

Received 23 January 2016 Accepted 27 January 2016

Edited by S. Parkin, University of Kentucky, USA

Keywords: crystal structure; hydrogen bonding; halogen bonding.

CCDC reference: 1450356

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal and molecular structure of *meso-2,6-di*bromoheptanedioic acid (*meso-2,6-dibromopimelic* acid)

CrossMark

Nathaniel D. A. Dirda,^a Peter Y. Zavalij^b and Joseph P. Y. Kao^{a,c*}

^aCenter for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA, ^bDepartment of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA, and ^cDepartment of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA. *Correspondence e-mail: jkao@umaryland.edu

The molecular structure of the title compound, $C_7H_{10}Br_2O_4$, confirms the *meso* (2*R*,6*S*) configuration. In the crystal, molecules are linked by pairs of O-H···O=C hydrogen bonds between their terminal carboxyl groups in an $R_2^2(8)$ motif, forming extended chains that propagate parallel to the *c* axis. Adjacent chains are linked by C=O···Br halogen bonds.

1. Chemical context

meso-2,6-Dibromopimelic acid is a convenient starting point for preparing derivatives 2,6-disubstituted with non-halogen functional groups (for examples: Schotte, 1956b; Lingens, 1960; Yuan & Lu, 2009). It also has utility in the synthesis of heterocycles (Schotte, 1956b; Miyake *et al.*, 2000; Peters *et al.*, 2006; Hamon *et al.*, 2007). In an ongoing study of disulfides, the title compound was required as precursor to *meso*-3,7dicarboxy-1,2-dithiepane. Surprisingly, other than the melting point reported by Schotte (1956a), no further analytical data have been published on the dibromo acid. Original stereochemical assignment was based on the lack of optical activity of the acid isolated through crystallization of the acid brucine salt (Schotte, 1956a). The need to confirm the *meso* configuration motivated the crystal structure determination.

2. Structural commentary

The molecular structure of the title compound is shown in Fig. 1; the (2R,6S) configuration is apparent, confirming the *meso* form of the compound. All bond lengths and angles are within normal ranges.

3. Supramolecular features

In the crystal, the molecules are linked in head-to-tail fashion by pairs of $O-H \cdots O=C$ hydrogen bonds (Table 1) between their terminal carboxyl groups in an $R_2^2(8)$ motif, forming extended chains that propagate parallel to the *c* axis (Fig. 2*a*).

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots \mathbf{A}$
$\begin{array}{c} O2{-}H2{\cdot}{\cdot}{\cdot}O3^{i}\\ O4{-}H4{\cdot}{\cdot}{\cdot}O1^{ii} \end{array}$	0.84	1.80	2.635 (3)	177
	0.84	1.83	2.669 (3)	176

Symmetry codes: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

Adjacent chains are cross-linked by interactions between a carboxyl C=O group in one chain with a Br atom in an adjacent chain. These linkages meet the criteria for halogen bonds (Desiraju *et al.*, 2013): (i) the =O···Br-C bonds are nearly linear [the =O1···Br2-C2 and =O3···Br6-C6 angles being 168.06 (8) and 170.26 (8)°, respectively], and (ii) the O···Br distances [3.224 (2) and 3.058 (2) Å for O1···Br2ⁱⁱⁱ and O3···Br6^{iv}, respectively [symmetry codes: (iii) $\frac{1}{2} - x, y - \frac{1}{2}, z$; (iv) $\frac{3}{2} - x, y - \frac{1}{2}, z$] are less than the sum of the van der Waals radii of 3.35 Å (Mantina *et al.*, 2009; Alvarez, 2013). H and Br bonding are shown in Fig. 2.

