0^2 + 2F_c^2)/3$ *S* = 1.05 8090 reflections $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 1.07 \text{ e } \text{\AA}^{-3}$ 371 parameters $\Delta \rho_{\rm min} = -1.14 \text{ e} \text{ Å}^{-3}$ 15 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cr1	0.74469 (2)	0.93268 (2)	0.34326 (2)	0.00945 (5)	
N1	0.64213 (11)	0.83929 (8)	0.39272 (5)	0.0148 (2)	
H1A	0.6540	0.8610	0.4320	0.018*	
H1B	0.5567	0.8427	0.3766	0.018*	
N2	0.86651 (10)	0.80619 (8)	0.35251 (5)	0.01418 (19)	
H2A	0.8570	0.7719	0.3166	0.017*	
H2B	0.9497	0.8270	0.3629	0.017*	
N3	0.64039 (10)	0.87915 (8)	0.26146 (5)	0.01276 (18)	
H3A	0.6636	0.8136	0.2552	0.015*	
H3B	0.5550	0.8799	0.2625	0.015*	
N4	0.84308 (11)	1.01181 (8)	0.28504 (5)	0.01452 (19)	
H4A	0.8202	1.0790	0.2836	0.017*	
H4B	0.9293	1.0076	0.2991	0.017*	
N5	0.61717 (10)	1.05117 (7)	0.35045 (5)	0.01305 (18)	
H5A	0.6204	1.0989	0.3212	0.016*	
H5B	0.5355	1.0265	0.3453	0.016*	
N6	0.85476 (11)	1.00563 (8)	0.41871 (5)	0.0163 (2)	
H6A	0.8540	0.9680	0.4529	0.020*	
H6B	0.9376	1.0115	0.4135	0.020*	
C1	0.68832 (12)	0.73168 (8)	0.39046 (6)	0.0125 (2)	
H1	0.6558	0.7035	0.3489	0.015*	
C2	0.64271 (14)	0.66233 (9)	0.43714 (6)	0.0179 (2)	
H2C	0.5480	0.6558	0.4273	0.021*	
H2D	0.6665	0.6929	0.4782	0.021*	
C3	0.70450 (15)	0.55615 (9)	0.43674 (6)	0.0208 (3)	
H3C	0.6773	0.5126	0.4682	0.025*	
H3D	0.6748	0.5234	0.3967	0.025*	
C4	0.85043 (15)	0.56437 (10)	0.44909 (6)	0.0220 (3)	
H4C	0.8885	0.4953	0.4484	0.026*	
H4D	0.8806	0.5941	0.4900	0.026*	
C5	0.89466 (13)	0.63175 (9)	0.40110 (6)	0.0175 (2)	
H5C	0.9895	0.6380	0.4102	0.021*	
H5D	0.8694	0.5998	0.3605	0.021*	
C6	0.83391 (12)	0.73752 (9)	0.40071 (5)	0.0126 (2)	
H6	0.8654	0.7702	0.4412	0.015*	
C7	0.66650 (12)	0.94593 (8)	0.21109 (5)	0.0120 (2)	
H7	0.6215	1.0126	0.2134	0.014*	
C8	0.61868 (13)	0.89995 (10)	0.14856 (6)	0.0169 (2)	
H8A	0.5241	0.8921	0.1417	0.020*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

H8B	0 6570	0.8313	0 1464	0.020*	
C9	0.65520 (14)	0.96868 (11)	0.09937 (6)	0.0221 (3)	
H9A	0.6104	1 0351	0.0992	0.026*	
H9B	0.6273	0.9363	0.0590	0.026*	
C10	0.80021 (14)	0.98656 (11)	0.11056 (6)	0.020 (3)	
H10A	0.8213	1 0329	0.0789	0.025*	
H10R	0.8446	0.9207	0.1075	0.025*	
