

Received 24 February 2016 Accepted 15 April 2016

Edited by P. C. Healy, Griffith University, Australia

Keywords: crystal structure; benzamide; trifluoromethanesulfonate salt; *p*-nitrobenzylquinolinium.

CCDC reference: 1474439

Supporting information: this article has supporting information at journals.iucr.org/e

Acta Cryst. (2016). E72, 747-750

Crystal structure of 3-benzamido-1-(4-nitrobenzyl)quinolinium trifluoromethanesulfonate

Mariana Nicolas-Gomez,^a Iván J. Bazany-Rodríguez,^a Eduardo Plata-Vargas,^a Simón Hernández-Ortega^b and Alejandro Dorazco-González^a*

^aCentro Conjunto de Investigacion en Quimica Sustentable UAEM–UNAM, Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Carretera Toluca-Atlacomulco, Km 14.5 CP 50200 Toluca, Estado de Mexico, Mexico, and ^bLaboratorio de Rayos-X, Instituto de Quimica, UNAM, Circuito Exterior, Ciudad Universitaria Deleg. Coyoacán México 04510, México DF, México, Mexico. *Correspondence e-mail: adg@unam.mx

In the title compound, $C_{23}H_{18}N_3O_3^+ \cdot CF_3SO_3^-$, the asymmetric unit contains two crystallographically independent organic cations with similar conformations. Each cation shows a moderate distortion between the planes of the amide groups and the quinolinium rings with dihedral angles of 14.90 (2) and 31.66 (2)°. The quinolinium and phenyl rings are slightly twisted with respect to each other at dihedral angles of 6.99 (4) and 8.54 (4)°. The trifluoromethane-sulfonate anions are linked to the organic cations *via* $N-H\cdots O$ hydrogenbonding interactions involving the NH amide groups. In the crystal, the organic cations are linked by weak $C-H\cdots O(nitro \text{ group})$ interactions into supramolecular chains propagating along the *b*-axis direction.

1. Chemical context

Quinoline-based quaternary salts have attracted the attention of researchers in different areas of organic chemistry for their relevant applications such as DNA-intercalators (Mazzoli et al., 2011), fluorescent pH-sensors (Badugu et al., 2005a), fluorescent labels for antibiotics (Zeng et al., 2010), proteins (Hong et al., 2004), heparin (Sauceda et al., 2007), sacharides (Badugu et al., 2005b), fluorescent probes for fluoride and cyanide ions (Badugu et al., 2004) and nucleotides (Dorazco-González et al., 2014). These cationic organic compounds are probably the most used fluorescent sensors for chloride ions in aqueous media (Bazany-Rodríguez et al., 2015) and intracell samples (Baù et al., 2012). On the other hand, benzamide compounds are used as intermediaries for the synthesis of species with biological activity such as 1,4-benzodiazepinones, thiazoles and oxazoles (Majumdar & Ganai, 2011; Majumdar & Ghosh, 2013; Majumdar et al., 2012) and bicyclic Nheterocycles and nitrogen-rich medium-size heterocycles (Mondal et al., 2012; Zeni & Larock, 2006; Ohta et al., 2008; Majumdar et al., 2008; Raju et al., 2009; Evdokimov et al., 2011).

2. Structural commentary

The asymmetric unit of the title compound comprises two independent organic [N-[3-N'-(p-nitrobenzyl)]quinolinium]benzamide] cations, each of which is linked to one triflate anion through hydrogen-bonding interactions $(N-H\cdots O)$ between the amide groups and anions (Figs. 1 and 2; Table 1). Each cation shows a distortion between the mean planes of the amide groups and the quinolinium rings, with dihedral angles of 14.90 (2) and 31.66 (2)°. The phenyl and quinolinium rings are practically coplanar with dihedral angles of 6.99 (4) and 8.54 (4)°.

3. Subramolecular lealure	3.	Supramo	lecular	features
---------------------------	----	---------	---------	----------

The supramolecular structure involves triflate ion pairing with the bulky cation *via* $N-H\cdots O$ hydrogen bonds (Table 1) between amide groups and anions. The crystal structure also

Table 1	
Hydrogen-bond geometr	ry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$\begin{array}{l} N18 - H18 \cdots O4^{i} \\ N44 - H44 \cdots O24^{ii} \end{array}$	0.88 (3)	2.15 (3)	2.982 (3)	156 (3)
	0.87 (2)	1.97 (3)	2.811 (3)	164 (3)

Symmetry codes: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) x - 1, y, z + 1.

features face-to-face π -stacking interactions between benzamide and quinolinium rings [inter-centroid distance, 3.71 (3) Å] forming chains along the *b*-axis direction, as shown in Figs. 3 and 4. The triflate anions are located on the periphery of the quinolinium groups, establishing C-H···O interactions (Table 1).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 35.6, last update 2015; Groom *et al.*, 2016) using *N*-(naphthalen-3-yl)benzamide as the main structure, reveals 26 hits; however using a closer structure, *N*-(quinolin-3-yl)benzamide, shows only one hit, which corresponds to the triflate salt of *N*-(3-*N'*-methylquinolinium)benzamide (RISQEP) (Dorazco-González *et al.*, 2014). Additionally, *N*-methylated and benzylated isomers were found; *N*-(5-*N'*-methylquino-

Figure 1

The asymmetric unit of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines. [Symmetry codes: (A) x, $-y + \frac{1}{2}$, $z + \frac{1}{2}$; (B) x - 1, y, z + 1.]

Figure 2

Perspective view of a fragment of the crystal structure of the title compound with hydrogen bonds $N-H\cdots O$ shown as dashed lines. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

linium)benzamide triflate and *N*-(6-*N*'-methylquinolinium)benzamide triflate (RISQOB and RISQIV, respectively; Dorazco-González *et al.*, 2014) and *N*-(6-*N*'-benzylquinolinium)benzamide bromide (AJEREO;Bazany-Rodríguez *et al.*, 2015). On the other hand, the related (1,10-phenanthrolin-5-yl)benzamide Ir^{III} complex (FAPLEP; Castillo *et al.*, 2012) and Ru^{II} and Re^I complexes containing the chemical fragment *N*-(quinolin-3-yl)benzamide (NILFAQ and NILFEU; Batey *et al.*, 2007) have been reported previously as luminescent chemosensors. The structure of *N*-(1,10-phenanthrolin-5-yl)-4-

Figure 3

A view approximately along the *a* axis, showing the offset face-to-face π -interactions between the benzamide and the quinolinium group. H atoms and trifluoromethanesulfonate anions have been omitted for clarity.