4. Synthesis and crystallization

The title compound was first prepared in pure form and its stereochemistry deduced by Fehnel & Oppenlander (1953). The synthesis for the present work followed the method of Schotte (1956a). Pimelic (heptanedioic) acid was converted into the diacid chloride by heating with thionyl chloride. Removal of excess SOCl₂ under reduced pressure left the liquid diacid chloride. Over 1 h, bromine (2.3 equivalents) was added dropwise to the stirred diacid chloride maintained at 363 K. Thereafter, stirring and heating continued for an additional hour. The dibrominated acid chloride was hydrolyzed by gradual addition to vigorously stirred formic acid maintained at 353-363 K. When gas evolution ceased, the reaction mixture was refluxed for 15 min, and then allowed to cool to room temperature. Upon cooling in the refrigerator, over two days, the reaction mixture yielded two crops of solids, which were combined and extracted by shaking with ice-cold CHCl₃. The remaining solids were recrystallized three times from formic acid to give meso-2,6-dibroheptanedioic acid (26% yield).

Figure 1

The molecular structure of the title compound, with non-H atoms labeled. Displacement ellipsoids are shown at the 60% probability level.

Figure 2

The molecular packing, viewed along the *b* and *a* axes [panels (*a*) and (*b*)]. Intermolecular hydrogen bonding (cyan) between terminal carboxyl groups results in head-to-tail linkage of the molecules into chains extending along [001]. Adjacent chains are linked by halogen bonding (C= $O \cdots Br$, green).

The ¹H NMR spectrum, acquired in Me₂SO- d_6 , is consistent with the molecular structure, with the following resonances (δ referenced to Me₄Si): 13.22, singlet, 2H; 4.43, triplet, 2H, J =7 Hz; 2.01, multiplet, 2H; 1.88, multiplet, 2H; 1.54, multiplet, 1H; 1.39, multiplet, 1H. The high-resolution mass spectrum (electrospray) showed the expected manifold arising from the two stable isotopes of bromine, with the base peak at m/z =316.884; species containing halogens other than bromine were not observed. To produce crystals suitable for diffraction, 10 mg of the title compound was dissolved in a capped glass vial in minimal formic acid with warming. Once a few seeds became visible, slow evaporation of the solvent over 14 days yielded crystals of good quality.

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2. H-atom U_{iso} parameters were

research communications

Table 2Experimental details.

Crystal data	
Chemical formula	$C_7H_{10}Br_2O_4$
$M_{\rm r}$	317.97
Crystal system, space group	Orthorhombic, Pbca
Temperature (K)	150
<i>a</i> , <i>b</i> , <i>c</i> (Å)	10.4277 (7), 10.7014 (7), 18.7154 (13)
$V(Å^3)$	2088.5 (2)
Z	8
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	7.74
Crystal size (mm)	$0.35 \times 0.27 \times 0.09$
Data collection	
Diffractometer	Bruker SMART APEXII CCD
Absorption correction	Multi-scan (SADABS; Sheldrick, 2008)
T_{\min}, T_{\max}	0.231, 0.498
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	35789, 4598, 3488
R _{int}	0.037
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.807
Refinement	
$R[F^2 > 2\sigma(F^2)] w R(F^2) S$	0.036 0.084 1.08
No of reflections	4598
No. of parameters	130
H-atom treatment	Only H-atom displacement para-
	meters refined
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	2.07, -1.15

Computer programs: APEX2, SAINT and XSHELL (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

refined to confirm proper positioning of the H atoms; this was particularly important for the carboxyl H atoms. Uniquely for H3, its U_{iso} [0.013 (7)] is smaller than the U_{eq} of C3 [0.022 (4)], to which it is attached, but by less than two s.u.'s. All other Hatom U_{iso} values are consistent with expectation: 0.02–0.3 for CH and CH₂, and 0.05 for CO₂H. These values are in line with H-atom U_{iso} values in C₂–C₁₂ aliphatic acids without heavyatom substitution, whose structures had been determined at the same temperature (150 K) or lower (Thalladi *et al.*, 2000; Mitchell *et al.*,2001; Peppel *et al.*, 2015*a*,*b*; Sonneck *et al.*, 2015*a*,*b*). In these structures, U_{iso} values average 0.033±0.006 for CH and CH₂, and 0.068±0.033 for reciprocally hydrogenbonded CO₂H.