C11	0.84846 (13)	1 03355 (9)	0.17347 (6)	0.025 0.0162(2)	
H11A	0.9432	1.039555 (5)	0.1805	0.0102 (2)	
HIIR	0.8110	1 1026	0.1752	0.019*	
C12	0.81033(11)	0.96599 (9)	0.1752 0.22289 (5)	0.0123(2)	
H12	0.8560	0.8990	0.22209 (3)	0.0123 (2)	
C13	0.65454(12)	1 09834 (9)	0.41220 (6)	0.013 (2)	
H13	0.6297	1.05034 (5)	0.4428	0.0155 (2)	
C14	0.58832(14)	1 20051 (9)	0.1120 0.41731(7)	0.010(2)	
H14A	0.4940	1 1905	0.4100	0.024*	
H14R	0.4940	1.1905	0.3861	0.024	
C15	0.63376 (16)	1 24644 (10)	0.3001 0.48076 (7)	0.024	
H15A	0.5931	1 3142	0.4829	0.0205 (0)	
H15R	0.6064	1 2016	0.5116	0.030*	
C16	0 77959 (17)	1 25828 (12)	0.49508 (8)	0.0303(3)	
H16A	0.8063	1 2837	0.5372	0.036*	
H16B	0.8060	1 3094	0.4672	0.036*	
C17	0.84742(15)	1 15638 (11)	0.48828(7)	0.0255 (3)	
H17A	0.9413	1.1678	0.4942	0.031*	
H17B	0.8309	1.1081	0.5200	0.031*	
C18	0.79971 (13)	1,10982 (9)	0.42553 (6)	0.0164 (2)	
H18	0.8250	1.1561	0.3942	0.020*	
Zn1A	0.76131 (2)	0.36294 (2)	0.25952 (2)	0.01355 (6)	0.94
Cl1A	0.63241 (4)	0.50140 (3)	0.26301 (2)	0.01450 (9)	0.94
Cl2A	0.86823 (7)	0.38639 (5)	0.18121 (3)	0.02463 (12)	0.94
Cl3A	0.62548 (10)	0.22658 (7)	0.23764 (4)	0.01813 (15)	0.94
Cl4A	0.89500 (4)	0.34751 (3)	0.34937 (2)	0.02371 (8)	0.94
Zn1B	0.7716 (6)	0.3345 (4)	0.2463 (3)	0.0287 (10)	0.06
Cl1B	0.9326 (9)	0.2641 (8)	0.3181 (5)	0.056 (3)	0.06
Cl2B	0.6709 (11)	0.4742 (7)	0.2722 (6)	0.040 (2)	0.06
Cl3B	0.8504 (18)	0.3625 (15)	0.1645 (9)	0.062 (5)	0.06
Cl4B	0.6062 (18)	0.2271 (16)	0.2239 (8)	0.031 (4)	0.06
C15	0.76791 (6)	0.60816 (3)	0.03343 (2)	0.04180 (13)	
O1W	0.94431 (12)	0.64959 (9)	0.15743 (6)	0.0304 (3)	
H1O1	0.8960 (19)	0.6389 (15)	0.1230 (6)	0.037*	
H2O1	0.982 (2)	0.7057 (11)	0.1558 (10)	0.037*	
O2W	0.78942 (13)	0.69376 (8)	0.23958 (5)	0.0276 (2)	
H1O2	0.7480 (18)	0.6407 (11)	0.2436 (10)	0.033*	
H2O2	0.8389 (18)	0.6809 (15)	0.2159 (9)	0.033*	
O3W	0.40117 (10)	0.95853 (9)	0.39920 (5)	0.0259 (2)	
H1O3	0.3764 (19)	1.0020 (13)	0.4223 (8)	0.031*	
H2O3	0.3341 (14)	0.9374 (15)	0.3769 (8)	0.031*	

supporting information

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	U^{23}
Cr1	0.00941 (9)	0.00891 (8)	0.01117 (9)	-0.00020 (6)	0.00483 (7)	0.00071 (6)
N1	0.0136 (5)	0.0139 (4)	0.0196 (5)	0.0054 (3)	0.0102 (4)	0.0066 (4)
