CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 19 February 2016
Accepted 27 February 2016

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; metal-organic framework; chiral network; $(10,3)$-a topology.

CCDC reference: 1456364

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \bigodot ACCESS

Crystal structure of poly[(4-aminopyridine- κN)(N, N-dimethylformamide- κO) (μ_{3}-pyridine-3,5-di-carboxylato- $\left.\kappa^{3} N: O^{3}: O^{5}\right)$ copper(II)]

Cheng-Chen Shen, Xiu-Ni Hua and Lei Han*

Institute of Inorganic Materials, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China. *Correspondence e-mail: hanlei@nbu.edu.cn

The title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right]_{n}\right.$, is an amino-functionalized chiral metal-organic framework with (10,3)-a topology. It has been constructed via the assembly of the achiral triconnected pyridine-3,5-dicarboxylate ($3,5-\mathrm{PDC}$) building block and a triconnected $\mathrm{Cu}^{\mathrm{II}}$ atom. Each $\mathrm{Cu}^{\mathrm{II}}$ ion is coordinated by two O atoms and one N atom, respectively, of three crystallographically independent $3,5-\mathrm{PDC}$ ligands. The square-pyramidal ($\mathrm{CuN}_{2} \mathrm{O}_{3}$) coordination geometry of the $\mathrm{Cu}^{\mathrm{II}}$ ion is completed by an N atom of a terminal 4 -aminopyridine (4-APY) ligand and the O atom of a terminal N, N-dimethylformamide (DMF) ligand to give a triconnected ' T '-shaped secondary building unit, which becomes trigonal in the resulting $(10,3)-a$ topology. In the three-dimensional structure, weak $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are observed in which the donor $\mathrm{N}-\mathrm{H}$ groups are provided by the 4-APY ligands and the acceptor O atoms are provided by the non-coordinating carboxylate O atoms of the $3,5-\mathrm{PDC}$ ligands.

1. Chemical context

Research on metal-organic frameworks (MOFs) has attracted much attention in recent years not only for their great potential applications, such as in gas storage, separation, fluorescence and magnetism, but also for their intriguing topologies and structural diversity (Allendorf et al., 2009). Of special interest is the rational design and synthesis of chiral networks, which offer great potential in non-linear optics, asymmetric catalysis, and chiral separation (Evans \& Lin, 2002; Zhang \& Xiong, 2012). Therefore, a logical target for synthesis would be a default structure that possesses chirality. The (10,3)-a network meets these requirements since it is mutually chiral and regarded as the default three-dimensional structure for the assembly of triconnected building blocks (Eubank et al., 2005; Han et al., 2013a).

On the other hand, amino-functionalized porous metalorganic frameworks have also attracted much attention. Recent research on amino-functionalized MOFs revealed that they have high CO_{2} adsorption capacity at lower pressure due to the potential interaction between amino groups and CO_{2} (Couck et al., 2009). Amino-functionalized MOFs can also act as reaction active sites for the post-synthesis modification of metal-organic frameworks (Shultz et al., 2011).

As a continuation of our group research on the assembly of amino-functionalized chiral metal-organic frameworks (Han et al., 2011, 2013b; Pan et al., 2014), we herein report the preparation and crystal structure of $\mathrm{Cu}(3,5-\mathrm{PDC})(4-\mathrm{APY})$ (DMF), (3,5-PDC $=$ pyridine-3,5-dicarboxylate, 4-APY $=$

4-aminopyridine, $\mathrm{DMF}=N, N$-dimethylformamide), which was constructed via the assembly of the achiral triconnected building block pyridine-3,5-dicarboxylate (3,5- PDC) and a triconnected $\mathrm{Cu}^{\text {II }}$ atom, $\mathrm{CuN}\left(\mathrm{CO}_{2}\right)_{2}$, synthesized in situ. The title compound is an interesting example of an amino-functionalized chiral metal-organic framework with $(10,3)-a$ topology assembled from achiral ligands. This amino-functionalized chiral framework can be used for depositing small gold nanoparticles using a solution-based adsorption/reduction preparation method, and offer myriad opportunities for chiral catalysis.