Residual electron density is somewhat high ($\Delta \rho_{\text{max}}$ and $\Delta \rho_{\text{min}}$ being 2.07 and $-1.14 \text{ e} \text{ Å}^3$, respectively) and localizes near the heavier Br atoms, which suggests Fourier truncation as a possible cause. Other reasons could be translational

pseudosymmetry (for example, see Kiessling & Zeller, 2011), or the high geometric anisotropy of the crystal (ratio of largest-to-smallest dimensions being 4), which can yield less accurate absorption correction performed through *SADABS* software. The irregular shape of the crystal precluded more accurate absorption correction through face indexing.

Acknowledgements

This work was supported in part by the Nanobiology Fund of the University of Maryland Baltimore Foundation.

References

- Alvarez, S. (2013). Dalton Trans. 42, 8617-8636.
- Bruker (2010). APEX2, SAINT and XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Desiraju, G. R., Ho, P. S., Kloo, L., Legon, A. C., Marquardt, R., Metrangolo, P., Politzer, P., Resnati, G. & Rissanen, K. (2013). Pure Appl. Chem. 85, 171–1713.
- Fehnel, E. A. & Oppenlander, G. C. (1953). J. Am. Chem. Soc. 75, 4660–4663.
- Hamon, C., Schwarz, J., Becker, W., Kienle, S., Kuhn, K. & Schäfer, J. (2007). Int. Patent Appl. WO2007012849.
- Kiessling, A. & Zeller, M. (2011). Acta Cryst. E67, 0733-0734.
- Lingens, F. (1960). Z. Naturforsch. Teil B, 15, 811-811.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Mantina, M., Chamberlin, A. C., Valero, R., Cramer, C. J. & Truhlar, D. G. (2009). J. Phys. Chem. A, 113, 5806–5812.
- Mitchell, C. A., Yu, L. & Ward, M. D. (2001). J. Am. Chem. Soc. 123, 10830–10839.
- Miyake, Y., Takada, H., Ohe, K. & Uemura, S. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 1595–1599.
- Peppel, T., Sonneck, M., Spannenberg, A. & Wohlrab, S. (2015a). Acta Cryst. E71, 0316.
- Peppel, T., Sonneck, M., Spannenberg, A. & Wohlrab, S. (2015b). Acta Cryst. E71, 0323.
- Peters, D., Timmermann, D. B., Olsen, G. M., Nielsen, E. O. & Jørgensen, T. D. (2006). Int. Patent Appl. WO2006087306.
- Schotte, L. (1956a). Ark. Kemi, 9, 407-412.
- Schotte, L. (1956b). Ark. Kemi, 9, 413-421.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Sonneck, M., Peppel, T., Spannenberg, A. & Wohlrab, S. (2015*a*). *Acta Cryst.* E**71**, 0426–0427.
- Sonneck, M., Peppel, T., Spannenberg, A. & Wohlrab, S. (2015b). Acta Cryst. E71, 0528–0529.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Thalladi, V. R., Nüsse, M. & Boese, R. (2000). J. Am. Chem. Soc. 122, 9227–9236.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yuan, B. & Lu, S. (2009). Chin. Patent Appl. CN101497626.

supporting information

Acta Cryst. (2016). E72, 322-324 [doi:10.1107/S2056989016001754]

Crystal and molecular structure of *meso*-2,6-dibromoheptanedioic acid (*meso*-2,6-dibromopimelic acid)

Nathaniel D. A. Dirda, Peter Y. Zavalij and Joseph P. Y. Kao

Computing details

Data collection: *APEX2* (Bruker, 2010); cell refinement: *APEX2* (Bruker, 2010); data reduction: *APEX2* and *SAINT* (Bruker, 2010); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *XSHELL* (Bruker, 2010) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *APEX2* (Bruker, 2010), *SHELXL2014* (Sheldrick, 2015), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

meso-2,6-Dibromoheptanedioic acid

Crystal data

 $C_{7}H_{10}Br_{2}O_{4}$ $M_{r} = 317.97$ Orthorhombic, *Pbca* a = 10.4277 (7) Å b = 10.7014 (7) Å c = 18.7154 (13) Å V = 2088.5 (2) Å³ Z = 8F(000) = 1232

