

Received 25 February 2016 Accepted 26 March 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; purine-6(9*H*)-one; 2'-deoxyguanosine; deoxy-D-ribofuranose; glycosidic linkage; nucleobase; hydrogen bonding.

CCDC reference: 1448235

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of a nucleoside model for the interstrand cross-link formed by the reaction of 2'-deoxyguanosine and an abasic site in duplex DNA

Michael J. Catalano, Kasi Viswanatharaju Ruddraraju, Charles L. Barnes and Kent S. Gates*

125 Chemistry Bldg, University of Missouri-Columbia, MO 65211, USA. *Correspondence e-mail: gatesk@missouri.edu

The title compound, 9-[(2*R*,4*S*,5*R*)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl]-2-{[(2*R*,4*S*,5*R*)-4-methoxy-5-(methoxymethyl)tetrahydrofuran-2-yl]amino}-1*H*-purin-6(9*H*)-one, $C_{17}H_{25}N_5O_7$, crystallizes with two independent molecules (*A* and *B*) in the asymmetric unit. In the crystal, the guanosine moieties of molecules *A* and *B* are linked by N-H···N and O-H···N hydrogen-bonding interactions, forming ribbons which are stacked to form columns along [100]. These columns are then linked by O-H···O hydrogen bonds between the ribose moieties and numerous C-H···O interactions to complete the three-dimensional structure.

1. Chemical context

Recent work has characterized a structurally novel set of interstrand DNA-DNA cross-links involving reaction of the ubiquitous DNA abasic lesion with a nucleobase on the opposing strand of the double helix (Catalano et al., 2015; Dutta et al., 2007; Gamboa Varela & Gates, 2015; Johnson et al., 2013; Price et al., 2014, 2015; Yang et al., 2015; Zhang et al., 2015). Evidence indicates that the covalent attachment is forged between the anomeric carbon of the abasic sugar and the exocyclic amino group of either a guanine, adenine, or N^4 aminocytosine residue (Catalano et al., 2015; Dutta et al., 2007; Gamboa Varela & Gates, 2015; Johnson et al., 2013; Price et al., 2014, 2015; Yang et al., 2015). This type of glycosidic linkage involving the exocyclic amino group of a nucleobase is reminiscent of that found in the natural products anicemycin, spicamycin, and septacidin (Acton et al., 1977; Igarashi et al., 2005; Suzuki et al., 2002).

Here we present single crystal X-ray crystallographic analysis of a nucleoside analog, (I), of the 2'-deoxyguanosine/ abasic site cross-link. This structure corroborates an earlier two-dimensional NMR analysis (Catalano *et al.*, 2015)

Figure 1 The molecular structure of (I) showing 50% displacement ellipsoids.

concluding that the 2-deoxyribose unit attached at the exocyclic N^2 -amino group of the guanine residue exists in the cyclic aminoglycoside form.

Figure 2 Overlay plot of the two molecules in (I). A molecule in orange and B molecule in blue.

2. Structural commentary

The two independent molecules (A and B) of (I) are shown in Fig. 1 as they are oriented in the crystal, while Fig. 2 shows an overlay to illustrate the differences in orientation and conformation of the furanose rings. Ring puckering analysis, after Cremer & Pople as calculated using PLATON (Spek, 2009) indicates the furanose rings attached to N4 positions in the two molecules to be half-chairs in both molecules, but with the maximum variance from planarity occurring between C7 and C8 in molecule A and C6 and C7 in molecule B[Q(2) = $0.367(2), \Phi(2) = 88.0(4)^{\circ}$ for molecule A and Q(2) =0.347 (2), $\Phi(2) = 60.6$ (4)° for molecule B]. The disposition of these furanose rings relative to the purine rings can be described by the torsion angle C2-N4-C6-O2, which is 70.9 (3)° in molecule A and 61.7 (3)° in molecule B. The furanose ring attached to the N5 position in molecule A is again a half-chair, with the maximum deviation from planarity between C11A and C12A $[Q(2) = 3.41 (2), \Phi(2) = 62.2 (3)^{\circ}],$ while this furanose ring in molecule B is an envelope with C11B at the flap $[Q(2) = 0.422 (2), \Phi(2) = 45.4 (3)^{\circ}]$. The disposition of these furanose rings relative to the purine rings can be described by the angle C1-N5-C11-O5, which is $-87.4 (2)^{\circ}$ in molecule A and $-93.7 (2)^{\circ}$ in molecule B.

3. Supramolecular features

In the crystal, the two molecules form infinite ribbons along the a-c diagonal of the unit cell, with the A molecules on one

research communications

Table 1	
Hydrogen-bond	geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$N1A - H1A \cdots N3B$	0.88	1.92	2.789 (2)	170
$O3A - H3A \cdots O5A^{i}$	0.84	2.07	2.897 (2)	167
$O4A - H4A \cdots O3B^{ii}$	0.84	2.01	2.847 (2)	178
$N5A - H5A \cdots O1B$	0.88	2.23	3.058 (2)	157
$C5A - H5A1 \cdots O1B^{iii}$	0.95	2.63	3.284 (3)	126
$C7A - H7A1 \cdots N2A$	0.99	2.46	3.172 (3)	128
$C8A - H8A \cdots O7A^{i}$	1.00	2.39	3.316 (3)	153
$C12A - H12A \cdots O1A^{iv}$	0.99	2.61	3.432 (3)	141
$C12A - H12B \cdots O1B$	0.99	2.55	3.426 (3)	147
$C16A - H16A \cdots O4A^{v}$	0.98	2.47	3.401 (3)	158
$C16A - H16B \cdots O6A^{v}$	0.98	2.54	3.222 (3)	127
$C16A - H16C \cdots O2A^{vi}$	0.98	2.50	3.356 (3)	146
$C17A - H17A \cdots O3A^{vi}$	0.98	2.65	3.610 (3)	168
$C17A - H17B \cdots O2A^{iv}$	0.98	2.60	3.573 (3)	175
$N1B-H1B\cdots N3A^{vi}$	0.88	1.94	2.808 (2)	166
$O3B - H3B \cdot \cdot \cdot O5B^{vii}$	0.84	1.99	2.817 (2)	169
$O4B - H4B \cdot \cdot \cdot N2B$	0.84	2.38	3.180 (3)	158
$N5B-H5B\cdotsO1A^{vi}$	0.88	2.19	3.027 (2)	159
$C5B-H5B1\cdots O1A$	0.95	2.60	3.269 (3)	127
$C8B - H8B \cdots O7B^{vii}$	1.00	2.49	3.363 (3)	146
$C11B - H11B \cdots O4B$	1.00	2.59	3.251 (3)	124
$C12B - H12C \cdots O1A^{vi}$	0.99	2.55	3.363 (3)	140
$C12B - H12D \cdots O1B^{v}$	0.99	2.45	3.424 (3)	167
$C14B - H14B \cdots O4B$	1.00	2.61	3.272 (3)	123
$C17B - H17E \cdots O2B^{v}$	0.98	2.48	3.456 (3)	176

Symmetry codes: (i) x - 1, y, z; (ii) $-x + 1, y + \frac{1}{2}, -z$; (iii) x - 1, y, z - 1; (iv) x, y, z + 1; (v) x + 1, y, z; (vi) x + 1, y, z + 1; (vii) x, y, z - 1.

side of the ribbon and the B molecules on the other. The molecules are staggered such that each A molecule forms hydrogen bonds to two B molecules and each B molecule

forms hydrogen bonds (Table 1) to two A molecules, fully involving the N1, N3, N5 and O1 atoms. These ribbons are then stacked to form slabs propagating in the *ac* plane and one half the *b* dimension in thickness. The deoxyribose moieties occupy the outsides of these slabs and are linked *via* hydrogen bonds to twofold screw-related slabs, resulting in a herringbone pattern in the three-dimensional structure as seen in Fig. 3.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.36, update February 2015; Groom & Allen, 2014) for deoxyguanosine analogues with exocyclic amine substitution revealed three crystal structures (Morr *et al.*, 1991; Fujino *et al.*, 2010). In all these crystal structures, the five-membered 2-deoxyribofuranose rings have envelope conformations, as in the title compound.