2. Structural commentary

The asymmetric unit of the title compound, $\mathrm{Cu}(3,5-\mathrm{PDC})(4-$ APY)(DMF), contains one $\mathrm{Cu}^{\text {II }}$ ion, one $3,5-\mathrm{PDC}$ anion, one 4-apy molecule and one DMF molecule. As shown in Fig. 1, each $\mathrm{Cu}^{\text {II }}$ ion adopts a square-pyramidal $\left(\mathrm{CuN}_{2} \mathrm{O}_{3}\right)$ coordin-

Figure 1
The asymmetric unit of title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) $x-\frac{1}{2},-y+\frac{1}{2},-z+1$; (ii) $-x, y-\frac{1}{2},-z+\frac{3}{2}$; (iii) $-x$, $y+\frac{1}{2},-z+\frac{3}{2}$; (iv) $x+\frac{1}{2},-y+\frac{1}{2},-z+1$.]

Figure 2
Crystal packing of the title compound viewed along the a axis, showing hydrogen bonds as dashed lines.
ation geometry. In the equatorial plane, the $\mathrm{Cu}^{\mathrm{II}}$ ion is coordinated by two oxygen atoms and one nitrogen atom, respectively, of three crystallographically independent $3,5-$ PDC ligands, and one nitrogen atom of a terminal 4-APY ligand. The oxygen atom of a terminal DMF molecule is bonded to the $\mathrm{Cu}^{\mathrm{II}}$ ion in the axial position to complete the square-pyramidal coordination geometry. The bond lengths and bond angles around the $\mathrm{Cu}^{\mathrm{II}}$ ion are in good agreement with similar structures (Eubank et al., 2005; Lu et al., 2006). The axial $\mathrm{Cu}-\mathrm{O}_{\mathrm{DMF}}$ bond length [2.396 (4) \AA A is longer than the equatorial $\mathrm{Cu}-\mathrm{O}_{\text {carboxylate }}$ and $\mathrm{Cu}-\mathrm{N}_{4 \text {-APY }}$ bonds due to the Jahn-Teller effect of the Cu^{2+} atom.

The three-dimensional structure of the title compound viewed along the a axis is shown in Fig. 2. To analyse the topology, the square-pyramidal coordination geometry of copper can act as a ' T '-shaped triconnected secondary building unit (Fig. 2), which becomes trigonal in the resulting topology. At the same time, 3,5-PDC acts as another triconnected node since it possesses two deprotonated carboxylic acid coordinating sites, and a third, neutral aromatic nitrogen coordinating site. As a result, the desired triconnected $(10,3)-a$ network is obtained, as shown in Fig. 3. The terminally coor-

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H3A ${ }^{\cdots} \mathrm{O}^{\text {i }}$	0.86	2.28	$3.101(7)$	159
N3-H3B \cdots O $^{\text {ii }}$	0.86	2.23	$2.933(7)$	139

Symmetry codes: (i) $x-1, y-1, z$; (ii) $-x-1, y-\frac{1}{2},-z+\frac{3}{2}$.
dinated 4-APY and DMF ligands are oriented to the interior of the channels and thus prevent self-interpenetration. The (10,3)-a topology leads to an enantiopure network of the title compound (Eubank et al., 2005; Han et al., 2013a), despite being formed solely from achiral molecular units.

3. Supramolecular features

By introducing 4 -aminopyridine as co-ligand, the aminofunctionalized chiral metal-organic framework was successfully designed and synthesized. Additionally, the $-\mathrm{NH}_{2}$ group of the 4-APY ligand can act as the donor $\mathrm{N}-\mathrm{H}$ groups to form hydrogen bonds (Han et al., 2011). In the three-dimensional structure of the title compound, weak $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are observed (Table 1) in which the acceptors are provided by the non-coordinating oxygen atoms of the carboxylate groups of the $3,5-\mathrm{PDC}$ ligands.