View of the π -aggregated structure. Hydrogen atoms and trifluoromethanesulfonate anions have been omitted for clarity.

(2-pyridyl(benzamide) monohydrate (ROFTOW; Kobayashi *et al.*, 2008) has also been reported.

5. Synthesis and crystallization

A mixture of 6-aminoquinoline (1.0 g, 6.9 mmol) and benzoyl chloride (0.49 g, 3.45 mmol) in 30 mL of dry toluene-acetone (1:1 ν/ν) was stirred under reflux for 2.5 h. The white precipitate was collected by filtration and washed with acetone and 5% NaHCO₃ to give *N*-(3-quinolinyl)benzamide in 90% yield, which was reacted with 1.5 equiv. of *p*-nitro benzyl chloride in 30 mL of dry DMF for 5 h. The resulting yellow powder was filtered and washed with cold MeOH to give the chloride salt in 85% yield. The chloride salt was dissolved in 100 mL of hot H₂O-MeOH (1:1 ν/ν) then one equiv. of silver triflate was added, the mixture was stirred at room temperature for 4 h. The precipitate of silver chloride was filtered off and yellow crystals were obtained by evaporation of the solvent at room temperature.

¹H NMR (300MHz, DMSO- d_6) δ 11.42 (*s*, 1H), 10.08 (*s*, 1H), 9.51 (*s*, 1H), 8.55 (*d*, 1H), 8.42 (*d*, 1H), 8.29 (*d*, 2H), 8.10 (*d*, 2H), 7.97 (*t*, 1H), 7.73 (*m*, 6H), 6.63 (*s*, 2H). IR (ATR) cm⁻¹ 3271.41 (*d*), 3073.52 (*d*), 2993.15 (*d*), 1685.80 (*d*), 1603.94 (*d*), 1551.56 (*m*), 1518.86 (*f*), 1490.75 (*d*), 1372.93 (*m*), 1344.45 (*f*), 1272.46 (*f*), 1251.94 (*f*), 1163.90 (*f*), 1107.99 (*d*), 1028.82 (*f*), 900.95 (*d*), 847.43 (*d*), 800.46 (*d*), 760.49 (*d*), 741.83 (*m*), 710.10 (*m*), 693.06 (*m*), 665.58 (*d*), 633.92 (*f*), 573.28 (*d*), 515.54 (*m*), 434.41 (*m*).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All non-hydrogen atoms were

research communications

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{23}H_{18}N_3O_3^+ \cdot CF_3O_3S^-$
$M_{ m r}$	533.47
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	298
<i>a</i> , <i>b</i> , <i>c</i> (Å)	15.2183 (6), 20.0810 (8), 15.3652 (6)
β (°)	90.544 (1)
$V(Å^3)$	4695.4 (3)
Z	8
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.21
Crystal size (mm)	$0.30\times0.17\times0.14$
Data collection	
Diffractometer	Bruker APEXII CCD area- detector
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	38624, 8609, 3809
R _{int}	0.095
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.603
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.046, 0.110, 0.85
No. of reflections	8609
No. of parameters	729
No. of restraints	180
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.30, -0.31

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXTL (Sheldrick, 2008) and SHELXL2013 (Sheldrick, 2015).

refined anisotropically. H atoms attached to C atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C-H = 0.93-0.98 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic groups and $U_{iso}(H) = 1.5$ $U_{eq}(C)$ for aliphatic groups (Sheldrick, 2008). N-H hydrogen atoms were localized in difference Fourier maps and refined with the bond lengths fixed at 0.90 A and the isotropic temperature factors fixed at 1.2 times those of the corresponding nitrogen atom.

Acknowledgements

We thank Lizbeth Triana Cruz MSc and María de las Nieves Zavala Segovia MSc for their technical support. The financial support of this research by CONACyT (CB239648) is gratefully acknowledged. MNG and IJBR are also grateful to CONACyT for scholarships. References

- Badugu, R., Lakowicz, J. R. & Geddes, C. D. (2004). Anal. Biochem. 327, 82–90.
- Badugu, R., Lakowicz, J. R. & Geddes, C. D. (2005a). *Bioorg. Med. Chem.* **13**, 113–119.
- Badugu, R., Lakowicz, J. R. & Geddes, C. D. (2005b). *Talanta*, 66, 569–574.
- Batey, H. D., Whitwood, A. C. & Duhme-Klair, A.-K. (2007). *Inorg. Chem.* 46, 6516–6528.
- Baù, L., Selvestrel, F., Arduini, M., Zamparo, I., Lodovichi, C. & Mancin, F. (2012). Org. Lett. 14, 2984–2987.
- Bazany-Rodríguez, I. J., Martínez-Otero, D., Barroso-Flores, J., Yatsimirsky, A. K. & Dorazco-González, A. (2015). Sens. Actuators B Chem. 221, 1348–1355.
- Bruker (2012). APEX2 and SAINT Bruker AXS Inc. Madison, Wisconsin, USA.
- Castillo, C. E., Davies, D. L., Klair, A. D., Singh, K. & Singh, S. (2012). Dalton Trans. 41, 628–635.
- Dorazco-González, A., Alamo, M. F., Godoy-Alcántar, C., Höpfl, H. & Yatsimirsky, A. K. (2014). *RSC Adv.* **4**, 455–466.
- Evdokimov, N. M., Van slambrouck, S., Heffeter, P., Tu, L., Le Calvé, B., Lamoral-Theys, D., Hooten, C. J., Uglinskii, P. Y., Rogelj, S., Kiss, R., Steelant, W. F. A., Berger, W., Yang, J. J., Bologa, C. G., Kornienko, A. & Magedov, I. V. (2011). *J. Med. Chem.* 54, 2012– 2021.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hong, S., Yoon, S. S., Kang, C. & Suh, B. M. (2004). Korean Chem. Soc. 25, 345–346.
- Kobayashi, M., Masaoka, S. & Sakai, K. (2008). Acta Cryst. E64, 01979.
- Majumdar, K. C. & Ganai, S. (2011). Synlett, pp. 1881-1887.
- Majumdar, K. C., Ganai, S., Nandi, R. K. & Ray, K. (2012). Tetrahedron Lett. 53, 1553–1557.
- Majumdar, K. C. & Ghosh, D. (2013). Tetrahedron Lett. 54, 4422-4424.
- Majumdar, K. C., Mondal, S. & De, N. (2008). Synlett, pp. 2851-2855.
- Mazzoli, A., Carlotti, B., Fortuna, C. G. & Spalletti, A. (2011). *Photochem. Photobiol. Sci.* **10**, 973–979.
- Mondal, S., Nechab, M., Vanthuyne, N. & Bertrand, M. P. (2012). Chem. Commun. 48, 2549–2551.
- Ohta, Y., Chiba, H., Oishi, S., Fujii, N. & Ohno, H. (2008). Org. Lett. 10, 3535–3538.
- Raju, R., Piggott, A. M., Conte, M., Aalbersberg, W. G. L., Feussner, K. & Capon, R. J. (2009). Org. Lett. 11, 3862–3865.
- Sauceda, J. C., Duke, R. M. & Nitz, M. (2007). ChemBioChem, 8, 391–394.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Zeng, L., Liu, W., Zhuang, X., Wu, J., Wang, P. & Zhang, W. (2010). Chem. Commun. 46, 2435–2437.
- Zeni, G. & Larock, R. C. (2006). Chem. Rev. 106, 4644-4680.