N2	0.0111 (5)	0.0135 (4)	0.0204 (5)	0.0001 (3)	0.0094 (4)	0.0001 (4)
N3	0.0125 (5)	0.0125 (4)	0.0143 (5)	-0.0047 (3)	0.0050 (4)	0.0004 (3)
N4	0.0151 (5)	0.0154 (4)	0.0142 (5)	-0.0072 (4)	0.0057 (4)	-0.0016 (4)
N5	0.0126 (5)	0.0117 (4)	0.0145 (5)	0.0015 (3)	0.0019 (4)	0.0012 (3)
N6	0.0112 (5)	0.0196 (5)	0.0178 (5)	0.0035 (4)	0.0023 (4)	-0.0034 (4)
C1	0.0119 (5)	0.0119 (5)	0.0154 (5)	0.0019 (4)	0.0066 (4)	0.0035 (4)
C2	0.0235 (7)	0.0145 (5)	0.0191 (6)	0.0009 (4)	0.0124 (5)	0.0052 (4)
C3	0.0355 (8)	0.0122 (5)	0.0169 (6)	0.0012 (5)	0.0109 (5)	0.0025 (4)
C4	0.0328 (8)	0.0146 (5)	0.0184 (6)	0.0089 (5)	0.0042 (5)	0.0027 (4)
C5	0.0185 (6)	0.0141 (5)	0.0205 (6)	0.0070 (4)	0.0053 (5)	-0.0009 (4)
C6	0.0118 (5)	0.0117 (5)	0.0152 (5)	0.0026 (4)	0.0045 (4)	0.0004 (4)
C7	0.0127 (5)	0.0122 (4)	0.0121 (5)	-0.0024 (4)	0.0050 (4)	0.0008 (4)
C8	0.0162 (6)	0.0203 (6)	0.0143 (5)	-0.0045 (4)	0.0033 (4)	-0.0025 (4)
C9	0.0229 (7)	0.0294 (7)	0.0139 (6)	-0.0025 (5)	0.0038 (5)	0.0017 (5)
C10	0.0225 (7)	0.0270 (6)	0.0149 (6)	-0.0026 (5)	0.0089 (5)	0.0008 (5)
C11	0.0170 (6)	0.0176 (5)	0.0162 (5)	-0.0049 (4)	0.0088 (4)	0.0019 (4)
C12	0.0127 (5)	0.0126 (5)	0.0130 (5)	-0.0030 (4)	0.0058 (4)	-0.0004 (4)
C13	0.0140 (5)	0.0108 (5)	0.0156 (5)	0.0015 (4)	0.0041 (4)	-0.0001 (4)
C14	0.0227 (6)	0.0123 (5)	0.0265 (7)	0.0055 (4)	0.0096 (5)	0.0000 (4)
C15	0.0329 (8)	0.0169 (6)	0.0294 (7)	0.0023 (5)	0.0145 (6)	-0.0063 (5)
C16	0.0357 (9)	0.0223 (6)	0.0345 (8)	-0.0063 (6)	0.0104 (7)	-0.0146 (6)
C17	0.0231 (7)	0.0269 (7)	0.0256 (7)	-0.0030 (5)	0.0020 (6)	-0.0132 (5)
C18	0.0149 (6)	0.0145 (5)	0.0202 (6)	-0.0010 (4)	0.0047 (4)	-0.0048 (4)
Zn1A	0.00992 (9)	0.01085 (11)	0.02095 (13)	0.00062 (7)	0.00562 (8)	0.00178 (7)
Cl1A	0.01152 (18)	0.01180 (19)	0.02058 (16)	0.00198 (12)	0.00407 (13)	-0.00062 (13)
Cl2A	0.0129 (2)	0.0329 (3)	0.0317 (3)	0.00436 (17)	0.0133 (2)	0.0052 (2)
Cl3A	0.0171 (4)	0.01019 (19)	0.0277 (4)	-0.0013 (2)	0.0058 (3)	-0.0002 (2)
Cl4A	0.02115 (17)	0.01976 (15)	0.02746 (18)	0.00188 (11)	-0.00247 (13)	0.00251 (12)
Zn1B	0.029 (2)	0.027 (2)	0.034 (3)	-0.0094 (19)	0.0149 (16)	-0.0010 (17)
Cl1B	0.037 (4)	0.069 (6)	0.059 (6)	-0.013 (4)	-0.002 (4)	0.028 (5)