5. Synthesis and crystallization

2'-Deoxyguanosine (199 mg, 0.75 mmol) and 3,5-bis-*O*-methyl-2-deoxy-D-ribofuranose (110 mg, 0.74 mmol) were dissolved in 0.8 ml of a 3:1 mixture of DMSO and 25 m*M* sodium phosphate buffer (pH 7.0) in a round-bottom flask. The flask was heated to 333 K and the mixture stirred for 22 h. The solvent removed *in vacuo* and the product purified by column chromatography on silica gel eluted with 0–15% methanol in dichloromethane ($R_f = 0.30$, 15% methanol/di-

The packing in (I) along the c axis showing the formation of hydrogen-bonded chains (A molecules green, B molecules blue).

chloromethane) to yield 36 mg (12% yield) of the title compound as a colorless oil. The precursor 3,5-bis-O-methyl-2-deoxy-D-ribofuranose was synthesized according to previously reported procedures (Deriaz et al., 1949; Olsson et al., 1998). The title compound was crystallized by vapour diffusion, a 2 ml vial containing the title compound in methanol being placed in a 20 ml vial containing hexanes at room temperature for several days.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were placed geometrically (C-H = 0.95 or 0.98 Å) and refined as riding with $U_{iso}(H) =$ $1.2U_{eq}(C).$

References

- Acton, E. M., Ryan, K. J. & Luetzow, A. E. (1977). J. Med. Chem. 20, 1362-1371.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Catalano, M. J., Liu, S., Andersen, N., Yang, Z., Johnson, K. M., Price, N. A., Wang, Y. & Gates, K. S. (2015). J. Am. Chem. Soc. 137, 3933-3945
- Deriaz, R. E., Overend, W. G., Stacey, M. & Wiggins, L. F. (1949). J. Chem. Soc. pp. 2836-2841.
- Dutta, S., Chowdhury, G. & Gates, K. S. (2007). J. Am. Chem. Soc. 129, 1852-1853.
- Fujino, T., Tsunaka, N., Guillot-Nieckowski, M., Nakanishi, W., Iwamoto, T., Nakamura, E. & Isobe, H. (2010). Tetrahedron Lett. 51, 2036-2038.
- Gamboa Varela, J. & Gates, K. S. (2015). Angew. Chem. Int. Ed. 54, 7666-7669.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.
- Igarashi, Y., Ootsu, K., Onaka, H., Fujita, T., Uehara, Y. & Furumai, T. (2005). J. Antibiot. 58, 322-326.
- Johnson, K. M., Price, N. E., Wang, J., Fekry, M. I., Dutta, S., Seiner, D. R., Wang, Y. & Gates, K. S. (2013). J. Am. Chem. Soc. 135, 1015-1025.
- Morr, M., Ernst, L. & Schomburg, D. (1991). Liebigs Ann. Chem. 1991. 615-631.
- Olsson, R., Rundström, P. & Frejd, T. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 785-790.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.

Table 2	
Experimental	details.

Crystal data	
Chemical formula	C ₁₇ H ₂₅ N ₅ O ₇
M _r	411.42
Crystal system, space group	Monoclinic, P2 ₁
Temperature (K)	100
a, b, c (Å)	8.1817 (1), 26.4033 (5), 8.8800 (2)
β (°)	98.023 (1)
$V(Å^3)$	1899.52 (6)
Ζ	4
Radiation type	Cu Ka
$\mu \text{ (mm}^{-1})$	0.96
Crystal size (mm)	$0.15 \times 0.08 \times 0.08$
Data collection	
Diffractometer	Bruker APEXII CCD
Absorption correction	Multi-scan (<i>SADABS</i> ; Sheldrick, 2008)
T_{\min}, T_{\max}	0.86, 0.93
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	26696, 6862, 6644
R _{int}	0.029
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.617
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.027, 0.072, 1.04
No. of reflections	6862
No. of parameters	531
No. of restraints	1
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.23, -0.17
Absolute structure	Flack x determined using 2923 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et al., 2013)
Absolute structure parameter	0.08 (5)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS2013 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), X-SEED, Barbour, 2001, CIFTAB (Sheldrick, 2008).

- Price, N. E., Catalano, M. J., Liu, S., Wang, Y. & Gates, K. S. (2015). Nucleic Acids Res. 43, 3434-3441.
- Price, N. E., Johnson, K. M., Wang, J., Fekry, M. I., Wang, Y. & Gates, K. S. (2014). J. Am. Chem. Soc. 136, 3483-3490.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Suzuki, T., Suzuki, S. T., Yamada, I., Koashi, Y., Yamada, K. & Chida, N. (2002). J. Org. Chem. 67, 2874-2880.
- Yang, Z., Price, N. E., Johnson, K. M. & Gates, K. S. (2015). Biochemistry, 54, 4259-4266.
- Zhang, X., Price, N. E., Fang, X., Yang, Z., Gu, L. Q. & Gates, K. S. (2015). ACS Nano, 9, 11812-11819.

Acta Cryst. (2016). E72, 624-627 [doi:10.1107/S205698901600517X]

Crystal structure of a nucleoside model for the interstrand cross-link formed by the reaction of 2'-deoxyguanosine and an abasic site in duplex DNA

Michael J. Catalano, Kasi Viswanatharaju Ruddraraju, Charles L. Barnes and Kent S. Gates

Computing details

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SHELXS2013* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2015); molecular graphics: *X-SEED*, Barbour, 2001; software used to prepare material for publication: *CIFTAB* (Sheldrick, 2008).