Acta Cryst. (2016). E72, 747-750 [doi:10.1107/S2056989016006423]

Crystal structure of 3-benzamido-1-(4-nitrobenzyl)quinolinium trifluoromethanesulfonate

Mariana Nicolas-Gomez, Iván J. Bazany-Rodríguez, Eduardo Plata-Vargas, Simón Hernández-Ortega and Alejandro Dorazco-González

Computing details

Data collection: *APEX2* (Bruker, 2012); cell refinement: *APEX2* (Bruker, 2012); data reduction: *SAINT* (Bruker, 2012); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2015); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

3-Benzamido-1-(4-nitrobenzyl)quinolinium trifluoromethanesulfonate

Crystal data

 $C_{23}H_{18}N_{3}O_{3}^{+} \cdot CF_{3}O_{3}S^{-}$ $M_{r} = 533.47$ Monoclinic, $P2_{1}/c$ a = 15.2183 (6) Å b = 20.0810 (8) Å c = 15.3652 (6) Å $\beta = 90.544$ (1)° V = 4695.4 (3) Å³ Z = 8

Data collection

Bruker APEXII CCD area-detector diffractometer
Detector resolution: 0.83 pixels mm⁻¹ ω scans
38624 measured reflections
8609 independent reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.110$ S = 0.858609 reflections 729 parameters 180 restraints F(000) = 2192 $D_x = 1.509 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9165 reflections $\theta = 2.4-23.7^{\circ}$ $\mu = 0.21 \text{ mm}^{-1}$ T = 298 KPrism, yellow $0.30 \times 0.17 \times 0.14 \text{ mm}$

