

Received 23 January 2016 Accepted 28 March 2016

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

Keywords: crystal structure; 5-aminoisophthalic acid; 5AIA; 1,2-bis(pyridin-4-yl)ethene (BE); cocrystal; hydrogen bonding.

CCDC reference: 1471029

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of the co-crystal of 5-aminoisophthalic acid and 1,2-bis(pyridin-4-yl)ethene

Scott C. McGuire,^a Steven C. Travis,^a Daniel W. Tuohey,^a Thomas J. Deering,^a Bob Martin,^b Jordan M. Cox^a and Jason B. Benedict^{C*}

^a764 Natural Sciences Complex, Buffalo, 14260-3000, USA, ^b345 Natural Sciences Complex, Buffalo, 14260-3000, USA, and ^c771 Natural Sciences Complex, Buffalo, 14260-3000, USA. *Correspondence e-mail: jbb6@buffalo.edu

In the title 1:1 co-crystal, $C_{12}H_{10}N_2 \cdot C_8H_7NO_4$, the bipyridine moiety shows whole-molecule disorder over two sets of sites in a 0.588 (3): 0.412 (3) ratio. In the crystal, the components form hydrogen-bonded sheets linked by $N-H\cdots O$ and $O-H\cdots N$ interactions, which stack along the *a* axis. A comparison to a related and previously published co-crystal of 5-amino-isophthalic acid and the shorter 4.4'-bipryidine is presented.

1. Chemical context

5-Amino-isophthalic acid (5AIA) is an emerging secondary building unit for a wide variety of metal–organic frameworks (MOFs). (Zeng *et al.*, 2009; Wang *et al.*, 2011; Cox *et al.*, 2015) This compound is also a convenient precursor for the synthesis of azo-derivatized framework ligands, a key component in the rapidly evolving field of photochromic MOFs. (Brown *et al.*, 2013; Castellanos *et al.*, 2016; Walton *et al.*, 2013; Patel *et al.*, 2014). Similarly, 1,2-bis(pyridin-4-yl)ethene (BE) is also commonly used in MOF synthesis; however, it is routinely used in co-crystal engineering as well (Kongshaug & Fjellvag, 2003; MacGillivray *et al.*, 2008; Desiraju, 1995) The 5AIA–BE co-crystal presented herein was produced as part of an undergraduate physical chemistry laboratory experiment developed by Jason Benedict.

Recently, the co-crystal structure of 5AIA and 4,4'-bipyridine (BP), a shorter analogue of BE, was reported (Zhang *et al.*, 2009). Unlike many MOFs in which different length linkers lead to isorecticular structures (Eddaoudi *et al.*, 2002), the 5AIA–BP co-crystal exhibits several notable similarities and differences when compared to 5AIA–BE. As shown in Figs. 4, 5AIA forms hydrogen bonds with two 5AIA molecules and two BP molecules. The 5AIA–BP interactions and one of the 5AIA–5AIA interactions are similar to those found in 5AIA–BE. The remaining 5AIA–5AIA interaction in 5AIA– BP consists solely of an N(amine)–H···OH hydrogen bond, as opposed to the N(amine)–H···O=C interaction found in 5AIA–BP. Interestingly, this results in a total of five hydrogen

research communications

The asymmetric unit of the title compound, showing the numbering scheme. Displacement ellipsoids are shown at the 50% probability level.

Figure 2

Diagram illustrating the hydrogen-bonding interactions present in the two-dimensional sheets found in the 5AIA-BE co-crystal.

bonds in the 5AIA–BP structure compared to the six hydrogen bonds observed in 5AIA–BE.

2. Structural commentary

The 5AIA–BE co-crystal crystallizes with one molecule of 5AIA and one molecule of BE in the asymmetric unit (Fig. 1). Both molecules are effectively planar in the solid state (r.m.s. deviation for 5AIA = 0.155 Å). The BE moiety shows whole

Table 1Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N1 - H1 A \cdots O1^{i}$	0.899 (17)	2 062 (17)	2 9540 (13)	171.0 (15)
$N1 - H1B \cdots O3^{ii}$	0.894(17)	2.002(17) 2.157(17)	3.0500 (13)	178.6 (13)
O2−H2···N3 ⁱⁱⁱ	0.989 (19)	1.70 (2)	2.688 (8)	173.4 (18)
O2−H2···N3A ⁱⁱⁱ	0.989 (19)	1.63 (2)	2.619 (12)	177 (2)
$O4-H4\cdots N2^{iv}$	0.98 (2)	1.72 (2)	2.702 (7)	173.2 (19)
$O4-H4\cdots N2A^{iv}$	0.98 (2)	1.59 (2)	2.566 (11)	175 (2)
	m 1	1 1 0	. 1 1	1
Symmetry codes:	(i) $-x + \frac{1}{2}, y$	$-\frac{1}{2}, -z + \frac{1}{2};$ (1)	i) $-x + \frac{1}{2}, y + \frac{1}{2}$	$, -z + \frac{1}{2};$ (iii)
$-x \pm 1, -y \pm 2, -z \pm$	$-1, (1v) x - \frac{1}{2}, -y$	$T_{7}, 4, T_{7}$		

molecule disorder over two sets of sites, consistent with a local C2 rotation about the long axis of the molecule. The occupancy of the major and minor components was refined to be 0.588 (3) and 0.412 (3), respectively.

