CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 8 January 2016
Accepted 12 January 2016

Edited by M. Zeller, Youngstown State University, USA

6-[6-(Pyridin-2-yl)-1,2,4,5-tetrazin-3-yl]pyridin-3amine monohydrate

Johannes Broichhagen, Yvonne E. Klingl, Dirk Trauner and Peter Mayer*

Ludwig-Maximilians-Universität, Department, Butenandtstrasse 5-13, 81377 München, Germany. *Correspondence e-mail: pemay@cup.uni-muenchen.de

The packing of the title compound, $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{7} \cdot \mathrm{H}_{2} \mathrm{O}$, is dominated by hydrogen bonding and π-stacking. Layers parallel to [010] are established by hydrogen bonds involving all amine donor functions and one of the water donor functions, while the remaining water donor function enables the stacking of the layers along [10 $\overline{1}$], which is accompanied by π-stacking. In the molecule, the plane of the central tetrazine ring forms angles of 5.33 (7) and $19.84(8)^{\circ}$ with the adjacent 3 -amine-pyridine and pyridine rings, respectively.

1. Chemical context

Click chemistry is employed to label biological targets because of its highly selective reaction profile at ambient temperature in physiological media (Kolb et al., 2001). Several chemical reactions can be used for this purpose. Among the most popular are alkyne-azide [3+2]-pericyclic reactions, and enetetrazine Diels-Alder/retro-Diels-Alder (DA/rDA) reactions. If the biomolecule carries a clickable chemical unit, possibly installed by the introduction of unnatural amino acids, various label-bearing functionalities can be introduced efficiently (Hong et al., 2010; Tsai et al., 2015). Side-chain norbornenes have proven particularly successful as unnatural amino acids (Kaya et al., 2012). They undergo a DA/rDA reaction with tetrazines, resulting in the extrusion of nitrogen (Kaya et al., 2012; Vrabel et al., 2013). This reaction exhibits fast kinetics at ambient temperatures, making it particularly useful for biological labeling. To improve biological stability, more electron-deficient 2-pyridinyl-substituted tetrazines are employed as they display improved stability (Vrabel et al., 2013). In order to decorate tetrazines with functionalities, asymmetric bispyridyl tetrazine versions with a desired label are synthesized. For instance, an amine group can be introduced that reacts with activated esters. Herein, we describe the crystal structure of such an asymmetric tetrazine in its hydrate form, bearing pyridyl groups on each side, one of them exposing a free amine (Selvaraj \& Fox, 2014).

2. Structural commentary

The asymmetric unit of the title compound, which is depicted in Fig. 1, comprises 6-[6-(pyridin-2-yl)-1,2,4,5-tetrazin-3-yl]-pyridin-3-amin (1) and a water molecule. The three almost

Figure 1
The molecular structure of the title compound, showing atom labels and anisotropic displacement ellipsoids (drawn at the 50% probability level) for non-H atoms.
planar six-membered rings of $\mathbf{1}$ deviate significantly from coplanarity. The plane of the central tetrazine ring forms angles of $5.33(7)$ and $19.84(8)^{\circ}$ with the adjacent 3 -aminepyridine and pyridine rings, respectively. In two related structures of inversion-symmetric tetrazines these angles are $26.41(10)^{\circ}$ (Liu et al., 2001) and 19.71 (5) ${ }^{\circ}$ (Klein et al., 1998). The latter two terminal rings enclose an angle of $14.60(8)^{\circ}$ in the title compound. This observation deviates from two related structures in which the terminal pyridine rings are coplanar (Klein et al., 1998; Liu et al., 2001). The hydrogen atoms of the amine are almost parallel with the adjacent pyridine ring and form an angle of 120.7 (16) ${ }^{\circ}$ with amine N1. The $\mathrm{H}-\mathrm{O}-\mathrm{H}$ angle of the water molecule is $102.0(17)^{\circ}$.

3. Supramolecular features

Hydrogen bonding is the main feature of packing of the title compound. Both amine donor functions as well as both H atoms of the water molecule are involved in hydrogen bonds with the two pyridine ring N atoms and the water molecule acting as hydrogen-bond acceptors (Table 1). It shall be

Figure 2
The hydrogen-bond pattern in layers viewed along [100].