3809 reflections with $I > 2\sigma(I)$ $R_{int} = 0.095$ $\theta_{max} = 25.4^{\circ}, \ \theta_{min} = 1.3^{\circ}$ $h = -18 \rightarrow 18$ $k = -24 \rightarrow 24$ $l = -17 \rightarrow 18$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0366P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.30 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.31 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	X	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	0.41029 (15)	0.60296 (11)	0.34381 (13)	0.0614 (6)	
N2	0.1246 (2)	0.91541 (18)	0.5407 (2)	0.0720 (9)	
O2	0.05962 (19)	0.88908 (14)	0.50918 (19)	0.0895 (9)	
O3	0.1269 (2)	0.97245 (14)	0.5673 (2)	0.1157 (11)	
N1	0.42674 (16)	0.69242 (12)	0.57973 (16)	0.0455 (7)	
C2	0.42848 (19)	0.64777 (15)	0.51480 (19)	0.0465 (8)	
H2	0.4465	0.6611	0.4598	0.056*	
C3	0.40385 (19)	0.58199 (15)	0.52846 (19)	0.0422 (8)	
C4	0.37908 (19)	0.56351 (15)	0.61040 (19)	0.0463 (8)	
H4	0.3624	0.5197	0.6207	0.056*	
C5	0.3516 (2)	0.59151 (16)	0.7633 (2)	0.0599 (10)	
H5	0.3354	0.5478	0.7751	0.072*	
C6	0.3493 (2)	0.63777 (18)	0.8274 (2)	0.0686 (11)	
H6	0.3311	0.6257	0.8828	0.082*	
C7	0.3740 (2)	0.70292 (18)	0.8109 (2)	0.0668 (11)	
H7	0.3727	0.7338	0.8560	0.080*	
C8	0.4001 (2)	0.72291 (16)	0.7310(2)	0.0581 (9)	
H8	0.4163	0.7669	0.7211	0.070*	
C9	0.4023 (2)	0.67572 (16)	0.66336 (19)	0.0466 (8)	
C10	0.3784 (2)	0.60934 (15)	0.67883 (19)	0.0453 (8)	
C11	0.4434 (2)	0.76315 (14)	0.55781 (19)	0.0535 (9)	
H11A	0.4713	0.7658	0.5014	0.064*	
H11B	0.4831	0.7824	0.6007	0.064*	
C12	0.3584 (2)	0.80241 (15)	0.55578 (18)	0.0450 (8)	
C13	0.2813 (2)	0.77440 (15)	0.52486 (19)	0.0522 (9)	
H13	0.2809	0.7301	0.5073	0.063*	
C14	0.2046 (2)	0.81107 (16)	0.51962 (19)	0.0550 (9)	
H14	0.1530	0.7921	0.4984	0.066*	
C15	0.2066 (2)	0.87608 (16)	0.5464 (2)	0.0511 (9)	
C16	0.2812 (3)	0.90518 (17)	0.5779 (2)	0.0627 (10)	
H16	0.2806	0.9492	0.5966	0.075*	
C17	0.3573 (2)	0.86843 (15)	0.5817 (2)	0.0599 (10)	
H17	0.4089	0.8882	0.6021	0.072*	
N18	0.40495 (17)	0.53477 (12)	0.46162 (16)	0.0457 (7)	
H18	0.3957 (19)	0.4931 (13)	0.4779 (18)	0.055*	
C19	0.4050 (2)	0.54681 (17)	0.3739 (2)	0.0492 (8)	
C20	0.4012 (2)	0.48600 (18)	0.3174 (2)	0.0520 (9)	
C21	0.3658 (2)	0.42642 (19)	0.3436 (2)	0.0667 (10)	
H21	0.3428	0.4223	0.3992	0.080*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C22	0.3643 (3)	0.37257 (19)	0.2874 (3)	0.0831 (12)
H22	0.3403	0.3324	0.3055	0.100*
C23	0.3983 (3)	0.3781 (2)	0.2048 (3)	0.0891 (14)
H23	0.3975	0.3418	0.1672	0.107*
C24	0.4330 (3)	0.4374 (2)	0.1790 (2)	0.0874 (14)
H24	0.4559	0.4415	0.1234	0.105*
C25	0.4344 (2)	0.49175 (19)	0.2346 (2)	0.0700 (11)
H25	0.4577	0.5321	0.2161	0.084*
021	0 20655 (15)	-0.02685(11)	1 00566 (14)	0.0677(7)
N22	0.3601(2)	0 43286 (16)	0.93943 (18)	0.0623(8)
022	0.3301(2) 0.43183(18)	0.40720(13)	0.95183(18)	0.0023(0) 0.0851(8)
023	0.34872(18)	0.49256 (13)	0.92938(17)	0.0001(0)
N26	0.08024(15)	0.19230(13)	0.92990(17) 0.90797(14)	0.0301(5)
C27	0.00021(13) 0.07780(18)	0.19179(11) 0.14885(14)	0.97427(18)	0.0399(7)
027 Н27	0.0608	0.1643	1.0286	0.048*
C28	0.09965 (18)	0.08225(14)	0.96521 (19)	0.040 0.0387(7)
C29	0.09905(10) 0.12306(19)	0.06229(14) 0.05999(14)	0.90521(19) 0.88465(19)	0.0367(7)
U2) H20	0.12500 (17)	0.0153	0.8768	0.0409(0)
C30	0.1370 0.1490 (2)	0.0135 0.08164(17)	0.3703 0.7297(2)	0.050 0.0621(10)
H30	0.1490(2) 0.1614	0.0360	0.7297(2)	0.0021 (10)
C31	0.1528(2)	0.0309 0.12537(18)	0.7202	0.074
H31	0.1528 (2)	0.12037 (10)	0.6079	0.084*
C32	0.1348(2)	0.1104 0.10245 (18)	0.0079	0.064
U32	0.1348 (2)	0.19245 (18)	0.6703	0.0000 (11)
C33	0.1390	0.2210	0.0295 0.75568 (10)	0.085
U22	0.1111(2)	0.21021 (10)	0.75308 (19)	0.0555 (9)
C34	0.0980	0.2011 0.17144 (15)	0.7035 0.82524 (18)	0.007°
C34	0.10018(19) 0.12631(10)	0.17144(13) 0.10371(15)	0.82324(18) 0.81382(10)	0.0420(8)
C35	0.12031(19)	0.10371(13) 0.26267(13)	0.01302(19) 0.02306(18)	0.0439(8)
	0.03804 (19)	0.26207 (15)	0.92390 (18)	0.0432 (8)
П30А 1126D	0.0277	0.2003	0.9790	0.034*
П30D С27	0.0184 0.1282 (2)	0.2780 0.20700(15)	0.0764	0.034°
C37	0.1383(2)	0.30700(15)	0.92630(17)	0.0406 (8)
C38	0.2180 (2)	0.28529 (15)	0.93301 (19)	0.0498 (9)
H38 C20	0.2239	0.2389	0.9/15	0.060°
C39	0.2909 (2)	0.32433 (10)	0.93987 (19)	0.0333 (9)
H39 C40	0.3449 0.2817 (2)	0.3080	0.9791	0.064°
C40	0.2817(2)	0.38908(10) 0.41526(15)	0.95580(19)	0.0409(8)
C41	0.2032(2)	0.41320 (13)	0.90788 (19)	0.0338 (9)
П41 С42	0.1212 (2)	0.4000	0.8927	0.063
C42	0.1312(2)	0.37303 (15)	0.90255 (19)	0.0500 (9)
H42	0.07/6	0.3903	0.8829	0.060*
C43	0.1481(2)	-0.01105(16)	1.0550(2)	0.0490 (8)
N44	0.09404 (17)	0.041/6(12)	1.03937 (16)	0.0437(7)
H44	0.0575(18)	0.0505(13)	1.0/80(1/)	0.052*
C45	0.1292 (2)	-0.04973 (15)	1.1360 (2)	0.0475 (8)
C46	0.1440 (2)	-0.11/55 (17)	1.1338 (2)	0.0683 (10)
H40	0.1655	-0.13/1	1.0835	0.082*
C47	0.1271(3)	-0.15649 (19)	1.2059 (3)	0.0836 (13)

