CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 23 January 2016
Accepted 27 January 2016

Edited by S. Parkin, University of Kentucky, USA

Keywords: crystal structure; hydrogen bonding; halogen bonding.

CCDC reference: 1450356

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\odot A C C E S S$

Crystal and molecular structure of meso-2,6-dibromoheptanedioic acid (meso-2,6-dibromopimelic acid)

Nathaniel D. A. Dirda, ${ }^{\text {a }}$ Peter Y. Zavalij ${ }^{\text {b }}$ and Joseph P. Y. Kao ${ }^{\text {a,c* }}$

${ }^{\text {a }}$ Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA, ${ }^{\mathbf{b}}$ Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA, and ${ }^{c}$ Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA. *Correspondence e-mail: jkao@umaryland.edu

The molecular structure of the title compound, $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{4}$, confirms the meso $(2 R, 6 S)$ configuration. In the crystal, molecules are linked by pairs of $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bonds between their terminal carboxyl groups in an $R_{2}^{2}(8)$ motif, forming extended chains that propagate parallel to the c axis. Adjacent chains are linked by $\mathrm{C}=\mathrm{O} \cdots \mathrm{Br}$ halogen bonds.

1. Chemical context

meso-2,6-Dibromopimelic acid is a convenient starting point for preparing derivatives 2,6 -disubstituted with non-halogen functional groups (for examples: Schotte, 1956b; Lingens, 1960; Yuan \& Lu, 2009). It also has utility in the synthesis of heterocycles (Schotte, 1956b; Miyake et al., 2000; Peters et al., 2006; Hamon et al., 2007). In an ongoing study of disulfides, the title compound was required as precursor to meso-3,7-dicarboxy-1,2-dithiepane. Surprisingly, other than the melting point reported by Schotte (1956a), no further analytical data have been published on the dibromo acid. Original stereochemical assignment was based on the lack of optical activity of the acid isolated through crystallization of the acid brucine salt (Schotte, 1956a). The need to confirm the meso configuration motivated the crystal structure determination.

2. Structural commentary

The molecular structure of the title compound is shown in Fig. 1; the $(2 R, 6 S)$ configuration is apparent, confirming the meso form of the compound. All bond lengths and angles are within normal ranges.

3. Supramolecular features

In the crystal, the molecules are linked in head-to-tail fashion by pairs of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bonds (Table 1) between their terminal carboxyl groups in an $R_{2}^{2}(8)$ motif, forming extended chains that propagate parallel to the c axis (Fig. 2a).

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	0.84	1.80	$2.635(3)$	177
$\mathrm{O} 4-\mathrm{H} 4 \cdots 1^{\mathrm{ii}}$	0.84	1.83	$2.669(3)$	176

Symmetry codes: (i) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$.

Adjacent chains are cross-linked by interactions between a carboxyl $\mathrm{C}=\mathrm{O}$ group in one chain with a Br atom in an adjacent chain. These linkages meet the criteria for halogen bonds (Desiraju et al., 2013): (i) the $=\mathrm{O} \cdots \mathrm{Br}-\mathrm{C}$ bonds are nearly linear $[$ the $=\mathrm{O} 1 \cdots \mathrm{Br} 2-\mathrm{C} 2$ and $=\mathrm{O} 3 \cdots \mathrm{Br} 6-\mathrm{C} 6$ angles being 168.06 (8) and 170.26 (8) ${ }^{\circ}$, respectively], and (ii) the $\mathrm{O} \cdots \mathrm{Br}$ distances $\left[3.224\right.$ (2) and 3.058 (2) \AA for $\mathrm{O} 1 \cdots \mathrm{Br}{ }^{\text {iii }}$ and $\mathrm{O} 3 \cdots \mathrm{Br}^{\text {iv }}$, respectively [symmetry codes: (iii) $\frac{1}{2}-x, y-\frac{1}{2}$, z; (iv) $\left.\frac{3}{2}-x, y-\frac{1}{2}, z\right]$ are less than the sum of the van der Waals radii of $3.35 \AA$ (Mantina et al., 2009; Alvarez, 2013). H and Br bonding are shown in Fig. 2.