Cl2B	0.037 (5)	0.019 (4)	0.071 (7)	-0.017 (3)	0.030 (5)	-0.020 (4)
Cl3B	0.041 (9)	0.085 (12)	0.066 (11)	0.026 (7)	0.028 (8)	-0.001 (7)
Cl4B	0.010 (4)	0.034 (5)	0.045 (8)	0.010 (3)	-0.008(4)	-0.004 (5)
C15	0.0815 (4)	0.03036 (19)	0.01572 (16)	-0.0234 (2)	0.01466 (19)	-0.00282 (13)
O1W	0.0211 (5)	0.0298 (5)	0.0381 (7)	-0.0013 (4)	0.0000 (5)	0.0111 (5)
O2W	0.0423 (7)	0.0146 (4)	0.0300 (6)	-0.0058 (4)	0.0168 (5)	-0.0031 (4)
O3W	0.0156 (5)	0.0347 (6)	0.0285 (5)	0.0001 (4)	0.0071 (4)	-0.0024 (4)

Geometric parameters (Å, °)

Cr1—N3	2.0737 (12)	C8—H8A	0.9900
Cr1—N5	2.0817 (10)	C8—H8B	0.9900
Cr1—N2	2.0839 (11)	C9—C10	1.527 (2)

supporting information

Cr1—N1	2.0859 (11)	С9—Н9А	0.9900
Cr1—N4	2.0899 (11)	С9—Н9В	0.9900
Cr1—N6	2.0928 (12)	C10-C11	1.5330 (19)
N1—C1	1 4937 (15)	C10—H10A	0 9900
N1—H1A	0.9100	C10—H10B	0.9900
N1 U1P	0.0100		1 5283 (16)
N2 C6	1.4022(15)		0.0000
	1.4932 (13)		0.9900
N2—H2A	0.9100		0.9900
N2—H2B	0.9100	C12—H12	1.0000
N3—C7	1.4927 (15)	C13—C18	1.5178 (18)
N3—H3A	0.9100	C13—C14	1.5232 (16)
N3—H3B	0.9100	С13—Н13	1.0000
N4—C12	1.4942 (15)	C14—C15	1.533 (2)
N4—H4A	0.9100	C14—H14A	0.9900
N4—H4B	0.9100	C14—H14B	0.9900
N5—C13	1.4971 (16)	C15—C16	1.525 (2)
N5—H5A	0.9100	С15—Н15А	0.9900
N5—H5B	0.9100	C15—H15B	0 9900
N6-C18	1 5009 (16)	C_{16} $-C_{17}$	1.535(2)
N6—H6A	0.9100	C16 $H16A$	0.9900
N6 H6P	0.0100	C16 H16P	0.9900
	1.5170(17)		0.9900
C1 = C0	1.51/9(1/) 1.5290(1())	C17 - C18	1.3270(19)
	1.5289 (10)		0.9900
	1.0000	CI/—HI/B	0.9900
C2—C3	1.5356 (18)	C18—H18	1.0000
C2—H2C	0.9900	Zn1A—Cl4A	2.2400 (9)
C2—H2D	0.9900	Zn1A—Cl1A	2.2779 (6)
C3—C4	1.522 (2)	Zn1A—Cl2A	2.2799 (9)
С3—Н3С	0.9900	Zn1A—Cl3A	2.2856 (10)
C3—H3D	0.9900	Zn1B—Cl3B	2.18 (2)
C4—C5	1.529 (2)	Zn1B—Cl4B	2.23 (2)
C4—H4C	0.9900	Zn1B—Cl2B	2.246 (11)
C4—H4D	0.9900	Zn1B—Cl1B	2.304 (11)
C5—C6	1.5247 (16)	Cl1B—O1W ⁱ	1.993 (11)
C5—H5C	0.9900	$O1W$ — $C11B^{ii}$	1.993 (11)
C5—H5D	0.9900	01W - H101	0.853 (9)
C6—H6	1,0000	01W - H201	0.833(9)
C7 $C12$	1 5104 (17)	02W H102	0.041(9)
$C7 C^{\circ}$	1.5194(17) 1 5107(17)	02W + H2O2	0.834(9)
$C_{1} = C_{0}$	1.0000	02W - H2O2	0.829(9)
C/—H/	1.0000	O3W—HIO3	0.843 (9)
C8—C9	1.5267 (19)	O3W—H2O3	0.835 (9)
N3—Cr1—N5	94.24 (5)	C12—C7—C8	112.19 (10)
N3—Cr1—N2	92.11 (5)	N3—C7—H7	108.2