H47	0.1361	-0.2023	1.2035	0.100*	
C48	0.0972 (3)	-0.1277 (2)	1.2808 (3)	0.0844 (13)	
H48	0.0865	-0.1540	1.3294	0.101*	
C49	0.0831 (2)	-0.0606 (2)	1.2844 (2)	0.0726 (11)	
H49	0.0632	-0.0412	1.3356	0.087*	
C50	0.0984 (2)	-0.02119 (16)	1.2121 (2)	0.0587 (9)	
H50	0.0881	0.0244	1.2146	0.070*	
S1	0.35061 (6)	0.14986 (4)	0.08683 (6)	0.0579 (3)	
O4	0.39929 (14)	0.09068 (10)	0.06530 (13)	0.0613 (6)	
O5	0.39719 (15)	0.21137 (10)	0.07281 (15)	0.0781 (8)	
O6	0.25996 (16)	0.14934 (12)	0.06060 (18)	0.0973 (9)	
C51	0.3430 (3)	0.14538 (19)	0.2041 (3)	0.0859 (12)	
F1	0.4184 (6)	0.1409 (9)	0.2480 (7)	0.116 (3)	0.56 (3)
F2	0.2924 (10)	0.0910 (5)	0.2186 (10)	0.129 (3)	0.56 (3)
F3	0.2872 (10)	0.1946 (7)	0.2229 (12)	0.133 (4)	0.56 (3)
F1A	0.4226 (7)	0.1671 (10)	0.2312 (13)	0.127 (4)	0.44 (3)
F2A	0.3289 (15)	0.0856 (4)	0.2381 (9)	0.108 (4)	0.44 (3)
F3A	0.3015 (13)	0.1924 (7)	0.2490 (10)	0.099 (3)	0.44 (3)
S2	0.92877 (6)	0.15447 (4)	0.17934 (6)	0.0565 (3)	
O24	0.95479 (15)	0.09446 (11)	0.13662 (16)	0.0838 (8)	
O25	0.94245 (17)	0.21354 (10)	0.12816 (15)	0.0827 (8)	
O26	0.95282 (18)	0.15957 (13)	0.26900 (16)	0.1016 (9)	
C52	0.8106 (2)	0.14561 (15)	0.1834 (2)	0.0563 (9)	
F21	0.7755 (4)	0.1902 (3)	0.2367 (6)	0.0916 (17)	0.83 (2)
F22	0.7851 (5)	0.0871 (3)	0.2147 (5)	0.0707 (15)	0.83 (2)
F23	0.7716 (4)	0.1511 (4)	0.1065 (3)	0.0856 (16)	0.83 (2)
F21A	0.7749 (17)	0.2051 (8)	0.196 (2)	0.080 (5)	0.17 (2)
F22A	0.807 (3)	0.0919 (13)	0.234 (2)	0.081 (6)	0.17 (2)
F23A	0.800 (3)	0.1368 (16)	0.0978 (7)	0.090 (5)	0.17 (2)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0661 (16)	0.0638 (16)	0.0543 (15)	0.0036 (14)	-0.0066 (12)	0.0038 (13)
N2	0.080(3)	0.064 (2)	0.072 (2)	0.015 (2)	0.013 (2)	0.0031 (19)
O2	0.072 (2)	0.093 (2)	0.104 (2)	0.0111 (18)	0.0038 (18)	0.0070 (17)
O3	0.121 (3)	0.073 (2)	0.153 (3)	0.037 (2)	-0.005 (2)	-0.026 (2)
N1	0.0465 (17)	0.0428 (16)	0.0471 (16)	0.0001 (13)	0.0048 (14)	-0.0032 (14)
C2	0.046 (2)	0.048 (2)	0.046 (2)	0.0048 (17)	0.0087 (16)	-0.0044 (17)
C3	0.0352 (18)	0.050 (2)	0.0412 (19)	0.0054 (16)	0.0001 (16)	-0.0056 (17)
C4	0.047 (2)	0.045 (2)	0.047 (2)	0.0002 (16)	0.0000 (17)	-0.0012 (17)
C5	0.077 (3)	0.056 (2)	0.046 (2)	0.009 (2)	0.0049 (19)	0.0014 (19)
C6	0.095 (3)	0.070 (3)	0.041 (2)	0.014 (2)	0.009 (2)	-0.002 (2)
C7	0.096 (3)	0.060 (3)	0.045 (2)	0.015 (2)	-0.003 (2)	-0.0100 (19)
C8	0.069 (3)	0.055 (2)	0.051 (2)	0.0067 (19)	-0.003 (2)	-0.0096 (19)
C9	0.046 (2)	0.054 (2)	0.041 (2)	0.0075 (17)	-0.0020 (16)	-0.0048 (17)
C10	0.047 (2)	0.048 (2)	0.0413 (19)	0.0050 (17)	0.0009 (16)	-0.0039 (17)
C11	0.056 (2)	0.048 (2)	0.057 (2)	-0.0104 (18)	0.0088 (18)	-0.0081 (17)