4. Synthesis and crystallization

The title compound was first prepared in pure form and its stereochemistry deduced by Fehnel \& Oppenlander (1953). The synthesis for the present work followed the method of Schotte (1956a). Pimelic (heptanedioic) acid was converted into the diacid chloride by heating with thionyl chloride. Removal of excess SOCl_{2} under reduced pressure left the liquid diacid chloride. Over 1 h , bromine (2.3 equivalents) was added dropwise to the stirred diacid chloride maintained at 363 K. Thereafter, stirring and heating continued for an additional hour. The dibrominated acid chloride was hydrolyzed by gradual addition to vigorously stirred formic acid maintained at $353-363 \mathrm{~K}$. When gas evolution ceased, the reaction mixture was refluxed for 15 min , and then allowed to cool to room temperature. Upon cooling in the refrigerator, over two days, the reaction mixture yielded two crops of solids, which were combined and extracted by shaking with ice-cold CHCl_{3}. The remaining solids were recrystallized three times from formic acid to give meso-2,6-dibroheptanedioic acid (26\% yield).

Figure 1
The molecular structure of the title compound, with non-H atoms labeled. Displacement ellipsoids are shown at the 60% probability level.

Figure 2
The molecular packing, viewed along the b and a axes [panels (a) and (b)]. Intermolecular hydrogen bonding (cyan) between terminal carboxyl groups results in head-to-tail linkage of the molecules into chains extending along [001]. Adjacent chains are linked by halogen bonding $(\mathrm{C}=\mathrm{O} \cdots \mathrm{Br}$, green) .

The ${ }^{1} \mathrm{H}$ NMR spectrum, acquired in $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$, is consistent with the molecular structure, with the following resonances (δ referenced to $\mathrm{Me}_{4} \mathrm{Si}$): 13.22 , singlet, $2 \mathrm{H} ; 4.43$, triplet, $2 \mathrm{H}, J=$ $7 \mathrm{~Hz} ; 2.01$, multiplet, 2H; 1.88, multiplet, $2 \mathrm{H} ; 1.54$, multiplet, $1 \mathrm{H} ; 1.39$, multiplet, 1 H . The high-resolution mass spectrum (electrospray) showed the expected manifold arising from the two stable isotopes of bromine, with the base peak at $m / z=$ 316.884; species containing halogens other than bromine were not observed. To produce crystals suitable for diffraction, 10 mg of the title compound was dissolved in a capped glass vial in minimal formic acid with warming. Once a few seeds became visible, slow evaporation of the solvent over 14 days yielded crystals of good quality.

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table $2 . \mathrm{H}$-atom $U_{\text {iso }}$ parameters were

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{4}$
$M_{\text {r }}$	317.97
Crystal system, space group	Orthorhombic, Pbca
Temperature (K)	150
$a, b, c(\AA)$	$\begin{aligned} & 10.4277(7), 10.7014(7), \\ & 18.7154(13) \end{aligned}$
$V\left(\AA^{3}\right)$	2088.5 (2)
Z	8
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	7.74
Crystal size (mm)	$0.35 \times 0.27 \times 0.09$
Data collection	
Diffractometer	Bruker SMART APEXII CCD
Absorption correction	Multi-scan (SADABS; Sheldrick, 2008)
$T_{\text {min }}, T_{\text {max }}$	0.231, 0.498
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	35789, 4598, 3488
$R_{\text {int }}$	0.037
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.807
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.036, 0.084, 1.08
No. of reflections	4598
No. of parameters	130
H -atom treatment	Only H -atom displacement parameters refined
$\Delta \rho_{\max }, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	2.07, -1.15

Computer programs: APEX2, SAINT and XSHELL (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).
refined to confirm proper positioning of the H atoms; this was particularly important for the carboxyl H atoms. Uniquely for H 3 , its $U_{\text {iso }}[0.013(7)]$ is smaller than the $U_{\text {eq }}$ of C3 [0.022 (4)], to which it is attached, but by less than two s.u.'s. All other Hatom $U_{\text {iso }}$ values are consistent with expectation: $0.02-0.3$ for CH and CH_{2}, and 0.05 for $\mathrm{CO}_{2} \mathrm{H}$. These values are in line with H -atom $U_{\text {iso }}$ values in $\mathrm{C}_{2}-\mathrm{C}_{12}$ aliphatic acids without heavyatom substitution, whose structures had been determined at the same temperature (150 K) or lower (Thalladi et al., 2000; Mitchell et al.,2001; Peppel et al., 2015a,b; Sonneck et al., $2015 a, b)$. In these structures, $U_{\text {iso }}$ values average 0.033 ± 0.006 for CH and CH_{2}, and 0.068 ± 0.033 for reciprocally hydrogenbonded $\mathrm{CO}_{2} \mathrm{H}$.