9-[(2*R*,4*S*,5*R*)-4-Hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl]-2-{[(2*R*,4*S*,5*R*)-4methoxy-5-(methoxymethyl)tetrahydrofuran-2-yl]amino}-1*H*-purin-6(9*H*)-one

Crystal data

 $C_{17}H_{25}N_5O_7$ $M_r = 411.42$ Monoclinic, P2₁ a = 8.1817 (1) Å b = 26.4033 (5) Å c = 8.8800 (2) Å $\beta = 98.023$ (1)° V = 1899.52 (6) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer Radiation source: Incoatec micro focus Cu tube ω and phi scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2008) $T_{\min} = 0.86, T_{\max} = 0.93$ 26696 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.072$ S = 1.046862 reflections 531 parameters 1 restraint F(000) = 872 $D_x = 1.439 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 9940 reflections $\theta = 5.3-72.2^{\circ}$ $\mu = 0.96 \text{ mm}^{-1}$ T = 100 KPrism, colourless $0.15 \times 0.08 \times 0.08 \text{ mm}$

6862 independent reflections 6644 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{max} = 72.2^{\circ}, \ \theta_{min} = 3.4^{\circ}$ $h = -10 \rightarrow 10$ $k = -31 \rightarrow 31$ $l = -9 \rightarrow 10$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0424P)^2 + 0.3476P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.23$ e Å⁻³ $\Delta\rho_{min} = -0.17$ e Å⁻³ Absolute structure: Flack *x* determined using 2923 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et al., 2013) Absolute structure parameter: 0.08 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01A	0.34576 (17)	0.46915 (6)	-0.12995 (17)	0.0168 (3)
N1A	0.3499 (2)	0.50765 (6)	0.1022 (2)	0.0146 (3)
H1A	0.4493	0.4955	0.1317	0.017*
C1A	0.2806 (2)	0.53738 (8)	0.2030 (2)	0.0140 (4)
O2A	-0.1409 (2)	0.64849 (6)	0.01984 (18)	0.0223 (3)
N2A	0.1339 (2)	0.55894 (7)	0.1729 (2)	0.0155 (4)
C2A	0.0560 (3)	0.54690 (8)	0.0330 (2)	0.0150 (4)
O3A	-0.44313 (19)	0.65756 (6)	0.18573 (19)	0.0221 (3)
H3A	-0.5051	0.6460	0.2454	0.027*
N3A	-0.0017 (2)	0.51309 (7)	-0.2041 (2)	0.0170 (4)
C3A	0.1129 (2)	0.51624 (8)	-0.0744 (2)	0.0148 (4)
O4A	0.0015 (2)	0.72195 (6)	0.3635 (2)	0.0298 (4)
H4A	-0.0253	0.7501	0.3235	0.036*
N4A	-0.0978 (2)	0.56295 (7)	-0.0324 (2)	0.0177 (4)
C4A	0.2740 (2)	0.49535 (7)	-0.0439 (2)	0.0138 (4)
O5A	0.37552 (18)	0.62783 (6)	0.42933 (16)	0.0176 (3)
N5A	0.3711 (2)	0.54372 (7)	0.3418 (2)	0.0163 (4)
H5A	0.4647	0.5272	0.3642	0.020*
C5A	-0.1246 (3)	0.54152 (8)	-0.1750 (2)	0.0192 (4)
H5A1	-0.2220	0.5468	-0.2449	0.023*
06A	0.23353 (18)	0.61868 (6)	0.75564 (18)	0.0227 (3)
C6A	-0.2089 (3)	0.59897 (8)	0.0258 (3)	0.0185 (4)
H6A	-0.3179	0.5980	-0.0410	0.022*
O7A	0.69231 (18)	0.63615 (6)	0.60640 (19)	0.0221 (3)
C7A	-0.2373 (3)	0.59060 (8)	0.1890 (3)	0.0184 (4)
H7A1	-0.1372	0.5770	0.2514	0.022*
H7A2	-0.3309	0.5673	0.1948	0.022*
C8A	-0.2764 (3)	0.64379 (8)	0.2388 (2)	0.0182 (4)
H8A	-0.2507	0.6476	0.3516	0.022*
C9A	-0.1612 (3)	0.67599 (8)	0.1574 (2)	0.0189 (4)
H9A	-0.2152	0.7093	0.1293	0.023*
C10A	0.0085 (3)	0.68527 (9)	0.2482 (3)	0.0245 (5)
H10A	0.0518	0.6531	0.2951	0.029*
H10B	0.0853	0.6970	0.1787	0.029*
C11A	0.3171 (2)	0.57690 (8)	0.4527 (2)	0.0156 (4)

H11A	0.1938	0.5767	0.4429	0.019*
C12A	0.3901 (3)	0.56396 (8)	0.6145 (2)	0.0182 (4)
H12A	0.3228	0.5381	0.6581	0.022*
H12B	0.5045	0.5513	0.6190	0.022*
C13A	0.3861 (2)	0.61397 (8)	0.6978 (2)	0.0167 (4)
H13A	0.4804	0.6161	0.7823	0.020*
C14A	0.4064 (3)	0.65359 (8)	0.5738 (2)	0.0175 (4)
H14A	0.3230	0.6811	0.5769	0.021*
C15A	0.5775 (3)	0.67638 (9)	0.5938 (3)	0.0218 (4)
H15A	0.5917	0.6979	0.5053	0.026*
H15B	0.5947	0.6976	0.6866	0.026*
C16A	0.8590 (3)	0.65335 (11)	0.6422 (3)	0.0301 (5)
H16A	0.8799	0.6802	0.5711	0.045*
H16B	0.9346	0.6250	0.6338	0.045*
H16C	0.8766	0.6666	0.7463	0.045*
C17A	0.2364 (3)	0.65893 (11)	0.8622 (3)	0.0289 (5)
H17A	0.3324	0.6551	0.9407	0.043*
H17B	0.1352	0.6581	0.9096	0.043*
H17C	0.2435	0.6913	0.8097	0.043*
O1B	0.72354 (17)	0.51384 (5)	0.47267 (17)	0.0168 (3)
N1B	0.9716 (2)	0.47201 (6)	0.50184 (19)	0.0139 (3)
H1B	0.9971	0.4855	0.5927	0.017*
C1B	1.0833 (2)	0.43911 (7)	0.4530 (2)	0.0136 (4)
O2B	0.9310 (2)	0.32766 (6)	0.07593 (19)	0.0219 (3)
N2B	1.0610 (2)	0.41620 (6)	0.3193 (2)	0.0153 (4)
C2B	0.9168 (3)	0.42949 (8)	0.2340 (2)	0.0150 (4)
O3B	1.09413 (19)	0.31769 (6)	-0.23244 (18)	0.0220 (3)
H3B	1.1571	0.3306	-0.2890	0.026*
N3B	0.6634 (2)	0.46447 (7)	0.1606 (2)	0.0188 (4)
C3B	0.7979 (2)	0.46230 (8)	0.2729 (2)	0.0159 (4)
O4B	1.2568 (3)	0.31747 (9)	0.2436 (2)	0.0452 (5)
H4B	1.1920	0.3377	0.2779	0.054*
N4B	0.8528 (2)	0.41146 (7)	0.0918 (2)	0.0186 (4)
C4B	0.8210 (2)	0.48559 (8)	0.4184 (2)	0.0143 (4)
O5B	1.32491 (17)	0.34807 (6)	0.57774 (18)	0.0175 (3)
N5B	1.2221 (2)	0.43116 (7)	0.5529 (2)	0.0159 (3)
H5B	1.2334	0.4468	0.6413	0.019*
C5B	0.7002 (3)	0.43335 (9)	0.0558 (3)	0.0215 (5)
H5B1	0.6287	0.4266	-0.0358	0.026*
O6B	1.67925 (19)	0.36348 (6)	0.43876 (18)	0.0216 (3)
C6B	0.9187 (3)	0.37405 (8)	-0.0034(2)	0.0185 (4)
H6B	0.8402	0.3699	-0.0995	0.022*
O7B	1.5367 (2)	0.31343 (6)	0.84948 (19)	0.0252 (3)
C7B	1.0893 (3)	0.38469 (8)	-0.0431 (3)	0.0198 (4)
H7B1	1.1615	0.4002	0.0435	0.024*
H7B2	1.0845	0.4072	-0.1328	0.024*
C8B	1.1484 (3)	0.33176 (8)	-0.0781 (2)	0.0191 (4)
H8B	1.2709	0.3287	-0.0525	0.023*