4. Synthesis and crystallization

The title compound was prepared by a solvothermal method. A mixture of pyridine-3,5-dicarboxylic acid $(0.0339 \mathrm{~g}$, $0.2 \mathrm{mmol})$, 4-aminopyridine $(0.0098 \mathrm{~g}, \quad 0.10 \mathrm{mmol})$ and $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.0484 \mathrm{~g}, 0.20 \mathrm{mmol})$ in 6 ml DMF solution was stirred at room temperature for 30 minutes, and subsequently sealed in a 25 ml Teflon-lined stainless steel reactor. The reactor was heated at 363 K for 3 d . A crop of blue, blockshaped single crystals of the title compound was obtained after cooling the solution to room temperature. The yield was approximately 70% based on Cu salt.

Figure 3
A representation of the $(10,3)-a$ topology.

Table 2
Experimental details.

Cry
Ch
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections $R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
Absolute structure
Absolute structure parameter
$\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2}\right)-\right.$ $\left.\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)\right]$
395.86

Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
293
8.3365 (17), 10.453 (2), 19.030 (4)
1658.2 (6)

4
Mo $K \alpha$
1.35
$0.24 \times 0.20 \times 0.19$

Bruker APEXII DUO CCD

Analytical [based on measured indexed crystal faces using SHELXL2014 (Sheldrick, 2015b)]
0.716, 0.773

16376, 3799, 2926
0.051
0.649
$0.039,0.132,1.15$
3799
226
H-atom parameters constrained
$0.79,-1.17$
Flack (1983), 1619 Friedel pairs
0.00 (2)

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), XP in SHELXTL-Plus (Sheldrick, 2008) and publCIF (Westrip, 2010).

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were placed in geometrically idealized positions and refined in a riding-model approximation on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C})$ (aromatic) and $1.5 U_{\text {eq }}(\mathrm{C})$ (methyl) with $\mathrm{C}-\mathrm{H}=$ $0.93 \AA$ (aromatic) and $0.96 \AA$ (methyl), and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{N})$ with $\mathrm{N}-\mathrm{H}=0.86 \AA$.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21471086), the Social Development Foundation of Ningbo (No. 2014C50013) and the K. C. Wong MagnaFund in Ningbo University.

References

Allendorf, M. D., Bauer, C. A., Bhakta, R. K. \& Houk, R. J. (2009). Chem. Soc. Rev. 38, 1330-1352.
Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Couck, S., Denayer, J. F. M., Baron, G. V., Rémy, T., Gascon, J. \& Kapteijn, F. (2009). J. Am. Chem. Soc. 131, 6326-6327.
Eubank, J. F., Walsh, R. D. \& Eddaoudi, M. (2005). Chem. Commun. pp. 2095-2097.

Evans, O. R. \& Lin, W. B. (2002). Acc. Chem. Res. 35, 511-522.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Han, L., Qin, L., Xu, L.-P. \& Zhao, W.-N. (2013a). Inorg. Chem. 52, 1667-1669.
Han, L., Qin, L., Yan, X.-Z., Xu, L.-P., Sun, J.-L., Yu, L., Chen, H.-B. \& Zou, X.-D. (2013b). Cryst. Growth Des. 13, 1807-1811.
Han, L., Xu, L.-P. \& Zhao, W.-N. (2011). Acta Cryst. C67, m227-m229.
Lu, Y.-L., Wu, J.-Y., Chan, M.-C., Huang, S.-M., Lin, C.-S., Chiu, T.-W., Liu, Y.-H., Wen, Y.-S., Ueng, C.-H., Chin, T.-M., Hung, C.-H. \& Lu, K.-L. (2006). Inorg. Chem. 45, 2430-2437.