Residual electron density is somewhat high ($\Delta \rho_{\max }$ and $\Delta \rho_{\text {min }}$ being 2.07 and -1.14 e \AA^{3}, respectively) and localizes near the heavier Br atoms, which suggests Fourier truncation as a possible cause. Other reasons could be translational
pseudosymmetry (for example, see Kiessling \& Zeller, 2011), or the high geometric anisotropy of the crystal (ratio of largest-to-smallest dimensions being 4), which can yield less accurate absorption correction performed through $S A D A B S$ software. The irregular shape of the crystal precluded more accurate absorption correction through face indexing.

Acknowledgements

This work was supported in part by the Nanobiology Fund of the University of Maryland Baltimore Foundation.

References

Alvarez, S. (2013). Dalton Trans. 42, 8617-8636.
Bruker (2010). APEX2, SAINT and XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.
Desiraju, G. R., Ho, P. S., Kloo, L., Legon, A. C., Marquardt, R., Metrangolo, P., Politzer, P., Resnati, G. \& Rissanen, K. (2013). Pure Appl. Chem. 85, 171-1713.
Fehnel, E. A. \& Oppenlander, G. C. (1953). J. Am. Chem. Soc. 75, 4660-4663.
Hamon, C., Schwarz, J., Becker, W., Kienle, S., Kuhn, K. \& Schäfer, J. (2007). Int. Patent Appl. WO2007012849.

Kiessling, A. \& Zeller, M. (2011). Acta Cryst. E67, o733-o734.
Lingens, F. (1960). Z. Naturforsch. Teil B, 15, 811-811.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Mantina, M., Chamberlin, A. C., Valero, R., Cramer, C. J. \& Truhlar, D. G. (2009). J. Phys. Chem. A, 113, 5806-5812.

Mitchell, C. A., Yu, L. \& Ward, M. D. (2001). J. Am. Chem. Soc. 123, 10830-10839.
Miyake, Y., Takada, H., Ohe, K. \& Uemura, S. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 1595-1599.
Peppel, T., Sonneck, M., Spannenberg, A. \& Wohlrab, S. (2015a). Acta Cryst. E71, o316.
Peppel, T., Sonneck, M., Spannenberg, A. \& Wohlrab, S. (2015b). Acta Cryst. E71, o323.
Peters, D., Timmermann, D. B., Olsen, G. M., Nielsen, E. O. \& Jørgensen, T. D. (2006). Int. Patent Appl. WO2006087306.
Schotte, L. (1956a). Ark. Kemi, 9, 407-412.
Schotte, L. (1956b). Ark. Kemi, 9, 413-421.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Sonneck, M., Peppel, T., Spannenberg, A. \& Wohlrab, S. (2015a). Acta Cryst. E71, o426-o427.
Sonneck, M., Peppel, T., Spannenberg, A. \& Wohlrab, S. (2015b). Acta Cryst. E71, o528-o529.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Thalladi, V. R., Nüsse, M. \& Boese, R. (2000). J. Am. Chem. Soc. 122, 9227-9236.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Yuan, B. \& Lu, S. (2009). Chin. Patent Appl. CN101497626.

supporting information

Crystal and molecular structure of meso-2,6-dibromoheptanedioic acid (meso-2,6-dibromopimelic acid)

Nathaniel D. A. Dirda, Peter Y. Zavalij and Joseph P. Y. Kao

Computing details

Data collection: APEX2 (Bruker, 2010); cell refinement: APEX2 (Bruker, 2010); data reduction: APEX2 and SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XSHELL (Bruker, 2010) and Mercury (Macrae et al., 2008); software used to prepare material for publication: APEX2 (Bruker, 2010), SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).
meso-2,6-Dibromoheptanedioic acid