N5—Cr1—N2	169.03 (4)	С12—С7—Н7	108.2
N3—Cr1—N1	91.55 (5)	С8—С7—Н7	108.2
N5—Cr1—N1	89.09 (4)	C7—C8—C9	110.21 (10)
N2—Cr1—N1	81.81 (4)	С7—С8—Н8А	109.6

N3—Cr1—N4	82.06 (4)	С9—С8—Н8А	109.6
N5—Cr1—N4	94.99 (5)	С7—С8—Н8В	109.6
N2—Cr1—N4	94.74 (5)	С9—С8—Н8В	109.6
N1—Cr1—N4	172.64 (4)	H8A—C8—H8B	108.1
N3—Cr1—N6	171.68 (4)	C8—C9—C10	110.83 (12)
N5—Cr1—N6	82.49 (5)	С8—С9—Н9А	109.5
N2—Cr1—N6	92.35 (5)	С10—С9—Н9А	109.5
N1—Cr1—N6	96.04 (5)	С8—С9—Н9В	109.5
N4—Cr1—N6	90.58 (5)	С10—С9—Н9В	109.5
C1—N1—Cr1	109.07 (7)	H9A—C9—H9B	108.1
C1—N1—H1A	109.9	C9—C10—C11	111.28 (11)
Cr1—N1—H1A	109.9	С9—С10—Н10А	109.4
C1—N1—H1B	109.9	C11—C10—H10A	109.4
Cr1—N1—H1B	109.9	С9—С10—Н10В	109.4
H1A—N1—H1B	108.3	C11—C10—H10B	109.4
C6—N2—Cr1	109.01 (7)	H10A—C10—H10B	108.0
C6—N2—H2A	109.9	C12—C11—C10	110.21 (10)
Cr1—N2—H2A	109.9	C12—C11—H11A	109.6
C6—N2—H2B	109.9	C10—C11—H11A	109.6
Cr1—N2—H2B	109.9	C12—C11—H11B	109.6
H2A—N2—H2B	108.3	C10—C11—H11B	109.6
C7—N3—Cr1	109.01 (7)	H11A—C11—H11B	108.1
C7—N3—H3A	109.9	N4—C12—C7	106.28 (10)
Cr1—N3—H3A	109.9	N4—C12—C11	113.29 (9)
C7—N3—H3B	109.9	C7—C12—C11	111.54 (10)
Cr1—N3—H3B	109.9	N4—C12—H12	108.5
H3A—N3—H3B	108.3	C7—C12—H12	108.5
C12—N4—Cr1	109.05 (7)	C11—C12—H12	108.5
C12—N4—H4A	109.9	N5-C13-C18	107.70 (10)
Cr1—N4—H4A	109.9	N5-C13-C14	112.66 (10)
C12—N4—H4B	109.9	C18—C13—C14	111.25 (10)
Cr1—N4—H4B	109.9	N5—C13—H13	108.4
H4A—N4—H4B	108.3	C18—C13—H13	108.4
C13—N5—Cr1	108.39 (7)	С14—С13—Н13	108.4
C13—N5—H5A	110.0	C13—C14—C15	110.15 (11)
Cr1—N5—H5A	110.0	C13—C14—H14A	109.6
C13—N5—H5B	110.0	C15—C14—H14A	109.6
Cr1—N5—H5B	110.0	C13—C14—H14B	109.6
H5A—N5—H5B	108.4	C15—C14—H14B	109.6
C18 - N6 - Cr1	109.12 (8)	H14A—C14—H14B	108.1
C18 - N6 - H6A	109.9	C16-C15-C14	111 29 (12)
Cr1-N6-H6A	109.9	C16—C15—H15A	109.4
C18 - N6 - H6B	109.9	C14— $C15$ — $H15A$	109.4
Cr1-N6-H6B	109.9	C16—C15—H15B	109.4
H6A—N6—H6B	108.3	C14—C15—H15B	109.4
N1-C1-C6	106.11 (9)	H15A—C15—H15B	108.0
$N_1 - C_1 - C_2$	112.82 (10)	C15-C16-C17	111.45 (12)
	111 69 (10)	C15-C16-H16A	109 3
00 01 02	111.07 (10)		107.5

N1—C1—H1	108.7	C17—C16—H16A	109.3
C6—C1—H1	108.7	C15—C16—H16B	109.3
C2—C1—H1	108.7	C17—C16—H16B	109.3
C1—C2—C3	110.02 (10)	H16A—C16—H16B	108.0
C1—C2—H2C	109.7	C18—C17—C16	110.94 (13)