Pan, L., Liu, G., Li, H., Meng, S., Han, L., Shang, J., Chen, B., PlateroPrats, A. E., Lu, W., Zou, X. \& Li, R. W. (2014). J. Am. Chem. Soc. 136, 17477-17483.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Shultz, A. M., Sarjeant, A. A., Farha, O. K., Hupp, J. T. \& Nguyen, S. T. (2011). J. Am. Chem. Soc. 133, 13252-13255.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Zhang, W. \& Xiong, R.-G. (2012). Chem. Rev. 112, 1163-1195.

supporting information

Crystal structure of poly[(4-aminopyridine- $\kappa \mathrm{N})(\mathrm{N}, \mathrm{N}$-dimethylformamide- $\kappa \mathrm{O})$ (μ_{3}-pyridine-3,5-dicarboxylato- $\kappa^{3} N: O^{3}: O^{5}$) copper(II)]

Cheng-Chen Shen, Xiu-Ni Hua and Lei Han

Computing details

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Poly[(4-aminopyridine- $\kappa N)(N, N$-dimethylformamide- $\kappa O)\left(\mu_{3}\right.$-pyridine-3,5-dicarboxylato- $\left.\kappa^{3} N: O^{3}: O^{5}\right) \operatorname{copper}($ II)]

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)\right]$
$M_{r}=395.86$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=8.3365$ (17) \AA
$b=10.453$ (2) \AA
$c=19.030$ (4) \AA
$V=1658.2(6) \AA^{3}$
$Z=4$
$F(000)=812$
$D_{\mathrm{x}}=1.586 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2974 reflections
$\theta=3.1-27.5^{\circ}$
$\mu=1.35 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, blue
$0.24 \times 0.20 \times 0.19 \mathrm{~mm}$

Data collection

Bruker APEXII DUO CCD diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator

ω-scans

Absorption correction: analytical
[based on measured indexed crystal faces using
SHELXL2014 (Sheldrick, 2015b)]
$T_{\min }=0.716, T_{\text {max }}=0.773$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.132$
$S=1.15$
3799 reflections
226 parameters
0 restraints

16376 measured reflections
3799 independent reflections
2926 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.051$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=3.1^{\circ}$
$h=-10 \rightarrow 10$
$k=-13 \rightarrow 13$
$l=-24 \rightarrow 22$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0573 P)^{2}+1.9518 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.013$
$\Delta \rho_{\text {max }}=0.79 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.17 \mathrm{e}^{-3}$

Absolute structure: Flack (1983), 1619 Friedel pairs
Absolute structure parameter: 0.00 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Cu 1	-0.23946 (7)	0.10503 (5)	0.62338 (2)	0.02797 (16)
O1	0.0648 (5)	0.3766 (4)	0.83488 (17)	0.0497 (10)
O2	0.2102 (4)	0.5278 (3)	0.78331 (16)	0.0348 (8)
O3	0.3228 (5)	0.4977 (4)	0.5253 (2)	0.0498 (11)
O4	0.2342 (5)	0.3222 (3)	0.47057 (14)	0.0337 (7)
O5	-0.4048 (6)	0.2700 (4)	0.6723 (3)	0.0605 (12)
N1	-0.0413 (5)	0.2178 (4)	0.63928 (18)	0.0284 (8)
N2	-0.4300 (5)	-0.0057 (4)	0.6043 (2)	0.0347 (10)
N3	-0.8209 (6)	-0.2450 (6)	0.5764 (3)	0.0705 (18)
H3A	-0.8050	-0.3239	0.5657	0.085*
H3B	-0.9170	-0.2170	0.5822	0.085*
N4	-0.3401 (8)	0.4804 (5)	0.6705 (3)	0.0625 (17)
C1	0.2489 (6)	0.3962 (4)	0.5239 (2)	0.0315 (9)
C2	0.0476 (6)	0.2565 (4)	0.5840 (2)	0.0291 (10)
H2A	0.0301	0.2180	0.5406	0.035*
C3	0.1883 (6)	0.4086 (5)	0.6536 (2)	0.0297 (10)
H3C	0.2624	0.4745	0.6582	0.036*
C4	0.1634 (6)	0.3505 (4)	0.5889 (2)	0.0267 (9)
C5	-0.0125 (6)	0.2721 (5)	0.7013 (2)	0.0310 (10)
H5A	-0.0716	0.2450	0.7400	0.037*
C6	0.1011 (6)	0.3670 (4)	0.7112 (2)	0.0278 (10)
C7	0.1250 (6)	0.4263 (5)	0.7828 (2)	0.0316 (11)
C8	-0.5796 (7)	0.0376 (5)	0.6086 (3)	0.0448 (13)
H8A	-0.5945	0.1240	0.6183	0.054*
C9	-0.7126 (7)	-0.0366 (5)	0.5999 (3)	0.0502 (15)
H9A	-0.8141	-0.0008	0.6045	0.060*
C10	-0.6962 (7)	-0.1657 (6)	0.5839 (3)	0.0458 (14)
C11	-0.5405 (7)	-0.2092 (5)	0.5747 (3)	0.0521 (15)
H11A	-0.5225	-0.2933	0.5608	0.062*
C12	-0.4130 (7)	-0.1294 (5)	0.5860 (3)	0.0454 (13)
H12A	-0.3100	-0.1621	0.5808	0.055*
C13	-0.3972 (9)	0.3755 (6)	0.7001 (4)	0.0610 (17)