C12	0.054 (2)	0.041 (2)	0.0406 (19)	-0.0049 (18)	0.0108 (17)	-0.0020 (15)
C13	0.065 (2)	0.039 (2)	0.053 (2)	-0.0030 (19)	-0.0014 (19)	-0.0063 (16)
C14	0.056 (2)	0.051 (2)	0.058 (2)	-0.006 (2)	-0.0022 (19)	-0.0012 (18)
C15	0.061 (2)	0.046 (2)	0.046 (2)	0.004 (2)	0.0093 (19)	0.0023 (17)
C16	0.076 (3)	0.045 (2)	0.067 (2)	0.000 (2)	0.013 (2)	-0.0120 (19)
C17	0.064 (3)	0.048 (2)	0.069 (2)	-0.010 (2)	0.009 (2)	-0.0169 (18)
N18	0.0521 (17)	0.0449 (16)	0.0403 (17)	-0.0001 (15)	0.0034 (14)	-0.0053 (15)
C19	0.0376 (19)	0.061 (2)	0.049 (2)	0.0065 (19)	-0.0018 (17)	-0.004 (2)
C20	0.046 (2)	0.070 (3)	0.040 (2)	0.014 (2)	-0.0078 (17)	-0.0092 (19)
C21	0.066 (3)	0.078 (3)	0.055 (2)	-0.006 (2)	0.000 (2)	-0.019 (2)
C22	0.086 (3)	0.081 (3)	0.083 (3)	-0.005(2)	-0.014(3)	-0.029(2)
C23	0.087 (3)	0.107 (4)	0.072 (3)	0.026 (3)	-0.023 (3)	-0.045 (3)
C24	0.092 (3)	0.122 (4)	0.049 (3)	0.027 (3)	-0.009(2)	-0.021(3)
C25	0.076 (3)	0.088 (3)	0.045 (2)	0.017 (2)	-0.004(2)	-0.003(2)
O21	0.0592 (16)	0.0751 (17)	0.0689 (16)	0.0210 (14)	0.0073 (13)	0.0066 (13)
N22	0.075 (2)	0.055 (2)	0.0571 (19)	-0.009 (2)	0.0089 (19)	-0.0023 (16)
O22	0.0620 (18)	0.082 (2)	0.112 (2)	-0.0055 (16)	-0.0009 (17)	-0.0033 (16)
O23	0.103 (2)	0.0574 (17)	0.110 (2)	-0.0216 (17)	0.0022 (17)	0.0036 (16)
N26	0.0430 (16)	0.0368 (15)	0.0381 (15)	0.0024 (12)	0.0004 (13)	-0.0012 (12)
C27	0.0421 (19)	0.044 (2)	0.0331 (17)	-0.0033 (16)	0.0004 (15)	0.0026 (16)
C28	0.0378 (18)	0.0353 (19)	0.0429 (19)	-0.0011 (15)	-0.0015 (15)	0.0035 (16)
C29	0.054 (2)	0.0348 (19)	0.052 (2)	-0.0007 (16)	-0.0025 (18)	-0.0033 (17)
C30	0.083 (3)	0.053 (2)	0.050 (2)	0.009 (2)	0.001 (2)	-0.0102 (19)
C31	0.094 (3)	0.074 (3)	0.043 (2)	0.015 (2)	0.007 (2)	-0.007 (2)
C32	0.094 (3)	0.073 (3)	0.039 (2)	0.011 (2)	0.008 (2)	0.0087 (19)
C33	0.073 (3)	0.053 (2)	0.041 (2)	0.0073 (19)	-0.0007 (19)	0.0064 (17)
C34	0.0430 (19)	0.047 (2)	0.0364 (18)	0.0009 (16)	-0.0011 (15)	-0.0009 (16)
C35	0.045 (2)	0.047 (2)	0.0404 (19)	0.0004 (17)	-0.0012 (16)	-0.0042 (17)
C36	0.051 (2)	0.0386 (19)	0.0461 (19)	0.0099 (16)	0.0063 (17)	0.0004 (15)
C37	0.050 (2)	0.041 (2)	0.0308 (17)	0.0041 (17)	0.0047 (16)	0.0014 (15)
C38	0.059 (2)	0.0348 (19)	0.055 (2)	0.0038 (18)	-0.0005 (19)	0.0087 (16)
C39	0.054 (2)	0.053 (2)	0.052 (2)	0.0070 (19)	-0.0035 (18)	0.0078 (18)
C40	0.054 (2)	0.046 (2)	0.0403 (19)	-0.0052 (19)	0.0021 (17)	0.0006 (16)
C41	0.065 (2)	0.038 (2)	0.058 (2)	0.002 (2)	0.008 (2)	0.0099 (17)
C42	0.055 (2)	0.044 (2)	0.052 (2)	0.0122 (18)	-0.0015 (18)	0.0088 (16)
C43	0.042 (2)	0.050(2)	0.055 (2)	-0.0022 (18)	-0.0071 (18)	0.0008 (18)
N44	0.0464 (17)	0.0386 (16)	0.0460 (17)	0.0048 (14)	0.0057 (13)	0.0049 (14)
C45	0.042 (2)	0.041 (2)	0.059 (2)	-0.0010 (16)	-0.0108 (17)	0.0125 (18)
C46	0.071 (3)	0.047 (2)	0.086 (3)	0.004 (2)	-0.007 (2)	0.009 (2)
C47	0.085 (3)	0.049 (2)	0.116 (4)	-0.010 (2)	-0.028 (3)	0.031 (3)
C48	0.082 (3)	0.088 (4)	0.083 (3)	-0.024 (3)	-0.024 (3)	0.035 (3)
C49	0.078 (3)	0.079 (3)	0.060 (3)	-0.010 (2)	-0.012 (2)	0.015 (2)
C50	0.069 (3)	0.051 (2)	0.056 (2)	-0.0022 (19)	-0.012 (2)	0.0121 (19)
S1	0.0589 (6)	0.0519 (6)	0.0629 (6)	0.0021 (5)	0.0004 (5)	0.0137 (5)
04	0.0767 (17)	0.0447 (14)	0.0624 (14)	0.0070 (13)	0.0043 (13)	-0.0032 (11)
05	0.0778 (18)	0.0469 (15)	0.110 (2)	-0.0095 (13)	0.0207 (15)	0.0183 (13)
06	0.0554 (17)	0.094 (2)	0.142 (2)	-0.0019 (16)	-0.0331 (17)	0.0289 (18)
C51	0.097 (3)	0.084 (3)	0.078 (3)	0.030 (2)	0.031 (2)	0.015 (2)

F1	0.149 (4)	0.152 (8)	0.047 (3)	0.048 (4)	-0.006 (3)	0.021 (4)
F2	0.148 (7)	0.122 (4)	0.120 (7)	0.011 (4)	0.062 (5)	0.064 (4)
F3	0.159 (6)	0.144 (4)	0.097 (8)	0.079 (4)	0.046 (6)	-0.011 (5)
F1A	0.132 (4)	0.150 (9)	0.098 (8)	0.025 (4)	-0.027 (5)	-0.011 (6)
F2A	0.183 (9)	0.088 (4)	0.053 (5)	0.042 (4)	0.021 (6)	0.033 (3)
F3A	0.150 (6)	0.100 (4)	0.047 (5)	0.040 (5)	0.026 (5)	0.006 (4)
S2	0.0512 (6)	0.0511 (6)	0.0671 (6)	-0.0032 (5)	0.0020 (5)	-0.0055 (5)
O24	0.0663 (17)	0.0554 (15)	0.130 (2)	0.0093 (13)	0.0378 (16)	-0.0202 (15)
O25	0.097 (2)	0.0514 (15)	0.1002 (19)	-0.0166 (14)	0.0260 (16)	0.0076 (14)
O26	0.098 (2)	0.131 (2)	0.0753 (19)	-0.0293 (19)	-0.0394 (16)	0.0004 (17)
C52	0.058 (2)	0.050 (2)	0.060 (2)	0.0106 (19)	0.0017 (19)	-0.0027 (18)
F21	0.088 (2)	0.075 (2)	0.112 (4)	0.0202 (19)	0.040 (3)	-0.014 (3)
F22	0.054 (3)	0.0696 (18)	0.089 (3)	-0.0102 (18)	0.002 (2)	0.015 (2)
F23	0.056 (3)	0.113 (4)	0.0874 (19)	0.013 (2)	-0.0224 (19)	0.0210 (19)
F21A	0.059 (8)	0.079 (6)	0.102 (10)	0.035 (7)	0.002 (9)	-0.008 (6)
F22A	0.073 (13)	0.068 (7)	0.103 (10)	-0.022 (8)	0.014 (10)	0.017 (7)
F23A	0.086 (13)	0.105 (10)	0.079 (5)	0.037 (10)	-0.053 (8)	-0.019 (6)

Geometric parameters (Å, °)