3. Supramolecular features

In this structure, the 5AIA molecule forms hydrogen bonds to both itself and the BE moiety, forming extended sheets (Table 1 and Fig. 2). The 5AIA–5AIA interactions consist of N(amine)— $H \cdots O=C$ hydrogen bonds where each 5AIA makes two hydrogen bonds with two neighboring 5AIA molecules. The 5AIA–BE interaction consists of an O– $H \cdots N$ (pyridyl) hydrogen bond such that each 5AIA makes one hydrogen bond with two neighboring BE molecules. The sheets formed by these interactions stack along the the *a* axis to produce a layered structure (Fig. 3).

4. Database survey

Recently, the co-crystal structure of 5AIA and 4,4'-bipyridine (BP), a shorter analogue of BE, was reported (Zhang *et al.*, 2009). Unlike many MOFs in which different length linkers lead to isorecticular structures (Eddaoudi *et al.*, 2002), the 5AIA–BP co-crystal exhibits several notable similarites and differences when compared to 5AIA–BE. As shown in Figs. 4,

Figure 3

View down [001] showing the (100) sheets in the extended structure of the title compound.

 $C_{12}H_{10}N_2 \cdot C_8H_7NO_4$

Figure 4

Diagram illustrating the hydrogen bonding interactions present in the previously reported 5AIA–BP co-crystal.

5AIA forms hydrogen bonds with two 5AIA molecules and two BP molecules. The 5AIA–BP interactions and one of the 5AIA–5AIA interactions are similar to those found in 5AIA– BE. The remaining 5AIA–5AIA interaction in 5AIA–BP consists solely of an N(amine)–H···OH hydrogen bond, as opposed to the N(amine)–H···O=C interaction found in 5AIA–BP. Interestingly, this results in a total of five hydrogen bonds in the 5AIA–BP structure compared to the six hydrogen bonds observed in 5AIA–BE.

5. Synthesis and crystallization

Solid BE (0.0119 g, 6.53×10^{-5} mol) and 5AIA (0.0109 g, 6.02×10^{-5} mol) were added to a 25 ml scintillation vial. To this was added approximately 15 ml of ethyl acetate followed by gentle heating. An additional 2 ml of methanol was added and all remaining solids dissolved. The loosely capped vial was then placed into a dark cabinet. After two weeks, yellow block-shaped crystals of the title compound suitable for single-crystal X-ray diffraction measurements were obtained.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Heteroatom hydrogen atoms were located in difference electron-density maps and freely refined. Hydrogen atoms attached to carbon atoms were refined using riding models with C-H = 0.95 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The BE was found to be disordered over two sets of sites in a 0.588 (3): 0.412 (3) ratio.

Table 2	
Experimental details.	

Crystal data Chemical formula M_{r} Crystal system, space group Temperature (K) *a*, *b*, *c* (Å) $V(Å^3)$ Ζ Radiation type $\mu \,({\rm mm}^{-1})$ Crystal size (mm) Data collection Diffractometer Absorption correction T_{\min}, T_{\max} No. of measured, independent and

observed $[I > 2\sigma(I)]$ reflections R_{int} $(\sin \theta/\lambda)_{\text{max}} (\text{\AA}^{-1})$

Refinement $R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S No. of reflections No. of parameters H-atom treatment

 $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} \text{ (e Å}^{-3})$

363.36 Monoclinic, $P2_1/n$ 90 10.1614 (10), 12.0782 (12), 14.0537 (14) 95.027(2)1718.2 (3) 4 Μο Κα 0.10 $0.22 \times 0.2 \times 0.18$ Bruker SMART APEXII CCD Multi-scan (SADABS; Bruker, 2014) 0.683, 0.747 24372, 6546, 4519 0.033 0.771

0.047, 0.143, 1.02 6546 378 H atoms treated by a mixture of independent and constrained refinement 0.40, -0.24

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXT (Sheldrick, 2015), SHELXL2014 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

Acknowledgements

This material is based upon work supported by the National Science Foundation under grant No. DMR-1455039.

References

- Brown, J. W., Henderson, B. L., Kiesz, M. D., Whalley, A. C., Morris, W., Grunder, S., Deng, H., Furukawa, H., Zink, J. I., Stoddart, J. F. & Yaghi, O. M. (2013). *Chem. Sci.* **4**, 2858–2864.
- Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Castellanos, S., Goulet-Hanssens, A., Zhao, F., Dikhtiarenko, A., Pustovarenko, A., Hecht, S., Gascon, J., Kapteijn, F. & Bléger, D. (2016). *Chem. Eur. J.* **22**, 746–752.
- Cox, J. M., Walton, I. M., Benson, C. A., Chen, Y.-S. & Benedict, J. B. (2015). J. Appl. Cryst. 48, 578–581.
- Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O'Keeffe, M. & Yaghi, O. M. (2002). *Science*, **295**, 469–472.
- Kongshaug, K. O. & Fjellvåg, H. (2003). J. Solid State Chem. 175, 182– 187.
- MacGillivray, L. R., Papaefstathiou, G. S., Friščić, T., Hamilton, T. D., Bučar, D.-K., Chu, Q., Varshney, D. B. & Georgiev, I. G. (2008). Acc. Chem. Res. 41, 280–291.

Patel, D. G. (D.), Walton, I. M., Cox, J. M., Gleason, C. J., Butzer, D. R. & Benedict, J. B. (2014). *Chem. Commun.* 50, 2653–2656. Sheldrick, G. M. (2015). *Acta Cryst.* C71, 3–8.