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{4}$
$M_{r}=317.97$
Orthorhombic, Pbca
$a=10.4277$ (7) \AA
$b=10.7014$ (7) \AA
$c=18.7154(13) \AA$
$V=2088.5(2) \AA^{3}$
$Z=8$
$D_{\mathrm{x}}=2.023 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9811 reflections
$\theta=2.2-34.7^{\circ}$
$\mu=7.74 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Plate, colourless
$F(000)=1232$

Data collection

Bruker SMART APEXII CCD
$0.35 \times 0.27 \times 0.09 \mathrm{~mm}$
diffractometer
Radiation source: sealed tube
Graphite monochromator
Detector resolution: 8.333 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
$T_{\min }=0.231, T_{\text {max }}=0.498$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.084$
$S=1.08$
4598 reflections
130 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
Only H-atom displacement parameters refined

supporting information

```
\(w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.020 P)^{2}+6 . P\right]\)
    where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\max }=0.001\)
```

$$
\begin{aligned}
& \Delta \rho_{\max }=2.07 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-1.14 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iss }} * / U_{\text {eq }}$
O1	$0.4428(2)$	$0.35337(18)$	$0.81180(10)$	$0.0271(4)$
O2	$0.5097(2)$	$0.53602(18)$	$0.85748(10)$	$0.0289(4)$
H2	0.5328	0.4903	0.8916	$0.044(11)^{*}$
C1	$0.4560(2)$	$0.4669(2)$	$0.80775(12)$	$0.0200(4)$
C2	$0.4148(2)$	$0.5420(2)$	$0.74305(12)$	$0.0190(4)$
H2A	0.4858	0.6007	0.7303	$0.024(8)^{*}$
Br2	$0.26550(3)$	$0.64147(3)$	$0.77267(2)$	$0.02812(7)$
C3	$0.3835(2)$	$0.4638(2)$	$0.67757(12)$	$0.0221(4)$
H3A	0.3411	0.5169	0.6413	$0.022(8)^{*}$
H3B	0.3233	0.3963	0.6910	$0.013(7)^{*}$
C4	$0.5050(3)$	$0.4068(3)$	$0.64587(13)$	$0.0241(5)$
H4A	0.5692	0.4736	0.6380	$0.030(9)^{*}$
H4B	0.5417	0.3462	0.6802	$0.033(9)^{*}$
C5	$0.4780(2)$	$0.3408(2)$	$0.57527(13)$	$0.0212(4)$
H5A	0.4112	0.2765	0.5831	$0.034(9)^{*}$
H5B	0.4435	0.4024	0.5408	$0.037(10)^{*}$
C6	$0.5957(2)$	$0.2790(2)$	$0.54304(13)$	$0.0204(4)$
H6A	0.6299	0.2163	0.5778	$0.029(9)^{*}$
Br6	$0.73130(2)$	$0.40137(2)$	$0.52174(2)$	$0.02402(6)$
C7	$0.5646(2)$	$0.2132(2)$	$0.47354(12)$	$0.0204(4)$
O3	$0.5852(2)$	$0.10197(18)$	$0.46621(11)$	$0.0296(4)$
O4	$0.5102(2)$	$0.28358(18)$	$0.42491(10)$	$0.0300(4)$
H4	0.4863	0.2389	0.3905	$0.053(12)^{*}$

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0382(10)$	$0.0244(9)$	$0.0188(8)$	$-0.0048(8)$	$-0.0049(7)$	$0.0012(7)$
O2	$0.0425(11)$	$0.0238(9)$	$0.0205(8)$	$-0.0040(8)$	$-0.0098(8)$	$0.0008(7)$
C1	$0.0205(10)$	$0.0243(11)$	$0.0152(9)$	$0.0001(8)$	$0.0009(7)$	$0.0002(8)$
C2	$0.0185(9)$	$0.0204(10)$	$0.0181(10)$	$0.0006(8)$	$0.0003(7)$	$0.0012(8)$
Br2	$0.02097(11)$	$0.03372(14)$	$0.02965(13)$	$0.00479(10)$	$0.00001(10)$	$-0.00452(10)$
C3	$0.0233(11)$	$0.0270(11)$	$0.0159(9)$	$-0.0003(9)$	$-0.0012(8)$	$0.0008(8)$
C4	$0.0264(11)$	$0.0294(12)$	$0.0166(9)$	$0.0032(9)$	$-0.0013(8)$	$-0.0036(9)$
C5	$0.0226(11)$	$0.0239(11)$	$0.0171(9)$	$0.0003(8)$	$-0.0008(8)$	$-0.0005(8)$
C6	$0.0255(11)$	$0.0190(10)$	$0.0169(9)$	$0.0006(8)$	$-0.0024(8)$	$0.0009(8)$