Data collection

Bruker SMART APEXII CCD diffractometer Radiation source: sealed tube Graphite monochromator Detector resolution: 8.333 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2008) $T_{\min} = 0.231, T_{\max} = 0.498$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.084$ S = 1.084598 reflections 130 parameters 0 restraints $D_x = 2.023 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9811 reflections $\theta = 2.2-34.7^{\circ}$ $\mu = 7.74 \text{ mm}^{-1}$ T = 150 KPlate, colourless $0.35 \times 0.27 \times 0.09 \text{ mm}$

35789 measured reflections 4598 independent reflections 3488 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 35.0^\circ, \theta_{min} = 2.2^\circ$ $h = -16 \rightarrow 16$ $k = -17 \rightarrow 17$ $l = -30 \rightarrow 30$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
Only H-atom displacement parameters refined

$w = 1/[\sigma^2(F_o^2) + (0.020P)^2 + 6.P]$	$\Delta \rho_{\rm max} = 2.07 \text{ e} \text{ Å}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -1.14 \text{ e } \text{\AA}^{-3}$
$(\Delta/\sigma)_{\rm max} = 0.001$	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.4428 (2)	0.35337 (18)	0.81180 (10)	0.0271 (4)	
O2	0.5097 (2)	0.53602 (18)	0.85748 (10)	0.0289 (4)	
H2	0.5328	0.4903	0.8916	0.044 (11)*	
C1	0.4560 (2)	0.4669 (2)	0.80775 (12)	0.0200 (4)	
C2	0.4148 (2)	0.5420 (2)	0.74305 (12)	0.0190 (4)	
H2A	0.4858	0.6007	0.7303	0.024 (8)*	
Br2	0.26550 (3)	0.64147 (3)	0.77267 (2)	0.02812 (7)	
C3	0.3835 (2)	0.4638 (2)	0.67757 (12)	0.0221 (4)	
H3A	0.3411	0.5169	0.6413	0.022 (8)*	
H3B	0.3233	0.3963	0.6910	0.013 (7)*	
C4	0.5050(3)	0.4068 (3)	0.64587 (13)	0.0241 (5)	
H4A	0.5692	0.4736	0.6380	0.030 (9)*	
H4B	0.5417	0.3462	0.6802	0.033 (9)*	
C5	0.4780 (2)	0.3408 (2)	0.57527 (13)	0.0212 (4)	
H5A	0.4112	0.2765	0.5831	0.034 (9)*	
H5B	0.4435	0.4024	0.5408	0.037 (10)*	
C6	0.5957 (2)	0.2790 (2)	0.54304 (13)	0.0204 (4)	
H6A	0.6299	0.2163	0.5778	0.029 (9)*	
Br6	0.73130 (2)	0.40137 (2)	0.52174 (2)	0.02402 (6)	
C7	0.5646 (2)	0.2132 (2)	0.47354 (12)	0.0204 (4)	
03	0.5852 (2)	0.10197 (18)	0.46621 (11)	0.0296 (4)	
O4	0.5102 (2)	0.28358 (18)	0.42491 (10)	0.0300 (4)	
H4	0.4863	0.2389	0.3905	0.053 (12)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0382 (10)	0.0244 (9)	0.0188 (8)	-0.0048 (8)	-0.0049 (7)	0.0012 (7)
02	0.0425 (11)	0.0238 (9)	0.0205 (8)	-0.0040(8)	-0.0098(8)	0.0008 (7)
C1	0.0205 (10)	0.0243 (11)	0.0152 (9)	0.0001 (8)	0.0009 (7)	0.0002 (8)
C2	0.0185 (9)	0.0204 (10)	0.0181 (10)	0.0006 (8)	0.0003 (7)	0.0012 (8)
Br2	0.02097 (11)	0.03372 (14)	0.02965 (13)	0.00479 (10)	0.00001 (10)	-0.00452 (10)
C3	0.0233 (11)	0.0270 (11)	0.0159 (9)	-0.0003 (9)	-0.0012 (8)	0.0008 (8)
C4	0.0264 (11)	0.0294 (12)	0.0166 (9)	0.0032 (9)	-0.0013 (8)	-0.0036 (9)
C5	0.0226 (11)	0.0239 (11)	0.0171 (9)	0.0003 (8)	-0.0008(8)	-0.0005 (8)
C6	0.0255 (11)	0.0190 (10)	0.0169 (9)	0.0006 (8)	-0.0024 (8)	0.0009 (8)