H13A	-0.4348	0.3824	0.7460	0.073^{*}
C14	$-0.330(2)$	$0.5962(7)$	$0.7100(5)$	$0.164(7)$
H14A	-0.3715	0.5821	0.7564	0.246^{*}
H14B	-0.3920	0.6616	0.6872	0.246^{*}
H14C	-0.2201	0.6229	0.7130	0.246^{*}
C15	$-0.2832(11)$	$0.4792(7)$	$0.5991(4)$	$0.076(2)$
H15A	-0.2989	0.3957	0.5793	0.114^{*}
H15B	-0.1711	0.5001	0.5983	0.114^{*}
H15C	-0.3418	0.5411	0.5720	0.114^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	$0.0355(3)$	$0.0291(3)$	$0.0193(2)$	$-0.0032(3)$	$-0.0035(2)$	$0.0024(2)$
O1	$0.054(2)$	$0.074(3)$	$0.0212(16)$	$-0.017(2)$	$0.0063(16)$	$-0.0070(18)$
O2	$0.044(2)$	$0.0349(16)$	$0.0254(15)$	$-0.0002(16)$	$-0.0046(15)$	$-0.0092(14)$
O3	$0.064(3)$	$0.049(2)$	$0.0366(19)$	$-0.0273(19)$	$0.0124(19)$	$-0.0012(17)$
O4	$0.051(2)$	$0.0313(15)$	$0.0188(12)$	$0.0015(17)$	$0.0056(16)$	$0.0016(12)$
O5	$0.058(3)$	$0.047(2)$	$0.077(3)$	$-0.005(2)$	$0.005(2)$	$-0.022(2)$
N 1	$0.033(2)$	$0.034(2)$	$0.0183(17)$	$-0.0005(17)$	$0.0000(15)$	$0.0018(16)$
N 2	$0.033(2)$	$0.038(2)$	$0.033(2)$	$0.0032(17)$	$-0.0033(18)$	$-0.0002(17)$
N 3	$0.038(3)$	$0.061(3)$	$0.113(5)$	$-0.018(3)$	$0.012(3)$	$-0.036(3)$
N 4	$0.101(5)$	$0.037(3)$	$0.050(3)$	$0.003(3)$	$-0.014(3)$	$-0.001(2)$
C1	$0.035(2)$	$0.036(2)$	$0.0233(17)$	$-0.001(3)$	$0.001(2)$	$0.0029(18)$
C2	$0.036(3)$	$0.034(2)$	$0.0174(19)$	$-0.002(2)$	$0.0006(18)$	$-0.0017(19)$
C3	$0.031(2)$	$0.032(2)$	$0.026(2)$	$-0.001(2)$	$0.0001(17)$	$-0.002(2)$
C4	$0.031(2)$	$0.027(2)$	$0.022(2)$	$0.0041(18)$	$0.0027(18)$	$-0.0020(18)$
C5	$0.038(3)$	$0.038(3)$	$0.0168(19)$	$-0.002(2)$	$-0.0006(19)$	$0.0007(19)$
C6	$0.031(2)$	$0.033(2)$	$0.0201(19)$	$0.0017(19)$	$-0.0031(17)$	$0.0007(18)$
C7	$0.025(2)$	$0.046(3)$	$0.024(2)$	$0.001(2)$	$0.0020(18)$	$-0.006(2)$
C8	$0.047(3)$	$0.032(3)$	$0.056(4)$	$-0.002(2)$	$-0.003(3)$	$-0.007(3)$
C9	$0.036(3)$	$0.044(3)$	$0.070(4)$	$0.004(3)$	$0.000(3)$	$-0.014(3)$
C10	$0.036(3)$	$0.046(3)$	$0.056(3)$	$-0.005(2)$	$0.004(2)$	$-0.015(3)$
C11	$0.047(3)$	$0.038(3)$	$0.071(4)$	$-0.001(3)$	$-0.003(3)$	$-0.016(3)$
C12	$0.038(3)$	$0.033(3)$	$0.065(4)$	$-0.004(2)$	$-0.002(3)$	$-0.016(3)$
C13	$0.069(4)$	$0.057(4)$	$0.057(4)$	$0.004(3)$	$-0.005(3)$	$-0.011(3)$
C14	$0.37(2)$	$0.047(4)$	$0.079(6)$	$-0.036(8)$	$-0.019(9)$	$-0.014(4)$
C15	$0.096(7)$	$0.053(4)$	$0.079(5)$	$0.029(4)$	$0.008(4)$	$0.011(3)$