- Walton, I. M., Cox, J. M., Coppin, J. A., Linderman, C. M., Patel, D. G.
- (D.) & Benedict, J. B. (2013). *Chem. Commun.* 49, 8012–8014.
 Wang, H.-N., Meng, X., Yang, G.-S., Wang, X.-L., Shao, K.-Z., Su, Z.-M. & Wang, C.-G. (2011). *Chem. Commun.* 47, 7128–7130.
- Zeng, M.-H., Hu, S., Chen, Q., Xie, G., Shuai, Q., Gao, S.-L. & Tang, L.-Y. (2009). Inorg. Chem. 48, 7070-7079.
- Zhang, X., Zhu, B. & Guo, F. (2009). Asian J. Chem. 21, 7072-7076.

Acta Cryst. (2016). E72, 639-642 [doi:10.1107/S2056989016005259]

Crystal structure of the co-crystal of 5-aminoisophthalic acid and 1,2-bis-(pyridin-4-yl)ethene

Scott C. McGuire, Steven C. Travis, Daniel W. Tuohey, Thomas J. Deering, Bob Martin, Jordan M. Cox and Jason B. Benedict

Computing details

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009).

F(000) = 760

 $\theta = 2.8 - 22.0^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$

Block, yellow

 $0.22 \times 0.2 \times 0.18 \text{ mm}$

T = 90 K

 $D_{\rm x} = 1.405 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 428 reflections

5-Aminoisophthalic acid-1,2-bis(pyridin-4-yl)ethene (1/1)

Crystal data

 $C_{12}H_{10}N_2 \cdot C_8H_7NO_4$ $M_r = 363.36$ Monoclinic, $P2_1/n$ a = 10.1614 (10) Åb = 12.0782 (12) Åc = 14.0537 (14) Å $\beta = 95.027 (2)^{\circ}$ V = 1718.2 (3) Å³ Z = 4

Data collection	
Bruker SMART APEXII CCD	$T_{\min} = 0.683, \ T_{\max} = 0.747$
diffractometer	24372 measured reflections
Radiation source: microfocus rotating anode,	6546 independent reflections
Incoatec I μ s	4519 reflections with $I > 2\sigma(I)$
Mirror optics monochromator	$R_{\rm int} = 0.033$
Detector resolution: 7.9 pixels mm ⁻¹	$\theta_{\rm max} = 33.2^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$
ω scans	$h = -15 \rightarrow 15$
Absorption correction: multi-scan	$k = -16 \rightarrow 18$
(SADABS; Bruker, 2014)	$l = -19 \rightarrow 21$
Refinement	
Refinement on F^2	Hydrogen site location: mixed

Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.143$ S = 1.026546 reflections 378 parameters 0 restraints