C9B	1.0581 (3)	0.29760 (9)	0.0248 (3)	0.0226 (5)
H9B	1.0071	0.2683	-0.0357	0.027*
C10B	1.1657 (4)	0.27835 (11)	0.1641 (3)	0.0360 (6)
H10C	1.0958	0.2618	0.2322	0.043*
H10D	1.2427	0.2526	0.1337	0.043*
C11B	1.3507 (3)	0.39806 (8)	0.5188 (2)	0.0157 (4)
H11B	1.3500	0.3963	0.4062	0.019*
C12B	1.5222 (3)	0.41144 (8)	0.5959 (3)	0.0191 (4)
H12C	1.5218	0.4204	0.7041	0.023*
H12D	1.5700	0.4398	0.5436	0.023*
C13B	1.6149 (3)	0.36211 (8)	0.5792 (2)	0.0177 (4)
H13B	1.7050	0.3572	0.6664	0.021*
C14B	1.4792 (3)	0.32117 (8)	0.5795 (3)	0.0178 (4)
H14B	1.4738	0.3009	0.4838	0.021*
C15B	1.5051 (3)	0.28550 (9)	0.7128 (3)	0.0227 (5)
H15C	1.4055	0.2643	0.7142	0.027*
H15D	1.5995	0.2628	0.7033	0.027*
C16B	1.5735 (3)	0.28046 (11)	0.9765 (3)	0.0331 (6)
H16D	1.4856	0.2552	0.9752	0.050*
H16E	1.5814	0.3002	1.0708	0.050*
H16F	1.6788	0.2633	0.9711	0.050*
C17B	1.7854 (3)	0.32160 (10)	0.4226 (3)	0.0271 (5)
H17D	1.8756	0.3212	0.5077	0.041*
H17E	1.8312	0.3248	0.3267	0.041*
H17F	1.7225	0.2900	0.4221	0.041*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01A	0.0171 (7)	0.0182 (7)	0.0155 (7)	0.0035 (6)	0.0033 (5)	-0.0025 (6)
N1A	0.0120 (7)	0.0159 (8)	0.0155 (9)	0.0028 (6)	0.0006 (6)	-0.0015 (6)
C1A	0.0148 (9)	0.0128 (9)	0.0142 (10)	-0.0002 (7)	0.0018 (7)	-0.0013 (7)
O2A	0.0304 (9)	0.0195 (8)	0.0191 (8)	0.0039 (6)	0.0108 (6)	0.0007 (6)
N2A	0.0152 (8)	0.0175 (9)	0.0134 (9)	0.0031 (6)	0.0008 (7)	-0.0026 (7)
C2A	0.0152 (9)	0.0136 (10)	0.0158 (10)	0.0012 (7)	0.0005 (7)	-0.0019 (7)
O3A	0.0198 (8)	0.0247 (8)	0.0234 (8)	0.0066 (6)	0.0078 (6)	0.0027 (6)
N3A	0.0174 (8)	0.0183 (9)	0.0148 (9)	0.0033 (7)	0.0001 (7)	-0.0032 (7)
C3A	0.0170 (9)	0.0137 (9)	0.0134 (10)	0.0018 (8)	0.0014 (8)	-0.0032 (7)
O4A	0.0448 (10)	0.0194 (8)	0.0243 (9)	-0.0047 (7)	0.0011 (7)	0.0001 (7)
N4A	0.0172 (8)	0.0195 (9)	0.0154 (9)	0.0053 (7)	-0.0012 (7)	-0.0036 (7)
C4A	0.0152 (10)	0.0127 (10)	0.0139 (10)	-0.0012 (7)	0.0032 (8)	-0.0005 (7)
O5A	0.0227 (7)	0.0174 (7)	0.0123 (7)	-0.0008 (6)	0.0009 (5)	-0.0013 (6)
N5A	0.0139 (8)	0.0201 (9)	0.0142 (9)	0.0039 (6)	-0.0003 (6)	-0.0034 (7)
C5A	0.0169 (10)	0.0228 (11)	0.0166 (11)	0.0045 (8)	-0.0027 (8)	-0.0048 (8)
O6A	0.0163 (7)	0.0333 (9)	0.0194 (8)	-0.0025 (6)	0.0060 (6)	-0.0082 (7)
C6A	0.0163 (9)	0.0200 (11)	0.0185 (11)	0.0069 (8)	0.0005 (8)	-0.0024 (8)
O7A	0.0153 (7)	0.0240 (8)	0.0268 (9)	-0.0015 (6)	0.0027 (6)	0.0011 (6)
C7A	0.0172 (10)	0.0172 (11)	0.0211 (11)	0.0001 (8)	0.0037 (8)	0.0002 (8)