Table 1
Hydrogen-bond geometry (${ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 11 \cdots \mathrm{O} 1^{\text {i }}$	$0.93(2)$	$2.12(2)$	$3.024(2)$	$166.2(16)$
$\mathrm{N} 1-\mathrm{H} 12 \cdots 1^{\text {ii }}$	$0.90(2)$	$2.13(2)$	$3.012(2)$	$165.3(16)$
O1-H14 $^{\mathrm{N}} 5^{\text {iii }}$	$0.87(2)$	$2.614(19)$	$3.1934(18)$	$124.9(15)$
O1-H14 $_{\mathrm{H}} \mathrm{N} 7^{\text {iii }}$	$0.87(2)$	$2.12(2)$	$2.9321(18)$	$153.9(17)$
$\mathrm{O}_{1}-\mathrm{H} 13 \cdots \mathrm{~N} 2^{\text {iv }}$	$0.88(2)$	$2.19(2)$	$2.9688(18)$	$147.4(16)$

Symmetry codes: (i) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x,-y+1,-z$; (iii) $x, y, z+1$; (iv)
$-x+1,-y+1,-z+1$.
mentioned that the tetrazine N 5 atom is acceptor in a bifurcated hydrogen bond with donor O1. However, the donor-Hacceptor angle $\mathrm{O} 1-\mathrm{H} 14 \cdots \mathrm{~N} 5$ is rather acute at $124.9(15)^{\circ}$ and the donor-acceptor distance rather long at 3.1934 (18) A. Hence this hydrogen bond is not depicted in Figs. 2 and 3, and it is not considered in the following discussion of the hydrogen-bond network.

Fig. 2 shows a part of the herringbone-pattern-like layer parallel to [010] of the title compound. In that figure, the four different hydrogen bonds are shown in different colours. The region with the blue water-pyridine-N hydrogen bonds contains no amine groups. By this hydrogen bond, the layer is linked to next layer on top of it. By the other three hydrogen bonds, the moieties of the title compound form a twodimensional network. According to graph set theory (Bernstein et al., 1995; Etter et al., 1990), the descriptor $R_{4}^{3}(11)$ can be assigned on the ternary level (three different hydrogen bonds) for the 11 -membered rings formed by four hydrogen bonds involving two amine groups and two water molecules (two brown, one green and one red bond). In order to outline the chains along [101] formed by two different hydrogen bonds, the graph-set descriptor $C_{2}^{2}(7)$ may be assigned on the binary level. The seven-membered unit is formed by one N $\mathrm{H} \cdots \mathrm{O}$ (green) and one $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond (red).

Figure 3
π-Stacking and hydrogen bonds in the packing of the title compound.

Figure 4
The packing of the title compound viewed along [100].

Fig. 3 shows the interaction of stacking and hydrogen bonds. Centrosymmetric dimeric units consisting of two water and two organic molecules are linked by four $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. In terms of graph-set theory, the descriptor $R_{4}^{4}(22)$ can be assigned. Within these dimeric units, a tetrazine ring has an adjacent tetrazine ring - exactly parallel due to an center of inversion - with a distance of 3.5896 (9) \AA between the ring centroids. Additionally, the pyridine rings have adjacent amino-pyridine rings. The dihedral angles are $14.60(8)^{\circ}$ with a distance of 3.7477 (9) \AA between the centroids. Between the dimeric units, the tetrazine ring has an adjacent amino-pyridine ring which subtends a dihedral angle of 5.33 (7) ${ }^{\circ}$. The distance between the ring centroids amounts to 3.6360 (9) A. Fig. 4 shows the packing of the unit cell and gives a further impression of the herringbone pattern and the stacking.

4. Synthesis and crystallization

The title compound was synthesized according to a literature procedure (Selvaraj \& Fox, 2014) and the analytical data matched that reported. Single crystals were obtained by recrystallization from hot acetone.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bonded H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.95 \AA)$ and treated as riding on their parent atoms $\left[U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$. The coordinates of N - and O-bound hydrogen atoms were refined freely with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N}$ or O$)$.

Acknowledgements

The authors thank the Department of Chemistry of LMU Munich for financial support.