Br6	$0.02087(10)$	$0.02733(12)$	$0.02386(11)$	$-0.00204(9)$	$-0.00007(9)$	$-0.00097(9)$
C7	$0.0218(10)$	$0.0228(10)$	$0.0165(9)$	$-0.0007(8)$	$-0.0008(8)$	$0.0014(8)$
O3	$0.0387(11)$	$0.0247(9)$	$0.0253(9)$	$0.0061(8)$	$-0.0103(8)$	$-0.0034(7)$
O4	$0.0493(12)$	$0.0215(8)$	$0.0193(8)$	$0.0027(8)$	$-0.0100(8)$	$-0.0001(7)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

O1-C1	1.225 (3)	C4-H4A	0.9900
$\mathrm{O} 2-\mathrm{C} 1$	1.314 (3)	C4-H4B	0.9900
$\mathrm{O} 2-\mathrm{H} 2$	0.8400	C5-C6	1.520 (3)
$\mathrm{C} 1-\mathrm{C} 2$	1.516 (3)	C5-H5A	0.9900
$\mathrm{C} 2-\mathrm{C} 3$	1.519 (3)	C5-H5B	0.9900
$\mathrm{C} 2-\mathrm{Br} 2$	1.966 (2)	C6-C7	1.515 (3)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	1.0000	C6-Br6	1.968 (2)
$\mathrm{C} 3-\mathrm{C} 4$	1.526 (4)	C6-H6A	1.0000
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9900	C7-O3	1.217 (3)
C3-H3B	0.9900	C7-O4	1.310 (3)
C4-C5	1.524 (3)	$\mathrm{O} 4-\mathrm{H} 4$	0.8400
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{H} 2$	109.5	C5-C4-H4B	109.3
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	124.2 (2)	C3-C4-H4B	109.3
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	122.9 (2)	H4A-C4-H4B	108.0
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	112.8 (2)	C6-C5-C4	113.3 (2)
C1-C2-C3	114.4 (2)	C6-C5-H5A	108.9
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br} 2$	106.66 (16)	C4-C5-H5A	108.9
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Br} 2$	110.85 (16)	C6-C5-H5B	108.9
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.2	C4-C5-H5B	108.9
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.2	H5A-C5-H5B	107.7
$\mathrm{Br} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.2	C7-C6-C5	111.7 (2)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	110.8 (2)	C7-C6- Br 6	106.84 (16)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.5	C5-C6- Br 6	111.78 (16)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.5	C7-C6-H6A	108.8
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.5	C5-C6-H6A	108.8
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.5	Br6-C6-H6A	108.8
H3A-C3-H3B	108.1	O3-C7-O4	124.1 (2)
C5-C4-C3	111.6 (2)	O3-C7-C6	120.9 (2)
C5-C4-H4A	109.3	O4-C7-C6	114.9 (2)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.3	C7-O4-H4	109.5
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-13.0 (3)	C3-C4-C5-C6	-178.1 (2)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	165.5 (2)	C4-C5-C6-C7	179.3 (2)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br} 2$	109.9 (2)	C4-C5-C6- ${ }^{\text {- }} 6$	-61.1 (2)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Br} 2$	-71.6 (2)	C5-C6-C7-O3	-122.1 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-70.5 (3)	Br6-C6-C7-O3	115.4 (2)
$\mathrm{Br} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	168.86 (17)	C5-C6-C7-O4	55.2 (3)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	-173.3 (2)	Br6-C6-C7-O4	-67.3 (2)

supporting information

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 2 \cdots 3^{\mathrm{i}}$	0.84	1.80	$2.635(3)$	177
$\mathrm{O} 4 — \mathrm{H} 4 \cdots 1^{\mathrm{ii}}$	0.84	1.83	$2.669(3)$	176

Symmetry codes: (i) $x,-y+1 / 2, z+1 / 2$; (ii) $x,-y+1 / 2, z-1 / 2$.