01—C19	1.222 (3)	C28—N44	1.403 (3)
N2—O3	1.217 (3)	C29—C35	1.400 (4)
N2—O2	1.218 (4)	С29—Н29	0.9300
N2—C15	1.478 (4)	C30—C31	1.351 (4)
N1—C2	1.342 (3)	C30—C35	1.412 (4)
N1—C9	1.383 (3)	С30—Н30	0.9300
N1—C11	1.482 (3)	C31—C32	1.389 (4)
C2—C3	1.390 (4)	С31—Н31	0.9300
С2—Н2	0.9300	C32—C33	1.366 (4)
C3—C4	1.369 (4)	С32—Н32	0.9300
C3—N18	1.398 (3)	C33—C34	1.399 (4)
C4—C10	1.397 (4)	С33—Н33	0.9300
C4—H4	0.9300	C34—C35	1.405 (4)
C5—C6	1.355 (4)	C36—C37	1.511 (4)
C5—C10	1.411 (4)	С36—Н36А	0.9700
С5—Н5	0.9300	С36—Н36В	0.9700
C6—C7	1.385 (4)	C37—C38	1.380 (4)
С6—Н6	0.9300	C37—C42	1.391 (4)
C7—C8	1.355 (4)	C38—C39	1.376 (4)
С7—Н7	0.9300	С38—Н38	0.9300
C8—C9	1.408 (4)	C39—C40	1.370 (4)
С8—Н8	0.9300	С39—Н39	0.9300
C9—C10	1.402 (4)	C40—C41	1.366 (4)
C11—C12	1.516 (4)	C41—C42	1.380 (4)
C11—H11A	0.9700	C41—H41	0.9300
C11—H11B	0.9700	C42—H42	0.9300
C12—C13	1.381 (4)	C43—N44	1.362 (4)
C12—C17	1.385 (4)	C43—C45	1.497 (4)

C13—C14	1.381 (4)	N44—H44	0.87 (2)
С13—Н13	0.9300	C45—C46	1.381 (4)
C14—C15	1.369 (4)	C45—C50	1.387 (4)
C14—H14	0.9300	C46—C47	1.381 (5)
C15—C16	1.362 (4)	C46—H46	0.9300
C16—C17	1.374 (4)	C47—C48	1.370 (5)
С16—Н16	0.9300	С47—Н47	0.9300
С17—Н17	0.9300	C48—C49	1.366 (5)
N18—C19	1.369 (4)	C48—H48	0.9300
N18—H18	0.88 (3)	C49—C50	1.385 (4)
C19-C20	1 499 (4)	C49—H49	0.9300
C_{20} C_{21}	1 374 (4)	C50—H50	0.9300
C_{20} C_{25}	1 378 (4)	\$106	1434(2)
C_{21} C_{22}	1 383 (4)	S1-00 S1-04	1.131(2) 1 441(2)
C21—H21	0.9300	\$1—05	1.111(2) 1 441(2)
C^{22} C^{23}	1 380 (5)	S1	1.111(2) 1.809(4)
C22_023	0.9300	C51_F2A	1.005(4) 1.326(7)
$C_{22} = 1122$	1 364 (5)	C51_F1	1.328 (6)
C23_H23	0.9300	C_{51} F_{3A}	1.320(0) 1.332(7)
$C_{23} = 1123$	1 386 (5)	C51_F3	1.332(7) 1.337(6)
$C_{24} = C_{23}$	0.9300	C_{51} F_{13}	1.357(0) 1.350(7)
C_{25} H25	0.9300	C_{51} F	1.355 (6)
021 - C43	1 217 (3)	S2-026	1.335(0) 1 426(2)
N22-022	1 221 (3)	\$2-020 \$2-024	1.120(2) 1.430(2)
N22-022	1 221 (3)	S2-021	1.130(2) 1 439(2)
N22-C40	1 475 (4)	S2-023 S2	1.139(2) 1.809(4)
N26-C27	1 335 (3)	C52—F23	1.321 (4)
N26-C34	1 396 (3)	C52—F21A	1.329 (8)
N26-C36	1 484 (3)	C52—F22A	1.329 (8)
C_{27} C_{28}	1 386 (4)	C52—F22	1.329(0) 1.330(4)
C27—H27	0.9300	C52—F21	1.330(4)
C_{28} C_{29}	1 366 (4)	C52—F23A	1.335 (8)
020 029	1.500(1)	002 12011	1.555 (0)
03—N2—O2	124.2 (4)	C30—C31—C32	120.8 (3)
O3—N2—C15	117.5 (4)	C30—C31—H31	119.6
O2—N2—C15	118.3 (3)	С32—С31—Н31	119.6
C2—N1—C9	122.4 (3)	C33—C32—C31	121.4 (3)
C2—N1—C11	117.8 (2)	С33—С32—Н32	119.3
C9—N1—C11	119.5 (2)	С31—С32—Н32	119.3
N1—C2—C3	121.0 (3)	C32—C33—C34	118.5 (3)
N1—C2—H2	119.5	С32—С33—Н33	120.7
С3—С2—Н2	119.5	С34—С33—Н33	120.7
C4—C3—C2	118.3 (3)	N26—C34—C33	121.7 (3)
C4—C3—N18	119.8 (3)	N26—C34—C35	117.5 (3)
C2—C3—N18	121.9 (3)	C33—C34—C35	120.9 (3)
C3—C4—C10	121.2 (3)	C29—C35—C34	120.0 (3)
С3—С4—Н4	119.4	C29—C35—C30	121.7 (3)
C10—C4—H4	119.4	C34—C35—C30	118.3 (3)