Table 2
Experimental details.
Crystal data

Chemical formula	$\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{7} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{\text {r }}$	269.28
Crystal system, space group	Monoclinic, $P 2_{1} / n$
Temperature (K)	100
$a, b, c(\AA)$	7.5488 (4), 21.4944 (14), 7.8936 (5)
$\beta{ }^{\circ}$)	111.7170 (19)
$V\left(\AA^{3}\right)$	1189.88 (13)
Z	4
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.11
Crystal size (mm)	$0.13 \times 0.08 \times 0.02$
Data collection	
Diffractometer	Bruker D8 Venture TXS
Absorption correction	Multi-scan (SADABS; Bruker, 2015)
$T_{\text {min }}, T_{\text {max }}$	0.924, 0.958
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	20441, 2186, 1751
$R_{\text {int }}$	0.046
$(\sin \theta / \lambda)_{\text {max }}\left(\mathrm{A}^{-1}\right)$	0.603
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.038, 0.101, 1.06
No. of reflections	2186
No. of parameters	193
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.28, -0.18

Computer programs: APEX3 and SAINT (Bruker, 2015), SIR97 (Altomare et al., 1999), SHELXL2014 (Sheldrick, 2015), ORTEPIII (Burnett \& Johnson, 1996) and PLATON (Spek, 2009).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL6895. Oak Ridge National Laboratory, Tennessee, USA.

Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256-262.
Hong, V., Steinmetz, N. F., Manchester, M. \& Finn, M. G. (2010). Bioconjugate Chem. 21, 1912-1916.
Kaya, E., Vrabel, M., Deiml, C., Prill, S., Fluxa, V. S. \& Carell, T. (2012). Angew. Chem. Int. Ed. 51, 4466-4469.

Klein, A., McInnes, E. J. L., Scheiring, T. \& Zališ, S. (1998). Faraday Trans. 94, 2979-2984.
Kolb, H. C., Finn, M. G. \& Sharpless, K. B. (2001). Angew. Chem. Int. Ed. 40, 2004-2021.
Liu, H., Du, M. \& Bu, X.-H. (2001). Acta Cryst. E57, o127-o128.
Selvaraj, R. \& Fox, J. M. (2014). Tetrahedron Lett. 55, 4795-4797.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Tsai, Y. H., Essig, S., James, J. R., Lang, K. \& Chin, J. W. (2015). Nat. Chem. 7, 554-561.
Vrabel, M., Kölle, P., Brunner, K. M., Gattner, M. J., López-Carrillo, V., de Vivie-Riedle, R. \& Carell, T. (2013). Chem. Eur. J. 19, 1330913312.

supporting information

6-[6-(Pyridin-2-yl)-1,2,4,5-tetrazin-3-yl]pyridin-3-amine monohydrate

Johannes Broichhagen, Yvonne E. Klingl, Dirk Trauner and Peter Mayer

Computing details

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: PLATON (Spek, 2009).

6-[6-(Pyridin-2-yl)-1,2,4,5-tetrazin-3-yl]pyridin-3-amine monohydrate

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{7} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=269.28$
Monoclinic, $P 2_{1} / n$
$a=7.5488$ (4) \AA
$b=21.4944(14) \AA$
$c=7.8936$ (5) \AA
$\beta=111.7170(19)^{\circ}$
$V=1189.88(13) \AA^{3}$
$Z=4$

Data collection

Bruker D8 Venture TXS
diffractometer
Radiation source: rotating anode (TXS)
Detector resolution: 10.4167 pixels mm^{-1}
mix of phi and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
$T_{\min }=0.924, T_{\text {max }}=0.958$

$$
F(000)=560
$$

$D_{\mathrm{x}}=1.503 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4888 reflections
$\theta=2.9-25.3^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Platelet, red
$0.13 \times 0.08 \times 0.02 \mathrm{~mm}$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.101$
$S=1.06$
2186 reflections
193 parameters
0 restraints

20441 measured reflections
2186 independent reflections
1751 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.046$
$\theta_{\text {max }}=25.4^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-9 \rightarrow 9$
$k=-25 \rightarrow 25$
$l=-9 \rightarrow 9$

Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0506 P)^{2}+0.4194 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.28 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.18$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\text {eq }}$
C1	$-0.1210(2)$	$0.64392(7)$	$-0.4086(2)$	$0.0188(4)$
C2	$-0.1550(2)$	$0.58094(8)$	$-0.4525(2)$	$0.0205(4)$
H2	-0.2516	0.5687	-0.5642	0.025^{*}
C3	$-0.0470(2)$	$0.53676(7)$	$-0.3322(2)$	$0.0191(4)$
H3	-0.0695	0.4938	-0.3604	0.023^{*}
C4	$0.0953(2)$	$0.55506(7)$	$-0.1693(2)$	$0.0165(3)$
C5	$0.0242(2)$	$0.65788(7)$	$-0.2380(2)$	$0.0209(4)$
H5	0.0473	0.7004	-0.2043	0.025^{*}
C6	$0.2153(2)$	$0.50924(7)$	$-0.0406(2)$	$0.0167(3)$
C7	$0.4210(2)$	$0.42767(7)$	$0.1870(2)$	$0.0166(3)$
C8	$0.5358(2)$	$0.38179(7)$	$0.3232(2)$	$0.0174(3)$
C9	$0.6399(2)$	$0.40029(8)$	$0.5007(2)$	$0.0214(4)$
H9	0.6403	0.4426	0.5356	0.026^{*}
C10	$0.7430(2)$	$0.35636(8)$	$0.6260(2)$	$0.0253(4)$
H10	0.8166	0.3679	0.7480	0.030^{*}
C11	$0.7368(2)$	$0.29540(8)$	$0.5699(2)$	$0.0256(4)$
H11A	0.8039	0.2639	0.6533	0.031^{*}
C12	$0.6312(2)$	$0.28102(8)$	$0.3901(2)$	$0.0242(4)$
H12A	0.6301	0.2390	0.3523	0.029^{*}
N1	$-0.2190(2)$	$0.69044(7)$	$-0.5185(2)$	$0.0253(4)$
H11	$-0.180(3)$	$0.7312(10)$	$-0.487(2)$	0.030^{*}
H12	$-0.310(3)$	$0.6815(9)$	$-0.628(3)$	0.030^{*}
N2	$0.12937(18)$	$0.61569(6)$	$-0.12284(18)$	$0.0199(3)$
N3	$0.36169(19)$	$0.53003(6)$	$0.10630(17)$	$0.0198(3)$
N4	$0.46638(19)$	$0.48774(6)$	$0.22296(18)$	$0.0199(3)$
N5	$0.27906(18)$	$0.40634(6)$	$0.03676(17)$	$0.0193(3)$
N6	$0.17398(18)$	$0.44830(6)$	$-0.07911(17)$	$0.0202(3)$
N7	$0.53069(19)$	$0.32257(6)$	$0.26624(18)$	$0.0210(3)$
O1	$0.52583(18)$	$0.31449(6)$	$0.89374(16)$	$0.0253(3)$
H14	$0.488(3)$	$0.3167(9)$	$0.985(3)$	0.030^{*}
H13	$0.612(3)$	$0.3439(9)$	$0.920(3)$	0.030^{*}

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0160(8)$	$0.0223(8)$	$0.0203(8)$	$-0.0006(6)$	$0.0094(6)$	$0.0027(7)$
C2	$0.0157(8)$	$0.0278(9)$	$0.0170(8)$	$-0.0026(7)$	$0.0048(6)$	$-0.0036(7)$
C3	$0.0194(8)$	$0.0192(8)$	$0.0207(9)$	$-0.0017(7)$	$0.0096(7)$	$-0.0030(7)$
C4	$0.0166(8)$	$0.0176(8)$	$0.0179(8)$	$-0.0026(6)$	$0.0094(6)$	$-0.0019(6)$