Geometric parameters $\left({ }^{A},{ }^{\circ}\right)$

$\mathrm{Cu} 1-\mathrm{O} 4^{\mathrm{i}}$	$1.955(3)$	$\mathrm{C} 2-\mathrm{C} 4$	$1.381(7)$
$\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{ii}}$	$1.966(3)$	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9300
$\mathrm{Cu} 1-\mathrm{N} 2$	$1.999(4)$	$\mathrm{C} 3-\mathrm{C} 6$	$1.384(6)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.052(4)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.388(6)$
$\mathrm{Cu} 1-\mathrm{O} 5$	$2.396(4)$	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	0.9300
$\mathrm{O} 1-\mathrm{C} 7$	$1.226(6)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.384(7)$
$\mathrm{O} 2-\mathrm{C} 7$	$1.277(6)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9300

$\mathrm{O} 2-\mathrm{Cu} 1^{\mathrm{iii}}$	1.966 (3)
O3-C1	1.228 (6)
$\mathrm{O} 4-\mathrm{C} 1$	1.281 (5)
$\mathrm{O} 4-\mathrm{Cu1}{ }^{\text {iv }}$	1.955 (3)
O5-C13	1.225 (7)
N1-C5	1.332 (6)
N1-C2	1.349 (6)
N2-C8	1.330 (7)
N2-C12	1.346 (6)
N3-C10	1.337 (7)
N3-H3A	0.8600
N3-H3B	0.8600
N4-C13	1.322 (8)
N4-C14	1.428 (9)
N4-C15	1.440 (9)
C1-C4	1.506 (6)
$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{O} 2^{\text {ii }}$	178.46 (14)
$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{N} 2$	88.29 (16)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Cu} 1-\mathrm{N} 2$	91.42 (16)
$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{N} 1$	90.10 (14)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Cu} 1-\mathrm{N} 1$	90.16 (14)
N2-Cu1-N1	177.93 (16)
$\mathrm{O} 4-\mathrm{Cu}-\mathrm{O} 5$	90.59 (16)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Cu} 1-\mathrm{O} 5$	90.93 (16)
N2-Cu1-O5	91.74 (16)
N1-Cu1-O5	89.57 (16)
$\mathrm{C} 7-\mathrm{O} 2-\mathrm{Cu} 1^{\text {iii }}$	114.6 (3)
$\mathrm{C} 1-\mathrm{O} 4-\mathrm{Cu1}{ }^{\text {iv }}$	118.5 (3)
C13-O5-Cu1	141.8 (5)
C5-N1-C2	117.7 (4)
C5-N1-Cu1	121.4 (3)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{Cu} 1$	120.0 (3)
C8-N2-C12	116.2 (5)
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{Cu} 1$	122.5 (3)
C12-N2-Cu1	121.3 (4)
C10-N3-H3A	120.0
$\mathrm{C} 10-\mathrm{N} 3-\mathrm{H} 3 \mathrm{~B}$	120.0
H3A-N3-H3B	120.0
C13-N4-C14	120.0 (7)
C13-N4-C15	121.0 (6)
C14-N4-C15	119.0 (7)
$\mathrm{O} 3-\mathrm{C} 1-\mathrm{O} 4$	126.0 (4)
$\mathrm{O} 3-\mathrm{C} 1-\mathrm{C} 4$	119.6 (4)
$\mathrm{O} 4-\mathrm{C} 1-\mathrm{C} 4$	114.4 (4)
N1-C2-C4	123.0 (4)
N1-C2-H2A	118.5
$\mathrm{C} 4-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	118.5