supporting information

Br6	0.02087 (10)	0.02733 (12)	0.02386 (11)	-0.00204 (9)	-0.00007 (9)	-0.00097 (9)
C7	0.0218 (10)	0.0228 (10)	0.0165 (9)	-0.0007 (8)	-0.0008 (8)	0.0014 (8)
O3	0.0387 (11)	0.0247 (9)	0.0253 (9)	0.0061 (8)	-0.0103 (8)	-0.0034 (7)
O4	0.0493 (12)	0.0215 (8)	0.0193 (8)	0.0027 (8)	-0.0100 (8)	-0.0001 (7)

Geometric parameters (Å, °)

01—C1	1.225 (3)	C4—H4A	0.9900
O2—C1	1.314 (3)	C4—H4B	0.9900
O2—H2	0.8400	C5—C6	1.520 (3)
C1—C2	1.516 (3)	C5—H5A	0.9900
C2—C3	1.519 (3)	C5—H5B	0.9900
C2—Br2	1.966 (2)	C6—C7	1.515 (3)
C2—H2A	1.0000	C6—Br6	1.968 (2)
C3—C4	1.526 (4)	C6—H6A	1.0000
С3—НЗА	0.9900	C7—O3	1.217 (3)
C3—H3B	0.9900	C7—O4	1.310 (3)
C4—C5	1.524 (3)	O4—H4	0.8400
C1—O2—H2	109.5	C5—C4—H4B	109.3
O1—C1—O2	124.2 (2)	C3—C4—H4B	109.3
O1—C1—C2	122.9 (2)	H4A—C4—H4B	108.0
O2—C1—C2	112.8 (2)	C6—C5—C4	113.3 (2)
C1—C2—C3	114.4 (2)	C6—C5—H5A	108.9
C1C2Br2	106.66 (16)	C4—C5—H5A	108.9
C3—C2—Br2	110.85 (16)	C6—C5—H5B	108.9
C1—C2—H2A	108.2	C4—C5—H5B	108.9
C3—C2—H2A	108.2	H5A—C5—H5B	107.7
Br2—C2—H2A	108.2	C7—C6—C5	111.7 (2)
C2—C3—C4	110.8 (2)	C7—C6—Br6	106.84 (16)
С2—С3—НЗА	109.5	C5C6Br6	111.78 (16)
С4—С3—НЗА	109.5	С7—С6—Н6А	108.8
С2—С3—Н3В	109.5	С5—С6—Н6А	108.8
C4—C3—H3B	109.5	Br6—C6—H6A	108.8
НЗА—СЗ—НЗВ	108.1	O3—C7—O4	124.1 (2)
C5—C4—C3	111.6 (2)	O3—C7—C6	120.9 (2)
C5—C4—H4A	109.3	O4—C7—C6	114.9 (2)
C3—C4—H4A	109.3	С7—О4—Н4	109.5
O1—C1—C2—C3	-13.0 (3)	C3—C4—C5—C6	-178.1 (2)
O2—C1—C2—C3	165.5 (2)	C4—C5—C6—C7	179.3 (2)
O1—C1—C2—Br2	109.9 (2)	C4—C5—C6—Br6	-61.1 (2)
O2—C1—C2—Br2	-71.6 (2)	C5—C6—C7—O3	-122.1 (3)
C1—C2—C3—C4	-70.5 (3)	Br6—C6—C7—O3	115.4 (2)
Br2—C2—C3—C4	168.86 (17)	C5—C6—C7—O4	55.2 (3)
C2—C3—C4—C5	-173.3 (2)	Br6-C6-C7-O4	-67.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
O2—H2…O3 ⁱ	0.84	1.80	2.635 (3)	177
O4—H4…O1 ⁱⁱ	0.84	1.83	2.669 (3)	176

Symmetry codes: (i) x, -y+1/2, z+1/2; (ii) x, -y+1/2, z-1/2.