tion: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0727P)^2 + 0.2884P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.40 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
01	0.21821 (10)	0.91797 (6)	0.42759 (6)	0.0299 (2)	
O2	0.18838 (9)	0.81890 (6)	0.55840 (5)	0.02654 (18)	
H2	0.1646 (19)	0.8932 (16)	0.5810 (13)	0.058 (5)*	
O3	0.35542 (10)	0.33662 (6)	0.42624 (6)	0.0309 (2)	
O4	0.35891 (9)	0.43117 (6)	0.56369 (5)	0.02640 (18)	
H4	0.388 (2)	0.3606 (16)	0.5933 (14)	0.064 (6)*	
N1	0.27113 (12)	0.63283 (8)	0.17186 (7)	0.0291 (2)	
H1A	0.2656 (17)	0.5692 (14)	0.1385 (12)	0.043 (4)*	
H1B	0.2351 (16)	0.6925 (14)	0.1424 (11)	0.040 (4)*	
C1	0.27076 (11)	0.62966 (8)	0.26981 (7)	0.02010 (19)	
C2	0.29909 (11)	0.53166 (8)	0.32097 (7)	0.02032 (19)	
H2A	0.3164	0.4657	0.2874	0.024*	
C3	0.30223 (10)	0.52951 (8)	0.42012 (7)	0.01921 (19)	
C4	0.27368 (11)	0.62462 (8)	0.47130 (7)	0.01990 (19)	
H4A	0.2728	0.6226	0.5388	0.024*	
C5	0.24644 (10)	0.72289 (8)	0.42033 (7)	0.01881 (19)	
C6	0.24657 (10)	0.72561 (8)	0.32144 (7)	0.01947 (19)	
H6	0.2300	0.7935	0.2884	0.023*	
C7	0.21669 (11)	0.82903 (8)	0.46877 (7)	0.0211 (2)	
C8	0.34070 (11)	0.42315 (8)	0.46985 (7)	0.0215 (2)	
C18	0.89056 (13)	0.89912 (9)	0.43551 (9)	0.0306 (3)	
H18	0.8831	0.9091	0.5019	0.037*	0.588 (3)
H18A	0.8865	0.9167	0.5011	0.037*	0.412 (3)
N2	0.9309 (8)	0.2578 (6)	0.1571 (3)	0.0206 (8)	0.588 (3)
N3	0.8888 (10)	0.9864 (5)	0.3724 (9)	0.0203 (11)	0.588 (3)
C9	0.9283 (3)	0.3491 (2)	0.1046 (2)	0.0259 (5)	0.588 (3)
H9	0.9195	0.3426	0.0370	0.031*	0.588 (3)
C10	0.9382 (2)	0.45426 (16)	0.1453 (2)	0.0246 (4)	0.588 (3)
H10	0.9393	0.5181	0.1058	0.029*	0.588 (3)
C11	0.94634 (18)	0.46501 (16)	0.24375 (18)	0.0202 (4)	0.588 (3)
C12	0.9527 (2)	0.36771 (18)	0.29764 (18)	0.0260 (5)	0.588 (3)
H12	0.9624	0.3709	0.3654	0.031*	0.588 (3)
C13	0.9446 (4)	0.2666 (3)	0.2511 (2)	0.0240 (6)	0.588 (3)
H13	0.9491	0.2008	0.2883	0.029*	0.588 (3)
C14	0.9425 (2)	0.57258 (15)	0.29274 (13)	0.0245 (5)	0.588 (3)
H14	0.9538	0.5724	0.3606	0.029*	0.588 (3)
C15	0.9246 (2)	0.66976 (15)	0.24941 (15)	0.0241 (4)	0.588 (3)
H15	0.9170	0.6692	0.1816	0.029*	0.588 (3)
C16	0.9152 (3)	0.7790 (2)	0.2963 (2)	0.0182 (5)	0.588 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C17	0.9045 (7)	0.7916 (5)	0.3934 (2)	0.0242 (8)	0.588 (3)
H17	0.9064	0.7278	0.4330	0.029*	0.588 (3)
C19	0.9010 (9)	0.9740 (6)	0.2814 (5)	0.0214 (8)	0.588 (3)
H19	0.8997	1.0381	0.2422	0.026*	0.588 (3)
C20	0.9153 (4)	0.8733 (3)	0.2402 (3)	0.0244 (6)	0.588 (3)
H20	0.9254	0.8678	0.1738	0.029*	0.588 (3)
C17A	0.9027 (10)	0.7907 (7)	0.4220 (4)	0.0258 (10)	0.412 (3)
H17A	0.9026	0.7388	0.4728	0.031*	0.412 (3)
C9A	0.9486 (4)	0.3433 (3)	0.0717 (3)	0.0219 (7)	0.412 (3)
H9A	0.9550	0.3259	0.0064	0.026*	0.412 (3)
C20A	0.9161 (6)	0.8429 (4)	0.2607 (4)	0.0260 (11)	0.412 (3)
H20A	0.9275	0.8265	0.1958	0.031*	0.412 (3)
N2A	0.9319 (11)	0.2579 (10)	0.1328 (4)	0.0202 (10)	0.412 (3)
N3A	0.8830 (15)	0.9861 (9)	0.3829 (13)	0.025 (2)	0.412 (3)
C19A	0.8995 (15)	0.9532 (9)	0.2902 (9)	0.034 (2)	0.412 (3)
H19A	0.8996	1.0094	0.2428	0.040*	0.412 (3)
C10A	0.9569 (3)	0.4532 (2)	0.0982 (3)	0.0243 (6)	0.412 (3)
H10A	0.9663	0.5087	0.0514	0.029*	0.412 (3)
C11A	0.9515 (3)	0.4826 (2)	0.1934 (3)	0.0195 (6)	0.412 (3)
C12A	0.9434 (3)	0.3974 (3)	0.2586 (3)	0.0250 (6)	0.412 (3)
H12A	0.9448	0.4125	0.3250	0.030*	0.412 (3)
C13A	0.9330 (6)	0.2880 (4)	0.2245 (4)	0.0293 (10)	0.412 (3)
H13A	0.9262	0.2309	0.2703	0.035*	0.412 (3)
C14A	0.9493 (3)	0.6007 (2)	0.21878 (19)	0.0235 (6)	0.412 (3)
H14A	0.9676	0.6526	0.1709	0.028*	0.412 (3)
C15A	0.9237 (3)	0.6405 (2)	0.3033 (2)	0.0226 (6)	0.412 (3)
H15A	0.9095	0.5884	0.3521	0.027*	0.412 (3)
C16A	0.9155 (4)	0.7585 (4)	0.3276 (3)	0.0186 (7)	0.412 (3)