C3—C2—H2C	109.7	C18—C17—H17A	109.5
C1—C2—H2D	109.7	C16—C17—H17A	109.5
C3—C2—H2D	109.7	C18—C17—H17B	109.5
H2C—C2—H2D	108.2	C16—C17—H17B	109.5
C4—C3—C2	110.76 (11)	H17A—C17—H17B	108.0
C4-C3-H3C	109 5	N6-C18-C13	106.80 (10)
$C^2 - C^3 - H^3C$	109.5	N6-C18-C17	112 82 (11)
C4-C3-H3D	109.5	C_{13} C_{18} C_{17}	112.02(11) 111.57(11)
$C_2 = C_3 = H_3 D$	109.5	N6 C18 H18	108 5
	109.5	$C_{12} = C_{10} = H_{10}$	108.5
$H_{3}C - C_{3} - H_{3}D$	100.1	С13—С16—Н18	108.5
$C_3 = C_4 = C_3$	110.58 (11)		108.5
$C_3 - C_4 - H_4C$	109.6	CI4A—ZnIA—CIIA	108.81 (2)
C5—C4—H4C	109.6	Cl4A—Zn1A—Cl2A	112.38 (3)
C3—C4—H4D	109.6	Cl1A—Zn1A—Cl2A	107.91 (3)
C5—C4—H4D	109.6	Cl4A—Zn1A—Cl3A	112.84 (3)
H4C—C4—H4D	108.1	Cl1A—Zn1A—Cl3A	105.66 (4)
C6—C5—C4	109.98 (11)	Cl2A—Zn1A—Cl3A	108.92 (3)
C6—C5—H5C	109.7	Cl3B—Zn1B—Cl4B	109.0 (8)
C4—C5—H5C	109.7	Cl3B—Zn1B—Cl2B	110.8 (6)
C6—C5—H5D	109.7	Cl4B—Zn1B—Cl2B	100.3 (7)
C4—C5—H5D	109.7	Cl3B—Zn1B—Cl1B	107.6 (6)
H5C—C5—H5D	108.2	Cl4B—Zn1B—Cl1B	110.7 (6)
N2—C6—C1	106.74 (10)	Cl2B—Zn1B—Cl1B	118.1 (5)
N2—C6—C5	113.24 (10)	O1W ⁱ —Cl1B—Zn1B	148.4 (7)
C1—C6—C5	111.78 (10)	C11B ⁱⁱ —O1W—H1O1	128.5 (15)
N2—C6—H6	108.3	$C11B^{ii}$ — $O1W$ — $H2O1$	20.4 (15)
C1—C6—H6	108.3	$H_{101} - 01W - H_{201}$	1084(17)
C5-C6-H6	108.3	$H_{102} = 02W = H_{202}$	108.0(17)
N3 C7 C12	106.00 (10)	H103 03W H203	105.0(17)
$N_3 = C_7 = C_{12}$	112 78 (0)	11105 05 W 11205	105.2 (17)
N3-C/C8	112.78 (9)		
Cr1 N1 C1 C6	42 74 (11)	C+1 N4 C12 C11	165 21 (9)
C_{11} N_{1} C_{1} C_{2}	45.74(11)	CII = N4 = CI2 = CII	103.21(8)
CrI = NI = CI = C2	166.35 (9)	$N_3 - C_7 - C_{12} - N_4$	-56.47 (11)
NI = CI = C2 = C3	-1/4.32(11)	C8—C/—C12—N4	1/9.35 (9)
C6-C1-C2-C3	-54.88 (14)	N3—C7—C12—C11	179.60 (9)
C1—C2—C3—C4	56.88 (15)	C8—C7—C12—C11	55.42 (13)
C2—C3—C4—C5	-58.90 (14)	C10—C11—C12—N4	-174.49 (11)
C3—C4—C5—C6	57.83 (14)	C10—C11—C12—C7	-54.61 (14)
Cr1—N2—C6—C1	43.07 (10)	Cr1—N5—C13—C18	43.53 (10)
Cr1—N2—C6—C5	166.49 (8)	Cr1-N5-C13-C14	166.59 (9)
N1-C1-C6-N2	-57.08 (12)	N5-C13-C14-C15	-178.16 (11)
C2-C1-C6-N2	179.59 (10)	C18—C13—C14—C15	-57.11 (15)
N1—C1—C6—C5	178.59 (10)	C13—C14—C15—C16	56.49 (16)

C2—C1—C6—C5	55.27 (13)	C14—C15—C16—C17	-55.32 (18)
C4—C5—C6—N2	-176.70 (11)	C15—C16—C17—C18	54.00 (18)