C6—C5—C10	120.3 (3)	N26—C36—C37	112.6 (2)
С6—С5—Н5	119.8	N26—C36—H36A	109.1
С10—С5—Н5	119.8	С37—С36—Н36А	109.1
C5—C6—C7	120.4 (3)	N26—C36—H36B	109.1
С5—С6—Н6	119.8	C37—C36—H36B	109.1
С7—С6—Н6	119.8	H36A—C36—H36B	107.8
C8—C7—C6	121.9 (3)	C_{38} — C_{37} — C_{42}	118.8 (3)
C8—C7—H7	119.0	$C_{38} - C_{37} - C_{36}$	1211(3)
C6-C7-H7	119.0	C42 - C37 - C36	121.1(3) 1200(3)
C7 - C8 - C9	118.6 (3)	C_{39} C_{38} C_{37}	120.0(3) 121.1(3)
$C_7 C_8 H_8$	120.7	C_{30} C_{38} H_{38}	121.1 (5)
$C_{1} = C_{0} = C_{0}$	120.7	$C_{37} = C_{38} = H_{38}$	119.5
$C_{2} = C_{0} = C_{10}$	120.7 117.4(2)	$C_{3}/-C_{3}0$	117.3 119.7(2)
NI = C9 = C10	117.4 (5)	C40 - C39 - C38	118.7 (5)
NI	122.1 (3)	C40—C39—H39	120.7
C10_C9_C8	120.5 (3)	C38—C39—H39	120.7
C4—C10—C9	119.7 (3)	C41—C40—C39	122.1 (3)
C4—C10—C5	122.0 (3)	C41—C40—N22	119.7 (3)
C9—C10—C5	118.3 (3)	C39—C40—N22	118.2 (3)
N1-C11-C12	110.8 (2)	C40—C41—C42	118.8 (3)
N1-C11-H11A	109.5	C40—C41—H41	120.6
C12—C11—H11A	109.5	C42—C41—H41	120.6
N1-C11-H11B	109.5	C41—C42—C37	120.5 (3)
C12—C11—H11B	109.5	C41—C42—H42	119.7
H11A—C11—H11B	108.1	C37—C42—H42	119.7
C13—C12—C17	118.5 (3)	O21—C43—N44	122.5 (3)
C13—C12—C11	121.2 (3)	O21—C43—C45	122.0 (3)
C17—C12—C11	120.3(3)	N44—C43—C45	1155(3)
C_{14} C_{13} C_{12}	120.0(0) 121.1(3)	C43 - N44 - C28	123.6 (3)
C_{14} C_{13} H_{13}	119.4	C43—N44—H44	123.0(3) 122.2(19)
C12_C13_H13	119.4	C_{13} N_{14} H_{14} C_{28} N_{14} H_{14}	122.2(1)) 113.7(10)
C_{12} C_{13} C_{13}	119.4	C_{20} C_{45} C_{50}	119.7(19) 110.0(3)
$C_{15} = C_{14} = C_{15}$	110.4 (5)	$C_{40} - C_{45} - C_{50}$	117.0(3)
C_{13} C_{14} H_{14}	120.8	$C_{40} - C_{43} - C_{43}$	117.3(3) 122.7(2)
C13 - C14 - H14	120.0	$C_{30} - C_{43} - C_{43}$	123.7(3)
C16 - C15 - C14	122.1(3)	C47 - C40 - C43	120.5 (4)
C16-C15-N2	119.5 (3)	C4/-C46-H46	119.8
C14—C15—N2	118.4 (4)	C45—C46—H46	119.8
C15—C16—C17	119.0 (3)	C48—C47—C46	120.0 (4)
C15—C16—H16	120.5	C48—C47—H47	120.0
C17—C16—H16	120.5	C46—C47—H47	120.0
C16—C17—C12	120.9 (3)	C49—C48—C47	120.2 (4)
C16—C17—H17	119.5	C49—C48—H48	119.9
C12—C17—H17	119.5	C47—C48—H48	119.9
C19—N18—C3	127.1 (3)	C48—C49—C50	120.2 (4)
C19—N18—H18	116.6 (19)	C48—C49—H49	119.9
C3—N18—H18	115.5 (18)	С50—С49—Н49	119.9
O1-C19-N18	122.4 (3)	C49—C50—C45	120.1 (3)
O1—C19—C20	122.3 (3)	C49—C50—H50	120.0
N18—C19—C20	115.2 (3)	C45—C50—H50	120.0
	× /		

C21—C20—C25	119.4 (3)	O6—S1—O4	115.16 (15)
C21—C20—C19	123.6 (3)	O6—S1—O5	115.95 (15)
C25—C20—C19	117.0 (3)	O4—S1—O5	114.69 (13)
C20—C21—C22	120.2 (3)	O6—S1—C51	102.08 (18)
C20—C21—H21	119.9	O4—S1—C51	103.03 (15)
C22—C21—H21	119.9	O5—S1—C51	103.16 (17)
C23—C22—C21	120.4 (4)	F2A—C51—F3A	111.0 (11)
С23—С22—Н22	119.8	F1—C51—F3	119.1 (14)
C21—C22—H22	119.8	F2A—C51—F1A	108.6 (8)
C24—C23—C22	119.1 (4)	F3A—C51—F1A	92.3 (13)
С24—С23—Н23	120.4	F1—C51—F2	110.5 (6)
С22—С23—Н23	120.4	F3—C51—F2	101.4 (10)
C23—C24—C25	120.8 (4)	F2A—C51—S1	116.7 (7)
C23—C24—H24	119.6	F1—C51—S1	116.5 (6)
C25—C24—H24	119.6	F3A—C51—S1	121.0 (8)
C20—C25—C24	120.0 (4)	F3—C51—S1	103.0 (8)
С20—С25—Н25	120.0	F1A-C51-S1	103.0 (9)
С24—С25—Н25	120.0	F2—C51—S1	104.3 (7)
O22—N22—O23	124.0 (3)	O26—S2—O24	115.75 (17)
O22—N22—C40	118.6 (3)	O26—S2—O25	115.56 (16)
O23—N22—C40	117.3 (3)	O24—S2—O25	113.67 (14)
C27—N26—C34	121.0 (2)	O26—S2—C52	102.72 (16)
C27—N26—C36	119.0 (2)	O24—S2—C52	102.28 (14)
C34—N26—C36	119.9 (2)	O25—S2—C52	104.40 (16)
N26—C27—C28	122.6 (3)	F21A—C52—F22A	128 (3)
N26—C27—H27	118.7	F23—C52—F22	105.5 (5)
С28—С27—Н27	118.7	F23—C52—F21	108.4 (4)
C29—C28—C27	118.1 (3)	F22—C52—F21	104.6 (5)
C29—C28—N44	124.4 (3)	F21A—C52—F23A	102.8 (15)
C27—C28—N44	117.5 (3)	F22A—C52—F23A	117 (2)
C28—C29—C35	120.7 (3)	F23—C52—S2	113.6 (4)
С28—С29—Н29	119.6	F21A—C52—S2	108.9 (13)
С35—С29—Н29	119.6	F22A—C52—S2	98.7 (18)
C31—C30—C35	120.2 (3)	F22—C52—S2	113.1 (4)
С31—С30—Н30	119.9	F21—C52—S2	111.1 (3)
С35—С30—Н30	119.9	F23A—C52—S2	95.3 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N18—H18…O4 ⁱ	0.88 (3)	2.15 (3)	2.982 (3)	156 (3)
N44—H44…O24 ⁱⁱ	0.87 (2)	1.97 (3)	2.811 (3)	164 (3)

Symmetry codes: (i) *x*, –*y*+1/2, *z*+1/2; (ii) *x*–1, *y*, *z*+1.