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0508 (6)	0.0126 (3)	0.0286 (4)	0.0008 (3)	0.0170 (4)	-0.0002 (3)
0.0459 (5)	0.0155 (3)	0.0195 (3)	0.0059 (3)	0.0096 (3)	-0.0016 (3)
0.0510 (6)	0.0143 (3)	0.0270 (4)	0.0041 (3)	0.0012 (4)	-0.0046 (3)
0.0438 (5)	0.0149 (3)	0.0201 (3)	0.0063 (3)	0.0006 (3)	-0.0003 (3)
0.0510(7)	0.0180 (4)	0.0186 (4)	0.0067 (4)	0.0058 (4)	-0.0018 (3)
0.0246 (5)	0.0175 (4)	0.0187 (4)	0.0010 (4)	0.0046 (4)	-0.0022 (3)
0.0255 (5)	0.0148 (4)	0.0210 (4)	0.0017 (4)	0.0039 (4)	-0.0038 (3)
0.0242 (5)	0.0130 (4)	0.0206 (4)	0.0003 (3)	0.0030 (4)	-0.0012 (3)
0.0269 (5)	0.0142 (4)	0.0191 (4)	0.0002 (4)	0.0047 (4)	-0.0016 (3)
0.0235 (5)	0.0130 (4)	0.0206 (4)	-0.0001 (3)	0.0056 (4)	-0.0026 (3)
0.0236 (5)	0.0140 (4)	0.0213 (4)	0.0010 (3)	0.0050 (4)	-0.0006 (3)
0.0285 (5)	0.0142 (4)	0.0214 (4)	0.0004 (4)	0.0069 (4)	-0.0025 (3)
0.0285 (5)	0.0145 (4)	0.0217 (5)	-0.0002 (4)	0.0025 (4)	-0.0023 (3)
0.0394 (7)	0.0178 (5)	0.0360 (6)	0.0017 (4)	0.0118 (5)	-0.0001 (4)
0.0261 (11)	0.0147 (9)	0.021 (2)	-0.0007 (7)	0.0014 (18)	-0.0088 (18)
0.0306 (19)	0.0099 (16)	0.022 (3)	0.0050 (11)	0.0112 (14)	-0.0001 (12)
	U^{11} 0.0508 (6) 0.0459 (5) 0.0510 (6) 0.0438 (5) 0.0510 (7) 0.0246 (5) 0.0245 (5) 0.0245 (5) 0.0235 (5) 0.0236 (5) 0.0285 (5) 0.0285 (5) 0.0394 (7) 0.0261 (11) 0.0306 (19)	U^{11} U^{22} 0.0508 (6) 0.0126 (3) 0.0459 (5) 0.0155 (3) 0.0510 (6) 0.0143 (3) 0.0438 (5) 0.0149 (3) 0.0510 (7) 0.0180 (4) 0.0246 (5) 0.0175 (4) 0.0255 (5) 0.0148 (4) 0.0269 (5) 0.0142 (4) 0.0236 (5) 0.0142 (4) 0.0285 (5) 0.0142 (4) 0.0285 (5) 0.0142 (4) 0.0285 (5) 0.0145 (4) 0.0285 (5) 0.0145 (4) 0.0294 (7) 0.0178 (5) 0.0261 (11) 0.0099 (16)	U^{11} U^{22} U^{33} 0.0508 (6) 0.0126 (3) 0.0286 (4) 0.0459 (5) 0.0155 (3) 0.0195 (3) 0.0510 (6) 0.0143 (3) 0.0270 (4) 0.0438 (5) 0.0149 (3) 0.0201 (3) 0.0510 (7) 0.0180 (4) 0.0186 (4) 0.0246 (5) 0.0175 (4) 0.0187 (4) 0.0255 (5) 0.0148 (4) 0.0210 (4) 0.0269 (5) 0.0142 (4) 0.0191 (4) 0.0269 (5) 0.0142 (4) 0.0191 (4) 0.0236 (5) 0.0140 (4) 0.0213 (4) 0.0285 (5) 0.0142 (4) 0.0214 (4) 0.0285 (5) 0.0145 (4) 0.0217 (5) 0.0394 (7) 0.0178 (5) 0.0360 (6) 0.0261 (11) 0.0099 (16) 0.022 (3)	U^{11} U^{22} U^{33} U^{12} 0.0508 (6)0.0126 (3)0.0286 (4)0.0008 (3)0.0459 (5)0.0155 (3)0.0195 (3)0.0059 (3)0.0510 (6)0.0143 (3)0.0270 (4)0.0041 (3)0.0438 (5)0.0149 (3)0.0201 (3)0.0063 (3)0.0510 (7)0.0180 (4)0.0186 (4)0.0067 (4)0.0246 (5)0.0175 (4)0.0187 (4)0.0010 (4)0.0255 (5)0.0148 (4)0.0210 (4)0.0017 (4)0.0246 (5)0.0130 (4)0.0206 (4)0.0003 (3)0.0246 (5)0.0130 (4)0.0206 (4)0.0003 (3)0.0245 (5)0.0142 (4)0.0191 (4)0.0002 (4)0.0235 (5)0.0140 (4)0.0213 (4)0.0004 (4)0.0285 (5)0.0145 (4)0.0217 (5) $-0.0002 (4)$ 0.0285 (5)0.0178 (5)0.0360 (6)0.0017 (4)0.0261 (11)0.0147 (9)0.021 (2) $-0.0007 (7)$ 0.0306 (19)0.0099 (16)0.022 (3)0.0050 (11)	U^{11} U^{22} U^{33} U^{12} U^{13} $0.0508(6)$ $0.0126(3)$ $0.0286(4)$ $0.0008(3)$ $0.0170(4)$ $0.0459(5)$ $0.0155(3)$ $0.0195(3)$ $0.0059(3)$ $0.0096(3)$ $0.0510(6)$ $0.0143(3)$ $0.0270(4)$ $0.0041(3)$ $0.0012(4)$ $0.0438(5)$ $0.0149(3)$ $0.0201(3)$ $0.0063(3)$ $0.0006(3)$ $0.0510(7)$ $0.0180(4)$ $0.0186(4)$ $0.0067(4)$ $0.0058(4)$ $0.0246(5)$ $0.0175(4)$ $0.0187(4)$ $0.0010(4)$ $0.0046(4)$ $0.0255(5)$ $0.0148(4)$ $0.0210(4)$ $0.0017(4)$ $0.0039(4)$ $0.0242(5)$ $0.0130(4)$ $0.0206(4)$ $0.0003(3)$ $0.0030(4)$ $0.0269(5)$ $0.0142(4)$ $0.0191(4)$ $0.0002(4)$ $0.0047(4)$ $0.0235(5)$ $0.0140(4)$ $0.0213(4)$ $0.0010(3)$ $0.0050(4)$ $0.0236(5)$ $0.0142(4)$ $0.0217(5)$ $-0.0002(4)$ $0.0025(4)$ $0.0285(5)$ $0.0145(4)$ $0.0217(5)$ $-0.0002(4)$ $0.0025(4)$ $0.0285(5)$ $0.0145(4)$ $0.0217(5)$ $-0.0002(4)$ $0.0025(4)$ $0.0285(5)$ $0.0145(5)$ $0.0360(6)$ $0.0017(4)$ $0.0118(5)$ $0.0261(11)$ $0.0178(5)$ $0.022(3)$ $0.0050(11)$ $0.0112(14)$