C4—C5—C6—C1	-56.10 (14)	Cr1—N6—C18—C13	40.46 (11)
Cr1—N3—C7—C12	43.41 (10)	Cr1—N6—C18—C17	163.39 (10)
Cr1—N3—C7—C8	167.23 (8)	N5-C13-C18-N6	-55.59 (12)
N3—C7—C8—C9	-176.66 (11)	C14—C13—C18—N6	-179.51 (10)
С12—С7—С8—С9	-55.76 (14)	N5-C13-C18-C17	-179.30 (10)
C7—C8—C9—C10	56.43 (15)	C14—C13—C18—C17	56.79 (14)
C8—C9—C10—C11	-57.35 (15)	C16-C17-C18-N6	-174.93 (12)
C9—C10—C11—C12	55.91 (15)	C16-C17-C18-C13	-54.69 (16)
Cr1—N4—C12—C7	42.38 (10)		

Symmetry codes: (i) -x+2, y-1/2, -z+1/2; (ii) -x+2, y+1/2, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1A····Cl5 ⁱⁱⁱ	0.91	2.40	3.2535 (15)	157
N1—H1 <i>B</i> ···O3 <i>W</i>	0.91	2.36	3.0178 (16)	129
N2—H2 <i>A</i> ···O2 <i>W</i>	0.91	2.01	2.9051 (17)	166
N2—H2B····Cl2A ⁱⁱ	0.91	2.45	3.2197 (14)	142
N2—H2 <i>B</i> ····Cl3 <i>B</i> ⁱⁱ	0.91	2.36	3.180 (18)	150
N3—H3 <i>A</i> ···O2 <i>W</i>	0.91	2.13	2.9832 (16)	156
N3—H3 <i>B</i> ···Cl1 <i>A</i> ^{iv}	0.91	2.52	3.2574 (13)	138
N3—H3 <i>B</i> ···Cl3 <i>A</i> ^{iv}	0.91	2.77	3.4547 (16)	133
N3—H3 B ···Cl2 B^{iv}	0.91	2.67	3.471 (10)	147
N3—H3 B ····Cl4 B^{iv}	0.91	2.68	3.35 (2)	131
N4—H4 A ···Cl1 B^{v}	0.91	2.74	3.473 (11)	138
N4—H4 <i>B</i> ···Cl2 <i>A</i> ⁱⁱ	0.91	2.64	3.4267 (15)	146
N4—H4 B ···O1 W ⁱⁱ	0.91	2.39	2.9804 (17)	123
N5—H5A····Cl3A ^v	0.91	2.51	3.4245 (14)	178
N5—H5 A ···Cl4 B^{v}	0.91	2.73	3.634 (19)	173
N5—H5 <i>B</i> ···Cl1 <i>A</i> ^{iv}	0.91	2.74	3.3664 (16)	127
N5—H5 <i>B</i> ···O3 <i>W</i>	0.91	2.22	2.9724 (17)	140
N6—H6A····Cl5 ⁱⁱⁱ	0.91	2.39	3.2474 (14)	158
O1 <i>W</i> —H1 <i>O</i> 1···Cl5	0.85 (1)	2.24 (1)	3.0878 (17)	179 (2)
$O1W$ —H2 $O1$ ···Cl4 A^{ii}	0.84 (1)	2.28 (1)	3.1170 (13)	174 (2)
O2 <i>W</i> —H1 <i>O</i> 2···Cl1 <i>A</i>	0.83 (1)	2.28 (1)	3.1140 (12)	175 (2)
O2 <i>W</i> —H1 <i>O</i> 2···Cl2 <i>B</i>	0.83 (1)	2.45 (1)	3.271 (9)	167 (2)
O2 <i>W</i> —H2 <i>O</i> 2···O1 <i>W</i>	0.83 (1)	1.92 (1)	2.7468 (19)	177 (2)
O3W—H1 $O3$ ···Cl5 ^{iv}	0.84 (1)	2.41 (1)	3.2139 (13)	159 (2)
$O3W$ —H2 $O3$ ···Cl2 A^{iv}	0.84 (1)	2.38 (1)	3.2153 (17)	175 (2)
$O3W$ —H2 $O3$ ···Cl3 B^{iv}	0.84 (1)	2.23 (2)	3.05 (2)	167 (2)

Symmetry codes: (ii) -x+2, y+1/2, -z+1/2; (iii) x, -y+3/2, z+1/2; (iv) -x+1, y+1/2, -z+1/2; (v) x, y+1, z.