C8A	0.0203 (10)	0.0201 (11)	0.0148 (10)	0.0015 (8)	0.0047 (8)	-0.0008 (8)
C9A	0.0257 (11)	0.0157 (10)	0.0165 (10)	0.0038 (8)	0.0073 (8)	0.0009 (8)
C10A	0.0259 (12)	0.0182 (11)	0.0297 (13)	0.0001 (9)	0.0052 (10)	0.0023 (9)
C11A	0.0150 (9)	0.0167 (10)	0.0149 (10)	0.0005 (7)	0.0015 (7)	-0.0028 (8)
C12A	0.0206 (10)	0.0201 (10)	0.0137 (10)	0.0017 (8)	0.0024 (8)	-0.0002 (8)
C13A	0.0139 (9)	0.0227 (11)	0.0134 (10)	0.0007 (8)	0.0012 (7)	-0.0029 (8)
C14A	0.0185 (10)	0.0172 (10)	0.0163 (10)	0.0037 (8)	0.0004 (8)	-0.0042 (8)
C15A	0.0257 (11)	0.0193 (11)	0.0207 (11)	-0.0025 (9)	0.0043 (9)	-0.0023 (9)
C16A	0.0209 (11)	0.0458 (15)	0.0230 (12)	-0.0085 (10)	0.0010 (9)	0.0059 (11)
C17A	0.0229 (11)	0.0410 (14)	0.0238 (12)	0.0011 (10)	0.0065 (9)	-0.0138 (10)
O1B	0.0172 (7)	0.0172 (7)	0.0163 (7)	0.0052 (6)	0.0031 (6)	-0.0026 (6)
N1B	0.0149 (8)	0.0147 (8)	0.0119 (8)	0.0022 (6)	0.0009 (6)	-0.0038 (6)
C1B	0.0148 (9)	0.0122 (9)	0.0140 (10)	0.0001 (7)	0.0033 (7)	0.0005 (7)
O2B	0.0261 (8)	0.0176 (8)	0.0243 (8)	-0.0016 (6)	0.0113 (6)	-0.0048 (6)
N2B	0.0137 (8)	0.0171 (9)	0.0148 (9)	0.0019 (6)	0.0010 (6)	-0.0028 (7)
C2B	0.0169 (9)	0.0146 (10)	0.0136 (10)	-0.0007 (8)	0.0022 (7)	-0.0021 (8)
O3B	0.0278 (8)	0.0215 (8)	0.0183 (8)	-0.0035 (6)	0.0094 (6)	-0.0033 (6)
N3B	0.0168 (8)	0.0222 (9)	0.0166 (9)	0.0042 (7)	-0.0003 (7)	-0.0038 (7)
C3B	0.0144 (9)	0.0162 (10)	0.0168 (10)	0.0017 (8)	0.0014 (8)	-0.0016 (8)
O4B	0.0386 (11)	0.0665 (15)	0.0278 (10)	0.0170 (10)	-0.0056 (8)	-0.0101 (10)
N4B	0.0168 (9)	0.0227 (9)	0.0153 (9)	0.0048 (7)	-0.0013 (7)	-0.0068 (7)
C4B	0.0154 (9)	0.0128 (9)	0.0147 (10)	-0.0004 (7)	0.0024 (7)	0.0014 (7)
O5B	0.0139 (7)	0.0165 (7)	0.0226 (8)	0.0023 (6)	0.0037 (6)	0.0013 (6)
N5B	0.0172 (8)	0.0162 (8)	0.0137 (8)	0.0038 (7)	0.0004 (6)	-0.0042 (6)
C5B	0.0185 (10)	0.0270 (12)	0.0174 (11)	0.0039 (9)	-0.0028 (8)	-0.0053 (9)
O6B	0.0225 (8)	0.0239 (8)	0.0200 (8)	0.0048 (6)	0.0084 (6)	0.0045 (6)
C6B	0.0212 (11)	0.0186 (11)	0.0151 (10)	0.0027 (8)	0.0002 (8)	-0.0061 (8)
O7B	0.0264 (8)	0.0281 (9)	0.0207 (8)	0.0003 (7)	0.0018 (6)	0.0081 (7)
C7B	0.0246 (11)	0.0175 (10)	0.0181 (11)	-0.0018 (8)	0.0055 (8)	-0.0025 (8)
C8B	0.0204 (10)	0.0202 (11)	0.0175 (11)	0.0020 (8)	0.0054 (8)	-0.0025 (8)
C9B	0.0305 (12)	0.0183 (11)	0.0208 (11)	0.0022 (9)	0.0098 (9)	-0.0036 (8)
C10B	0.0506 (16)	0.0338 (14)	0.0241 (13)	0.0162 (12)	0.0067 (11)	0.0026 (11)
C11B	0.0174 (10)	0.0146 (10)	0.0151 (10)	0.0013 (7)	0.0018 (8)	0.0003 (7)
C12B	0.0156 (10)	0.0195 (11)	0.0220 (11)	0.0002 (8)	0.0023 (8)	-0.0036 (8)
C13B	0.0149 (10)	0.0209 (11)	0.0174 (11)	0.0028 (8)	0.0028 (8)	0.0004 (8)
C14B	0.0160 (9)	0.0167 (10)	0.0210 (11)	0.0035 (8)	0.0040 (8)	-0.0011 (8)
C15B	0.0201 (10)	0.0200 (11)	0.0280 (12)	0.0021 (8)	0.0034 (9)	0.0031 (9)
C16B	0.0261 (12)	0.0417 (15)	0.0298 (13)	-0.0035 (11)	-0.0019 (10)	0.0187 (11)
C17B	0.0263 (12)	0.0291 (13)	0.0281 (12)	0.0092 (10)	0.0118 (9)	0.0021 (10)

Geometric parameters (Å, °)

O1A—C4A	1.238 (3)	O1B—C4B	1.237 (3)	
N1A—C1A	1.371 (3)	N1B—C1B	1.374 (3)	
N1A—C4A	1.397 (3)	N1B—C4B	1.393 (3)	
N1A—H1A	0.8800	N1B—H1B	0.8800	
C1A—N2A	1.321 (3)	C1B—N2B	1.323 (3)	
C1A—N5A	1.357 (3)	C1B—N5B	1.356 (3)	

O2A—C6A	1.425 (3)	O2B—C6B	1.409 (3)
O2A—C9A	1.450 (3)	O2B—C9B	1.432 (3)
N2A—C2A	1.353 (3)	N2B—C2B	1.356 (3)
C2A—N4A	1.377 (3)	C2B—C3B	1.382 (3)
C2A—C3A	1.380 (3)	C2B—N4B	1.382 (3)
O3A—C8A	1.427 (3)	O3B—C8B	1.429 (3)
ОЗА—НЗА	0.8400	O3B—H3B	0.8400
N3A—C5A	1.309 (3)	N3B—C5B	1.308 (3)
N3A—C3A	1.382 (3)	N3B—C3B	1.379 (3)
C3A—C4A	1.420(3)	C3B—C4B	1.420 (3)
O4A - C10A	1417(3)	O4B— $C10B$	1405(4)
O4A—H4A	0.8400	O4B—H4B	0.8400
N4A—C5A	1 376 (3)	N4B—C5B	1 373 (3)
N4A—C6A	1.570(3) 1 460(3)	N4B—C6B	1.575(3) 1 452(3)
05A-C14A	1443(2)	05B-C11B	1446(3)
05A-C11A	1.452 (3)	05B-C14B	1.447 (2)
N5A—C11A	1433(3)	N5B-C11B	1 433 (3)
N5A—H5A	0.8800	N5B—H5B	0.8800
C5A—H5A1	0.9500	C5B—H5B1	0.0000
O6A - C13A	1420(3)	O6B-C13B	1420(3)
O6A - C17A	1.120(3) 1 421(3)	O6B-C17B	1.120(3) 1 426(3)
C6A - C7A	1.121(3) 1.515(3)	C6B-C7B	1.120(3) 1.513(3)
C6A—H6A	1.0000	C6B—H6B	1 0000
07A-C15A	1 412 (3)	07B-C15B	1 413 (3)
07A-C16A	1.112(3) 1 431(3)	07B $-C16B$	1.424(3)
C7A—C8A	1.520 (3)	C7B-C8B	1.525(3)
C7A—H7A1	0.9900	C7B—H7B1	0.9900
C7A—H7A2	0.9900	C7B-H7B2	0.9900
C8A - C9A	1 524 (3)	C8B-C9B	1 544 (3)
C8A—H8A	1.0000	C8B—H8B	1.0000
C9A - C10A	1.525 (3)	C9B-C10B	1 503 (4)
С9А—Н9А	1,0000	C9B—H9B	1 0000
C10A—H10A	0.9900	C10B-H10C	0.9900
C10A—H10B	0.9900	C10B—H10D	0.9900
C11A—C12A	1.516 (3)	C11B—C12B	1.514 (3)
C11A—H11A	1.0000	C11B—H11B	1.0000
C12A—C13A	1.516 (3)	C12B-C13B	1.525 (3)
C12A—H12A	0.9900	C12B-H12C	0.9900
C12A—H12B	0.9900	C12B—H12D	0.9900
C13A—C14A	1.544 (3)	C13B—C14B	1.550 (3)
C13A—H13A	1.0000	C13B—H13B	1.0000
C14A—C15A	1.512 (3)	C14B—C15B	1.505 (3)
C14A—H14A	1.0000	C14B—H14B	1.0000
C15A—H15A	0.9900	C15B—H15C	0.9900
C15A—H15B	0.9900	C15B—H15D	0.9900
C16A—H16A	0.9800	C16B—H16D	0.9800
C16A—H16B	0.9800	C16B—H16E	0.9800
C16A—H16C	0.9800	C16B—H16F	0.9800