С9	0.0351 (14)	0.0194 (9)	0.0238 (13)	-0.0024 (8)	0.0066 (10)	-0.0027 (10)
C10	0.0400 (12)	0.0158 (8)	0.0182 (11)	-0.0012 (7)	0.0044 (9)	-0.0006 (8)
C11	0.0232 (9)	0.0158 (10)	0.0219 (11)	-0.0012 (6)	0.0037 (7)	-0.0024 (7)
C12	0.0388 (12)	0.0170 (9)	0.0225 (10)	0.0016 (8)	0.0038 (9)	-0.0012 (8)
C13	0.0341 (13)	0.0160 (13)	0.0225 (15)	0.0007 (10)	0.0055 (12)	-0.0034 (9)
C14	0.0348 (11)	0.0173 (9)	0.0218 (8)	0.0012 (7)	0.0053 (7)	-0.0064 (6)
C15	0.0325 (10)	0.0176 (8)	0.0223 (9)	-0.0004 (7)	0.0021 (7)	-0.0056 (7)
C16	0.0226 (9)	0.0109 (14)	0.0211 (13)	0.0001 (8)	0.0021 (10)	0.0004 (10)
C17	0.0346 (13)	0.0133 (9)	0.026 (2)	0.0011 (8)	0.0086 (18)	-0.0038 (17)
C19	0.0301 (15)	0.0192 (19)	0.0155 (15)	0.0019 (14)	0.0054 (11)	-0.0047 (15)
C20	0.0324 (12)	0.0204 (16)	0.0205 (14)	0.0012 (12)	0.0019 (10)	-0.0034 (10)
C17A	0.0330 (18)	0.0195 (15)	0.027 (3)	0.0003 (12)	0.011 (3)	-0.005 (2)
C9A	0.0281 (17)	0.0136 (11)	0.0247 (18)	-0.0015 (10)	0.0065 (14)	-0.0010 (13)
C20A	0.0378 (18)	0.019 (3)	0.021 (2)	0.0028 (19)	0.0022 (17)	-0.0085 (17)
N2A	0.0234 (15)	0.0201 (13)	0.017 (3)	0.0010 (10)	-0.001 (2)	-0.010 (2)
N3A	0.026 (3)	0.033 (4)	0.016 (3)	-0.001 (2)	0.008 (2)	-0.011 (2)
C19A	0.039 (3)	0.029 (4)	0.032 (3)	-0.002 (3)	0.0015 (19)	0.006 (2)
C10A	0.0320 (15)	0.0166 (11)	0.0243 (15)	-0.0019 (10)	0.0035 (12)	-0.0024 (10)
C11A	0.0250 (13)	0.0163 (11)	0.0170 (15)	-0.0012 (9)	0.0008 (10)	-0.0038 (11)
C12A	0.0386 (17)	0.0155 (16)	0.0209 (15)	0.0010 (11)	0.0017 (12)	-0.0020 (11)
C13A	0.041 (2)	0.019 (2)	0.027 (3)	0.0004 (15)	0.0012 (19)	0.0024 (15)
C14A	0.0299 (14)	0.0125 (10)	0.0283 (13)	-0.0003 (9)	0.0033 (10)	-0.0035 (9)
C15A	0.0308 (14)	0.0119 (12)	0.0251 (14)	0.0007 (9)	0.0020 (10)	-0.0013 (9)
C16A	0.0207 (13)	0.0107 (14)	0.024 (2)	0.0002 (10)	0.0012 (14)	0.0033 (15)

Geometric parameters (Å, °)

01	1.2209 (12)	C12—H12	0.9500
O2—H2	0.990 (19)	C12—C13	1.385 (4)
O2—C7	1.3222 (12)	C13—H13	0.9500
O3—C8	1.2274 (12)	C14—H14	0.9500
O4—H4	0.98 (2)	C14—C15	1.327 (3)
O4—C8	1.3191 (12)	C15—H15	0.9500
N1—H1A	0.899 (17)	C15—C16	1.482 (3)
N1—H1B	0.894 (17)	C16—C17	1.387 (4)
N1—C1	1.3775 (13)	C16—C20	1.385 (3)
C1—C2	1.4017 (14)	C17—H17	0.9500
C1—C6	1.4005 (13)	C19—H19	0.9500
C2—H2A	0.9500	C19—C20	1.360 (7)
C2—C3	1.3912 (14)	C20—H20	0.9500
C3—C4	1.3991 (13)	C17A—H17A	0.9500
C3—C8	1.4979 (14)	C17A—C16A	1.399 (6)
C4—H4A	0.9500	С9А—Н9А	0.9500
C4—C5	1.4014 (13)	C9A—N2A	1.361 (10)
C5—C6	1.3902 (14)	C9A—C10A	1.379 (4)
С5—С7	1.4948 (13)	C20A—H20A	0.9500
С6—Н6	0.9500	C20A—C19A	1.410 (11)
C18—H18	0.9500	C20A—C16A	1.388 (5)