C6-C7	1.511 (6)
C8-C9	1.362 (8)
C8-H8A	0.9300
C9-C10	1.390 (8)
C9-H9A	0.9300
C10-C11	1.387 (8)
C11-C12	1.368 (8)
C11-H11A	0.9300
C12-H12A	0.9300
C13-H13A	0.9300
C14-H14A	0.9600
C14-H14B	0.9600
C14-H14C	0.9600
C15-H15A	0.9600
C15-H15B	0.9600
C15-H15C	0.9600
N1-C5-H5A	118.4
C6-C5-H5A	118.4
C3-C6-C5	118.5 (4)
C3-C6-C7	121.1 (4)
C5-C6-C7	120.4 (4)
O1-C7-O2	125.0 (5)
O1-C7-C6	120.1 (4)
O2-C7-C6	114.9 (4)
N2-C8-C9	124.2 (5)
N2-C8-H8A	117.9
C9-C8-H8A	117.9
C8-C9-C10	119.9 (5)
C8-C9-H9A	120.0
C10-C9-H9A	120.0
N3-C10-C11	120.7 (5)
N3-C10-C9	123.3 (5)
C11-C10-C9	116.0 (5)
C12-C11-C10	120.5 (5)
C12-C11-H11A	119.8
C10-C11-H11A	119.8
N2-C12-C11	123.0 (5)
N2-C12-H12A	118.5
C11-C12-H12A	118.5
$\mathrm{O} 5-\mathrm{C} 13-\mathrm{N} 4$	125.5 (6)
O5-C13-H13A	117.3
N4-C13-H13A	117.3
N4-C14-H14A	109.5
N4-C14-H14B	109.5
H14A-C14-H14B	109.5
N4-C14-H14C	109.5
H14A-C14-H14C	109.5

supporting information

C6-C3-C4	$119.1(4)$	H14B-C14-H14C	109.5
C6-C3-H3C	120.5	N4-C15-H15A	109.5
C4-C3-H3C	120.5	N4-C15-H15B	109.5
C2-C4-C3	$118.4(4)$	H15A-C15-H15B	109.5
C2-C4-C1	$120.1(4)$	N4-C15-H15C	109.5
C3-C4-C1	$121.3(4)$	H15A-C15-H15C	109.5
N1-C5-C6	$123.3(4)$	H15B-C15-H15C	109.5

Symmetry codes: (i) $x-1 / 2,-y+1 / 2,-z+1$; (ii) $-x, y-1 / 2,-z+3 / 2$; (iii) $-x, y+1 / 2,-z+3 / 2$; (iv) $x+1 / 2,-y+1 / 2,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3 — \mathrm{H} 3 A \cdots \mathrm{O}^{\text {v }}$	0.86	2.28	$3.101(7)$	159
$\mathrm{~N} 3 — \mathrm{H} 3 B \cdots \mathrm{O}^{\text {vi }}$	0.86	2.23	$2.933(7)$	139

Symmetry codes: (v) $x-1, y-1, z$; (vi) $-x-1, y-1 / 2,-z+3 / 2$.