C17A—H17A	0.9800	C17B—H17D	0.9800
C17A—H17B	0.9800	C17B—H17E	0.9800
C17A—H17C	0.9800	C17B—H17F	0.9800
C1A—N1A—C4A	124.64 (17)	C1B—N1B—C4B	124.95 (17)
C1A—N1A—H1A	117.7	C1B—N1B—H1B	117.5
C4A = N1A = H1A	117.7	C4B—N1B—H1B	117.5
N2A - C1A - N5A	119.73 (18)	N2B— $C1B$ — $N5B$	120.96 (18)
N2A - C1A - N1A	124 14 (18)	N2B_C1B_N1B	123.93 (18)
N5A CIA NIA	116 13 (17)	N5P C1P N1P	125.95(10) 115.11(18)
$N_{A} = C_{A} = N_{A}$	110.13(17)		113.11(10) 100.15(17)
C0A = 02A = C9A	109.00(10)	C0B - C2B - C9B	109.13(17)
CIA - NZA - CZA	112.51(17)	CIB—N2B—C2B	112.52(17)
N2A—C2A—N4A	126.92 (19)	N2B—C2B—C3B	127.64 (19)
N2A—C2A—C3A	127.70 (19)	N2B—C2B—N4B	127.58 (19)
N4A—C2A—C3A	105.38 (18)	C3B—C2B—N4B	104.73 (18)
С8А—ОЗА—НЗА	109.5	C8B—O3B—H3B	109.5
C5A—N3A—C3A	104.51 (18)	C5B—N3B—C3B	104.43 (17)
C2A—C3A—N3A	110.89 (18)	N3B—C3B—C2B	111.34 (19)
C2A—C3A—C4A	119.30 (18)	N3B—C3B—C4B	129.16 (19)
N3A—C3A—C4A	129.73 (19)	C2B—C3B—C4B	119.33 (19)
C10A—O4A—H4A	109.5	C10B—O4B—H4B	109.5
C5A—N4A—C2A	106.28 (17)	C5B—N4B—C2B	106.50 (17)
C5A—N4A—C6A	124.53 (18)	C5B—N4B—C6B	123.40 (18)
C2A—N4A—C6A	128.96 (18)	C2B—N4B—C6B	129.95 (18)
O1A - C4A - N1A	121.03 (18)	O1B-C4B-N1B	121 23 (19)
O1A - C4A - C3A	127.38 (19)	O1B - C4B - C3B	127.16 (19)
N1A CAA C3A	127.50(17)	NIB CAB C3B	127.10(17)
$C_{14A} = O_{5A} = C_{11A}$	100.25(17)	C11B O5B C14B	111.39(17) 106.31(15)
C1A N5A $C11A$	109.23(13) 121.20(17)	$C1D \qquad N5D \qquad C11D$	100.31(13) 121.02(18)
CIA = N5A = U5A	121.20(17)	CID_N5D_U5D	121.92 (10)
CIA-NSA-HSA	119.4	CID-NJD-HJD	119.0
CIIA—NJA—HJA	119.4	CIIB—N3B—H3B	119.0
N3A—C5A—N4A	112.93 (18)	N3B—C5B—N4B	112.99 (18)
N3A—C5A—H5A1	123.5	N3B—C5B—H5B1	123.5
N4A—C5A—H5A1	123.5	N4B—C5B—H5B1	123.5
C13A—O6A—C17A	111.90 (16)	C13B—O6B—C17B	112.00 (17)
O2A—C6A—N4A	108.59 (17)	O2B—C6B—N4B	107.89 (18)
O2A—C6A—C7A	106.39 (17)	O2B—C6B—C7B	105.90 (17)
N4A—C6A—C7A	115.46 (18)	N4B—C6B—C7B	116.03 (18)
О2А—С6А—Н6А	108.7	O2B—C6B—H6B	108.9
N4A—C6A—H6A	108.7	N4B—C6B—H6B	108.9
С7А—С6А—Н6А	108.7	C7B—C6B—H6B	108.9
C15A—O7A—C16A	112.43 (18)	C15B—O7B—C16B	110.76 (19)
C6A—C7A—C8A	102.12 (17)	C6B—C7B—C8B	101.90 (17)
C6A—C7A—H7A1	111.3	C6B—C7B—H7B1	111.4
C8A—C7A—H7A1	111.3	C8B—C7B—H7B1	111.4
C6A - C7A - H7A2	111.3	C6B-C7B-H7B2	111.7
C8A - C7A - H7A2	111.3	C8B C7B H7B2	111. 4
H7A1 C7A H7A2	100.2	H7B1 C7P H7P2	100.2
$\Pi/\Lambda = U/\Lambda = \Pi/\Lambda L$	107.4	$\Pi/DI \longrightarrow (D \longrightarrow \Pi/D2)$	107.3

O3A—C8A—C7A	111.70 (18)	O3B—C8B—C7B	111.64 (18)
O3A—C8A—C9A	109.09 (17)	O3B—C8B—C9B	107.79 (17)
C7A—C8A—C9A	102.03 (17)	C7B—C8B—C9B	102.92 (17)
O3A—C8A—H8A	111.2	O3B—C8B—H8B	111.4
С7А—С8А—Н8А	111.2	C7B—C8B—H8B	111.4
С9А—С8А—Н8А	111.2	C9B—C8B—H8B	111.4
O2A—C9A—C8A	105.75 (17)	O2B—C9B—C10B	107.12 (19)
O2A—C9A—C10A	108.82 (17)	O2B—C9B—C8B	107.00 (17)
C8A—C9A—C10A	114.59 (18)	C10B—C9B—C8B	114.3 (2)
02A—C9A—H9A	109.2	02B—C9B—H9B	109.4
C8A - C9A - H9A	109.2	C10B-C9B-H9B	109.4
C10A - C9A - H9A	109.2	C8B—C9B—H9B	109.4
O4A - C10A - C9A	111 51 (19)	O4B-C10B-C9B	1119(2)
O4A - C10A - H10A	109.3	O4B $C10B$ $H10C$	109.2
C9A - C10A - H10A	109.3	C9B-C10B-H10C	109.2
O4A - C10A - H10B	109.3	O4B— $C10B$ — $H10D$	109.2
C_{PA} C_{10A} H_{10B}	109.3	$C^{0}B$ $C^{1}0B$ $H^{1}0D$	109.2
HIOA CIOA HIOB	109.5	HINC CINB HIND	107.2
M5A = C11A = 05A	100.0	N5B C11B O5B	107.9
N5A = C11A = C12A	109.19(17) 113.26(17)	N5B C11B C12B	109.30(17)
N_{A} C_{11A} C_{12A}	104 50 (16)	$O_{5P} C_{11P} C_{12P}$	113.00(18) 102.84(16)
N5A C11A H11A	104.30 (10)	N5D C11D U11D	102.84 (10)
N_{A} C_{11A} H_{11A}	109.9	$N_{3}D - C_{11}D - H_{11}D$	109.8
CI2A CI1A HILA	109.9		109.8
CI2A—CIIA—HIIA	109.9	CI1D CI2D CI2D	109.8
C13A - C12A - C11A	103.50 (17)	CIIB - CI2B - CI3B	101.47 (17)
C13A - C12A - H12A	111.1	CIIB—CI2B—HI2C	111.5
CIIA—CI2A—HI2A	111.1	C13B— $C12B$ — $H12C$	111.5
CI3A—CI2A—HI2B	111.1	CIIB—CI2B—HI2D	111.5
CIIA—CI2A—HI2B	111.1	C13B—C12B—H12D	111.5
H12A—C12A—H12B	109.0	H12C—C12B—H12D	109.3
06A—C13A—C12A	109.43 (17)	O6B—C13B—C12B	108.29 (17)
O6A—C13A—C14A	112.71 (17)	O6B—C13B—C14B	111.87 (18)
C12A—C13A—C14A	103.35 (16)	C12B—C13B—C14B	103.26 (16)
O6A—C13A—H13A	110.4	O6B—C13B—H13B	111.0
C12A—C13A—H13A	110.4	C12B—C13B—H13B	111.0
C14A—C13A—H13A	110.4	C14B—C13B—H13B	111.0
O5A—C14A—C15A	109.66 (17)	O5B—C14B—C15B	110.05 (17)
O5A—C14A—C13A	106.95 (16)	O5B—C14B—C13B	106.37 (16)
C15A—C14A—C13A	112.09 (17)	C15B—C14B—C13B	114.55 (18)
O5A—C14A—H14A	109.4	O5B—C14B—H14B	108.6
C15A—C14A—H14A	109.4	C15B—C14B—H14B	108.6
C13A—C14A—H14A	109.4	C13B—C14B—H14B	108.6
O7A—C15A—C14A	107.74 (17)	O7B—C15B—C14B	109.74 (18)
O7A—C15A—H15A	110.2	O7B—C15B—H15C	109.7
C14A—C15A—H15A	110.2	C14B—C15B—H15C	109.7
O7A—C15A—H15B	110.2	O7B—C15B—H15D	109.7
C14A—C15A—H15B	110.2	C14B—C15B—H15D	109.7
H15A—C15A—H15B	108.5	H15C—C15B—H15D	108.2