C18—H18A	0.9500	N2A—C13A	1.338 (7)
C18—N3	1.376 (9)	N3A—C19A	1.39 (2)
C18—C17	1.439 (5)	C19A—H19A	0.9500
C18—C17A	1.331 (9)	C10A—H10A	0.9500
C18—N3A	1.283 (13)	C10A—C11A	1.390 (5)
N2—C9	1.326 (7)	C11A—C12A	1.385 (4)
N2—C13	1.320 (5)	C11A—C14A	1.472 (4)
N3—C19	1.305 (13)	C12A—H12A	0.9500
С9—Н9	0.9500	C12A—C13A	1.406 (6)
C9—C10	1.392 (3)	С13А—Н13А	0.9500
С10—Н10	0.9500	C14A—H14A	0.9500
C10—C11	1,386 (3)	C14A - C15A	1.329 (4)
C11—C12	1 397 (3)	C15A—H15A	0.9500
C11—C14	1 472 (2)	C15A - C16A	1 469 (5)
	1.1/2 (2)		1.105 (5)
С7—О2—Н2	107.5 (11)	C15—C14—C11	125.02 (18)
C8—O4—H4	111.7 (11)	C15—C14—H14	117.5
H1A—N1—H1B	116.4 (15)	C14—C15—H15	116.7
C1—N1—H1A	119.4 (11)	C14—C15—C16	126.5 (2)
C1—N1—H1B	116.6 (10)	C16—C15—H15	116.7
N1—C1—C2	121.17 (9)	C17—C16—C15	123.3 (3)
N1—C1—C6	120.72 (9)	C20—C16—C15	118.4 (3)
C6—C1—C2	118.07 (9)	C20—C16—C17	118.3 (4)
C1—C2—H2A	119.5	C18—C17—H17	119.2
C3—C2—C1	121.01 (9)	C16—C17—C18	121.5 (4)
C3—C2—H2A	119.5	C16—C17—H17	119.2
C2—C3—C4	120.80 (9)	N3—C19—H19	118.6
C2—C3—C8	117.74 (8)	N3—C19—C20	122.9 (6)
C4—C3—C8	121.44 (9)	С20—С19—Н19	118.6
C3—C4—H4A	120.9	С16—С20—Н20	120.4
C3—C4—C5	118.24 (9)	C19—C20—C16	119.2 (4)
C5—C4—H4A	120.9	С19—С20—Н20	120.4
C4—C5—C7	122.17 (9)	C18—C17A—H17A	122.4
C6-C5-C4	120.90 (9)	C18—C17A—C16A	115.3 (5)
C6—C5—C7	116.93 (8)	C16A—C17A—H17A	122.4
С1—С6—Н6	119.5	N2A—C9A—H9A	117.7
C5—C6—C1	120.93 (9)	N2A—C9A—C10A	124.5 (5)
С5—С6—Н6	119.5	С10А—С9А—Н9А	117.7
01	123.09 (9)	C19A—C20A—H20A	120.4
O1—C7—C5	121.82 (9)	C16A—C20A—H20A	120.4
02	115.09 (8)	C16A—C20A—C19A	119.2 (6)
O3—C8—O4	123.31 (9)	C13A—N2A—C9A	114.3 (9)
03-C8-C3	122.38 (9)	C18—N3A—C19A	107.5 (10)
04—C8—C3	114.30 (8)	C20A—C19A—H19A	117.5
N3—C18—H18	122.5	N3A—C19A—C20A	125.0 (9)
N3—C18—C17	115.0 (5)	N3A—C19A—H19A	117.5
C17—C18—H18	122.5	C9A—C10A—H10A	120.1
C17A—C18—H18A	111.8	C9A—C10A—C11A	119.9 (3)

N3A—C18—H18A	111.8	C11A—C10A—H10A	120.1
N3A—C18—C17A	136.5 (8)	C10A—C11A—C14A	118.9 (3)
C13—N2—C9	119.0 (5)	C12A—C11A—C10A	117.2 (2)
C19—N3—C18	123.1 (6)	C12A—C11A—C14A	123.8 (3)
N2—C9—H9	118.9	C11A—C12A—H12A	120.7
N2—C9—C10	122.3 (3)	C11A—C12A—C13A	118.6 (3)
С10—С9—Н9	118.9	C13A—C12A—H12A	120.7
C9—C10—H10	120.3	N2A—C13A—C12A	125.3 (6)
C11—C10—C9	119.4 (2)	N2A—C13A—H13A	117.4
C11—C10—H10	120.3	С12А—С13А—Н13А	117.4
C10-C11-C12	117 31 (16)	C11A - C14A - H14A	117.4
C10-C11-C14	123.2 (2)	C15A— $C14A$ — $C11A$	125.2 (3)
C12-C11-C14	1194(2)	C15A - C14A - H14A	117.4
C11 - C12 - H12	120.4	C14A - C15A - H15A	117.3
C_{13} C_{12} C_{11}	119 2 (2)	C14A - C15A - C16A	125.3(3)
C13 - C12 - H12	120.4	C_{16A} C_{15A} H_{15A}	117.3
N_{2} C_{13} C_{12}	120.1 122.7(4)	C17A - C16A - C15A	120.1(5)
N2H13	118.6	C_{20A} C_{16A} C_{17A}	120.1(5) 1164(5)
C_{12} C_{13} H_{13}	118.6	$C_{20A} - C_{16A} - C_{15A}$	123.5(4)
C11 C14 H14	117.5	C2011 C1011 C1511	125.5 (4)
	117.5		
N1 - C1 - C2 - C3	178 19 (10)	C11 - C14 - C15 - C16	177.6(2)
$N_1 - C_1 - C_6 - C_5$	-179.82(10)	C_{12} C_{11} C_{14} C_{15} C_{15}	-173.6(2)
C1 - C2 - C3 - C4	1 71 (16)	$C_{12} = C_{11} = C_{14} = C_{15}$	-0.7(9)
$C_1 = C_2 = C_3 = C_4$	-176.64(10)	$C_{14} = C_{11} = C_{12} = C_{13}$	174 A (3)
$C_1 - C_2 - C_3 - C_8$	-2.05(16)	C14-C15-C16-C17	-100(5)
$C_2 = C_1 = C_0 = C_3$	-2.00(16)	$C_{14} = C_{15} = C_{16} = C_{17}$	10.0(3) 170.8(3)
$C_2 = C_3 = C_4 = C_3$	-7.84(17)	$C_{14} = C_{15} = C_{10} = C_{20}$	-177.6(3)
$C_2 = C_3 = C_8 = O_3$	7.04(17)	$C_{15} = C_{16} = C_{17} = C_{18}$	177.0(3)
$C_2 = C_3 = C_6 = C_4$	1/1.27(10)	C17 C18 N3 C10	-11(12)
$C_{3} = C_{4} = C_{5} = C_{0}$	-17015(10)	C17 C18 C17A C16A	1.1(12) 1.4(17)
$C_{3} - C_{4} - C_{3} - C_{7}$	173.81(11)	C17 C18 N3A C10A	-3.8(17)
$C_{4} = C_{3} = C_{8} = O_{3}$	-7.07(15)	C17 - C16 - C19A	-20(7)
$C_{4} = C_{5} = C_{6} = C_{4}$	1.56 (16)	$C_{17} = C_{10} = C_{20} = C_{13}$	2.0(7)
$C_{4} = C_{5} = C_{6} = C_{1}$	1.50(10)	$C_{20} = C_{10} = C_{17} = C_{18}$	-0.5(14)
$C_{4} = C_{5} = C_{7} = O_{1}$	-14.70(15)	C17A = C18 = C17 = C16	-170(3)
$C_{4} = C_{3} = C_{7} = C_{2}^{3}$	14.70(13)	C17A = C18 = C17 = C10	-43(18)
$C_{0} - C_{1} - C_{2} - C_{3}$	-14.15(16)	$C_{1/A} = C_{10} = N_{3A} = C_{12A}$	4.3(10)
$C_{0} = C_{1} = C_{1} = C_{1}$	-14.13(10) 165.55(10)	$C_{9A} = N_{2A} = C_{13A} = C_{12A}$	3.1(13) 2.7(4)
$C_{0} = C_{0} = C_{1} = C_{2}$	-178.60(10)	$C_{A} = C_{10A} = C_{11A} = C_{12A}$	2.7(4) -174.0(3)
$C^{8} = C^{3} = C^{4} = C^{5}$	176.09(10)	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	16(8)
$C_{0} = C_{1} = C_{1} = C_{1}$	1/0.09(10)	$N_{2A} = C_{3A} = C_{10A} = C_{11A}$	-150(0)
$C_{18} = C_{174} = C_{164} = C_{204}$	0.0(13)	$N_{3A} = C_{18} = N_{3} = C_{17}$	139(11)
$C_{18} = C_{17A} = C_{16A} = C_{20A}$	(9) = (177, 2, (5))	$N_{3A} = C_{18} = C_{17A} = C_{16A}$	2.3(10)
C18 N2A C10A C20A	2(1)	$C_{10A} = C_{10} = C_{1/A} = C_{10A} = C_{10$	2.0(13)
N2 C0 C10 C11	(2)	$C_{17A} = C_{20A} = C_{10A} = C_{17A}$	2.1(11) 1760(9)
112 - 09 - 010 - 011	2.3(0)	$C_{10A} = C_{20A} = C_{10A} = C_{12A}$	-4.4.(12)
$1N_{3} - (10 - (17) - (10))$	0.0(8)	C10A - C11A - C12A - C12A	-4.4(12)
INJ	-0.3 (12)	UIUA—UIIA—UI2A—UI3A	-3.8 (3)

C10—C11—C14—C15 3.5 (3) C14A—C15A—C16A—C20A 9.1 (6) C11—C12—C13—N2 -0.1 (6) C16A—C20A—C19A—N3A 0.5 (19)	N3—C18—N3A—C19A N3—C19—C20—C16 C9—N2—C13—C12 C9—C10—C11—C12 C9—C10—C11—C14 C10—C11—C12—C13 C10—C11—C14—C15 C11—C12—C13—N2	19 (9) 1.0 (12) 1.9 (9) 4.0 (3) -173.2 (2) -2.9 (3) 3.5 (3) -0.1 (6)	C10A—C11A—C14A—C15A C11A—C12A—C13A—N2A C11A—C14A—C15A—C16A C12A—C11A—C14A—C15A C14A—C11A—C12A—C13A C14A—C15A—C16A—C17A C14A—C15A—C16A—C20A C16A—C20A—C19A—N3A	168.9 (3) 0.9 (9) -177.1 (3) -8.5 (5) 173.6 (4) -172.8 (5) 9.1 (6) 0.5 (19)
--	--	---	--	--

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1A····O1 ⁱ	0.899 (17)	2.062 (17)	2.9540 (13)	171.0 (15)
N1—H1 <i>B</i> ···O3 ⁱⁱ	0.894 (17)	2.157 (17)	3.0500 (13)	178.6 (13)
O2—H2····N3 ⁱⁱⁱ	0.989 (19)	1.70 (2)	2.688 (8)	173.4 (18)
O2—H2···N3A ⁱⁱⁱ	0.989 (19)	1.63 (2)	2.619 (12)	177 (2)
O4—H4···N2 ^{iv}	0.98 (2)	1.72 (2)	2.702 (7)	173.2 (19)
$O4$ — $H4$ ··· $N2A^{iv}$	0.98 (2)	1.59 (2)	2.566 (11)	175 (2)

Symmetry codes: (i) -x+1/2, y-1/2, -z+1/2; (ii) -x+1/2, y+1/2, -z+1/2; (iii) -x+1, -y+2, -z+1; (iv) x-1/2, -y+1/2, z+1/2.