O7A—C16A—H16A	109.5	O7B—C16B—H16D	109.5
O7A—C16A—H16B	109.5	O7B—C16B—H16E	109.5
H16A—C16A—H16B	109.5	H16D—C16B—H16E	109.5
O7A—C16A—H16C	109.5	O7B—C16B—H16F	109.5
H16A—C16A—H16C	109.5	H16D—C16B—H16F	109.5
H_{16B} C_{16A} H_{16C}	109.5	H16F— $C16B$ — $H16F$	109.5
O6A - C17A - H17A	109.5	O6B-C17B-H17D	109.5
O6A - C17A - H17B	109.5	O6B-C17B-H17E	109.5
H17A - C17A - H17B	109.5	H17D-C17B-H17F	109.5
064 - C174 - H17C	109.5	06B-C17B-H17E	109.5
H17A - C17A - H17C	109.5	H17D-C17B-H17F	109.5
H17B-C17A-H17C	109.5	H17E - C17B - H17E	109.5
III/b—cI/A—III/c	109.5		109.5
C4A—N1A—C1A—N2A	-14(3)	C4B—N1B—C1B—N2B	0.2(3)
C4A = N1A = C1A = N5A	177 84 (18)	C4B N1B $C1B$ N5B	-179.83(18)
N5A-C1A-N2A-C2A	-176.82(19)	N5B-C1B-N2B-C2B	$-178\ 87\ (19)$
N1A - C1A - N2A - C2A	24(3)	N1B-C1B-N2B-C2B	11(3)
C14 N24 C24 N44	2.4(3) 179.8(2)	$\begin{array}{c} \text{C1B} \\ \text{N2B} \\ \text{C2B} \\ \text{C3B} \\ C3B$	-0.8(3)
C1A - N2A - C2A - C3A	-0.3(3)	C1B $N2B$ $C2B$ $N4B$	-177.6(2)
N2A C2A C3A N3A	-179.8(2)	$C_{1D} = N_{2D} = C_{2D} = N_{4D}$	177.0(2)
N/A = C2A = C3A = N3A	1/9.8(2)	$C_{3}B_{N3}B_{C3}B_{C4}B_{C4}B_{C5}B_{C4}B_{C5}B_{C4$	-175 1 (2)
$N_{A} = C_{A} = C_{A} = N_{A}$	-20(3)	N2P C2P C3P N3P	-176.7(2)
$N_{A} C_{A} C_{A} C_{A} C_{A}$	2.9(3)	NAP C2P C3P N3P	170.7(2)
$N_{A} = C_{A} = C_{A} = C_{A}$	177.03(10)	$N_{4D} = C_{2D} = C_{3D} = N_{3D}$	0.7(2)
C_{A} N2A C_{A} C_{A}	0.2(2)	N2D - C2D - C3D - C4D	-0.9(3)
C_{3A} C_{3A} C_{3A} C_{4A}	-1/6.3(2)	N4B - C2B - C3B - C4B	1/6.4/(19)
$N_{2}A = C_{2}A = N_{4}A = C_{5}A$	1/9.5 (2)	N2B - C2B - N4B - C5B	1/0.1(2)
C_{3A} C_{2A} N_{4A} C_{5A}	-0.4(2)	C_{3B} C_{2B} N_{4B} C_{5B}	-1.3(2)
$N_{2A} - C_{2A} - N_{4A} - C_{6A}$	4.8 (4)	N2B - C2B - N4B - C6B	0.6 (4)
C3A - C2A - N4A - C6A	-1/5.1(2)	C3B—C2B—N4B—C6B	-176.8(2)
CIA—NIA—C4A—OIA	178.41 (19)	CIB—NIB—C4B—OIB	176.86 (19)
C1A—N1A—C4A—C3A	-1.7 (3)	C1B—N1B—C4B—C3B	-1.8 (3)
C2A—C3A—C4A—O1A	-176.6 (2)	N3B—C3B—C4B—O1B	-1.6 (4)
N3A—C3A—C4A—O1A	-0.3 (4)	C2B—C3B—C4B—O1B	-176.5 (2)
C2A—C3A—C4A—N1A	3.6 (3)	N3B—C3B—C4B—N1B	177.0 (2)
N3A—C3A—C4A—N1A	179.8 (2)	C2B—C3B—C4B—N1B	2.0 (3)
N2A—C1A—N5A—C11A	-5.3 (3)	N2B—C1B—N5B—C11B	0.3 (3)
N1A—C1A—N5A—C11A	175.39 (18)	N1B—C1B—N5B—C11B	-179.74 (18)
C3A—N3A—C5A—N4A	-0.5(3)	C3B—N3B—C5B—N4B	-1.0(3)
C2A—N4A—C5A—N3A	0.6 (3)	C2B—N4B—C5B—N3B	1.5 (3)
C6A—N4A—C5A—N3A	175.6 (2)	C6B—N4B—C5B—N3B	177.4 (2)
C9A—O2A—C6A—N4A	-138.45 (17)	C9B—O2B—C6B—N4B	-153.74 (17)
C9A—O2A—C6A—C7A	-13.6 (2)	C9B—O2B—C6B—C7B	-28.9 (2)
C5A—N4A—C6A—O2A	-103.0 (2)	C5B—N4B—C6B—O2B	-113.2 (2)
C2A—N4A—C6A—O2A	70.9 (3)	C2B—N4B—C6B—O2B	61.7 (3)
C5A—N4A—C6A—C7A	137.7 (2)	C5B—N4B—C6B—C7B	128.3 (2)
C2A—N4A—C6A—C7A	-48.4 (3)	C2B—N4B—C6B—C7B	-56.9 (3)
O2A—C6A—C7A—C8A	31.8 (2)	O2B—C6B—C7B—C8B	36.8 (2)
N4A—C6A—C7A—C8A	152.34 (18)	N4B—C6B—C7B—C8B	156.41 (19)

C6A—C7A—C8A—O3A	79.6 (2)	C6B—C7B—C8B—O3B	85.4 (2)
C6A—C7A—C8A—C9A	-36.8 (2)	C6B—C7B—C8B—C9B	-30.0 (2)
C6A—O2A—C9A—C8A	-10.4 (2)	C6B—O2B—C9B—C10B	131.8 (2)
C6A—O2A—C9A—C10A	113.18 (18)	C6B—O2B—C9B—C8B	8.8 (2)
O3A—C8A—C9A—O2A	-88.60 (19)	O3B—C8B—C9B—O2B	-103.77 (19)
C7A—C8A—C9A—O2A	29.7 (2)	C7B—C8B—C9B—O2B	14.3 (2)
O3A—C8A—C9A—C10A	151.55 (18)	O3B-C8B-C9B-C10B	137.8 (2)
C7A—C8A—C9A—C10A	-90.2 (2)	C7B—C8B—C9B—C10B	-104.1 (2)
O2A—C9A—C10A—O4A	165.83 (17)	O2B—C9B—C10B—O4B	-68.9 (3)
C8A—C9A—C10A—O4A	-76.0 (2)	C8B—C9B—C10B—O4B	49.4 (3)
C1A—N5A—C11A—O5A	-87.4 (2)	C1B—N5B—C11B—O5B	-93.7 (2)
C1A—N5A—C11A—C12A	156.64 (19)	C1B—N5B—C11B—C12B	151.2 (2)
C14A—O5A—C11A—N5A	-148.25 (16)	C14B—O5B—C11B—N5B	-163.87 (16)
C14A—O5A—C11A—C12A	-26.8 (2)	C14B—O5B—C11B—C12B	-41.2 (2)
N5A—C11A—C12A—C13A	154.32 (17)	N5B-C11B-C12B-C13B	162.67 (18)
O5A—C11A—C12A—C13A	35.6 (2)	O5B-C11B-C12B-C13B	43.9 (2)
C17A—O6A—C13A—C12A	167.04 (19)	C17B—O6B—C13B—C12B	172.60 (18)
C17A—O6A—C13A—C14A	-78.6 (2)	C17B—O6B—C13B—C14B	-74.3 (2)
C11A—C12A—C13A—O6A	89.7 (2)	C11B—C12B—C13B—O6B	88.8 (2)
C11A—C12A—C13A—C14A	-30.6 (2)	C11B—C12B—C13B—C14B	-30.0 (2)
C11A—O5A—C14A—C15A	128.97 (18)	C11B—O5B—C14B—C15B	146.08 (17)
C11A—O5A—C14A—C13A	7.2 (2)	C11B—O5B—C14B—C13B	21.5 (2)
O6A—C13A—C14A—O5A	-102.90 (18)	O6B—C13B—C14B—O5B	-109.88 (18)
C12A—C13A—C14A—O5A	15.1 (2)	C12B—C13B—C14B—O5B	6.4 (2)
O6A—C13A—C14A—C15A	136.89 (18)	O6B—C13B—C14B—C15B	128.32 (19)
C12A—C13A—C14A—C15A	-105.08 (19)	C12B—C13B—C14B—C15B	-115.5 (2)
C16A—O7A—C15A—C14A	-173.67 (18)	C16B—O7B—C15B—C14B	-175.77 (18)
O5A—C14A—C15A—O7A	-66.7 (2)	O5B—C14B—C15B—O7B	-69.6 (2)
C13A—C14A—C15A—O7A	51.9 (2)	C13B—C14B—C15B—O7B	50.2 (2)

Hydrogen-bond geometry (Å, °)

	D—H	H…A	D····A	D—H···A
N1A—H1A…N3B	0.88	1.92	2.789 (2)	170
$O3A$ — $H3A$ ···O $5A^{i}$	0.84	2.07	2.897 (2)	167
$O4A$ —H4 A ···O3 B^{ii}	0.84	2.01	2.847 (2)	178
N5 <i>A</i> —H5 <i>A</i> ···O1 <i>B</i>	0.88	2.23	3.058 (2)	157
C5 <i>A</i> —H5 <i>A</i> 1···O1 <i>B</i> ⁱⁱⁱ	0.95	2.63	3.284 (3)	126
C7 <i>A</i> —H7 <i>A</i> 1···N2 <i>A</i>	0.99	2.46	3.172 (3)	128
$C8A$ — $H8A$ ···· $O7A^{i}$	1.00	2.39	3.316 (3)	153
$C12A$ — $H12A$ ···O1 A^{iv}	0.99	2.61	3.432 (3)	141
C12 <i>A</i> —H12 <i>B</i> ···O1 <i>B</i>	0.99	2.55	3.426 (3)	147
C16 <i>A</i> —H16 <i>A</i> ···O4 <i>A</i> ^v	0.98	2.47	3.401 (3)	158
C16 <i>A</i> —H16 <i>B</i> ···O6 <i>A</i> ^v	0.98	2.54	3.222 (3)	127
C16A—H16C···O2A ^{vi}	0.98	2.50	3.356 (3)	146
C17 <i>A</i> —H17 <i>A</i> ···O3 <i>A</i> ^{vi}	0.98	2.65	3.610 (3)	168
C17 <i>A</i> —H17 <i>B</i> ···O2 <i>A</i> ^{iv}	0.98	2.60	3.573 (3)	175
N1 <i>B</i> —H1 <i>B</i> ····N3 <i>A</i> ^{vi}	0.88	1.94	2.808 (2)	166

O3 <i>B</i> —H3 <i>B</i> ····O5 <i>B</i> ^{vii}	0.84	1.99	2.817 (2)	169	
O4 <i>B</i> —H4 <i>B</i> ⋯N2 <i>B</i>	0.84	2.38	3.180 (3)	158	
N5B—H5B····O1 A^{vi}	0.88	2.19	3.027 (2)	159	
C5B—H5B1…O1A	0.95	2.60	3.269 (3)	127	
$C8B$ —H8 B ····O7 B^{vii}	1.00	2.49	3.363 (3)	146	
C11 <i>B</i> —H11 <i>B</i> ····O4 <i>B</i>	1.00	2.59	3.251 (3)	124	
C12 <i>B</i> —H12 <i>C</i> ···O1 <i>A</i> ^{vi}	0.99	2.55	3.363 (3)	140	
$C12B$ — $H12D$ ···O1 B^{v}	0.99	2.45	3.424 (3)	167	
C14 <i>B</i> —H14 <i>B</i> ···O4 <i>B</i>	1.00	2.61	3.272 (3)	123	
C17B—H17E···O2 B^{v}	0.98	2.48	3.456 (3)	176	

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*+1, *y*+1/2, -*z*; (iii) *x*-1, *y*, *z*-1; (iv) *x*, *y*, *z*+1; (v) *x*+1, *y*, *z*; (vi) *x*+1, *y*, *z*+1; (vii) *x*, *y*, *z*-1.