C5	$0.0205(8)$	$0.0184(8)$	$0.0228(9)$	$-0.0020(7)$	$0.0070(7)$	$-0.0006(7)$
C6	$0.0170(8)$	$0.0189(8)$	$0.0177(8)$	$-0.0032(6)$	$0.0104(6)$	$-0.0033(6)$
C7	$0.0170(8)$	$0.0185(8)$	$0.0174(8)$	$-0.0016(6)$	$0.0102(6)$	$-0.0032(6)$
C8	$0.0164(8)$	$0.0184(8)$	$0.0192(8)$	$-0.0013(6)$	$0.0087(6)$	$-0.0011(6)$
C9	$0.0226(9)$	$0.0200(8)$	$0.0213(9)$	$-0.0024(7)$	$0.0079(7)$	$-0.0039(7)$
C10	$0.0230(9)$	$0.0313(10)$	$0.0186(8)$	$-0.0008(7)$	$0.0044(7)$	$-0.0002(7)$
C11	$0.0202(9)$	$0.0258(9)$	$0.0275(9)$	$0.0022(7)$	$0.0051(7)$	$0.0056(7)$
C12	$0.0230(9)$	$0.0177(9)$	$0.0296(10)$	$0.0027(7)$	$0.0072(7)$	$0.0007(7)$
N1	$0.0241(8)$	$0.0223(8)$	$0.0224(8)$	$-0.0018(6)$	$0.0004(6)$	$0.0027(6)$
N2	$0.0202(7)$	$0.0179(7)$	$0.0201(7)$	$-0.0020(6)$	$0.0059(6)$	$-0.0002(6)$
N3	$0.0211(7)$	$0.0179(7)$	$0.0192(7)$	$-0.0005(6)$	$0.0060(6)$	$-0.0008(6)$
N4	$0.0221(7)$	$0.0167(7)$	$0.0195(7)$	$-0.0005(6)$	$0.0063(6)$	$-0.0010(6)$
N5	$0.0202(7)$	$0.0175(7)$	$0.0191(7)$	$0.0004(5)$	$0.0060(6)$	$-0.0007(5)$
N 6	$0.0212(7)$	$0.0177(7)$	$0.0208(7)$	$-0.0015(6)$	$0.0068(6)$	$-0.0020(6)$
N7	$0.0215(7)$	$0.0179(7)$	$0.0226(7)$	$-0.0005(6)$	$0.0071(6)$	$-0.0021(6)$
O1	$0.0287(7)$	$0.0252(7)$	$0.0220(6)$	$-0.0055(5)$	$0.0093(5)$	$-0.0040(5)$

Geometric parameters (\AA, ${ }^{\circ}$)

C1-N1	1.351 (2)	C8-N7	1.346 (2)
$\mathrm{C} 1-\mathrm{C} 2$	1.397 (2)	C8-C9	1.387 (2)
C1-C5	1.419 (2)	C9-C10	1.380 (2)
C2-C3	1.376 (2)	C9-H9	0.9500
C2-H2	0.9500	C10-C11	1.378 (2)
C3-C4	1.393 (2)	C10-H10	0.9500
C3-H3	0.9500	C11-C12	1.382 (2)
$\mathrm{C} 4-\mathrm{N} 2$	1.352 (2)	C11-H11A	0.9500
C4-C6	1.464 (2)	C12-N7	1.334 (2)
C5-N2	1.321 (2)	C12-H12A	0.9500
C5-H5	0.9500	N1-H11	0.93 (2)
C6-N3	1.348 (2)	N1-H12	0.90 (2)
C6-N6	1.355 (2)	N3-N4	1.3268 (18)
C7-N4	1.339 (2)	N5-N6	1.3201 (18)
C7-N5	1.351 (2)	$\mathrm{O} 1-\mathrm{H} 14$	0.87 (2)
C7-C8	1.480 (2)	$\mathrm{O} 1-\mathrm{H} 13$	0.88 (2)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	123.47 (15)	C9-C8-C7	120.23 (14)
N1-C1-C5	120.00 (15)	C10-C9-C8	119.07 (15)
C2- $21-\mathrm{C} 5$	116.53 (14)	C10-C9-H9	120.5
C3-C2-C1	119.33 (14)	C8-C9-H9	120.5
C3-C2-H2	120.3	C11-C10-C9	118.52 (15)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.3	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{H} 10$	120.7
C2-C3-C4	119.98 (15)	C9-C10-H10	120.7
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.0	C10-C11-C12	118.72 (16)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.0	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	120.6
N2-C4-C3	121.78 (14)	C12-C11-H11A	120.6
N2-C4-C6	116.96 (13)	N7-C12-C11	123.96 (15)
C3-C4-C6	121.26 (14)	N7-C12-H12A	118.0

$\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 1$	$124.37(15)$
$\mathrm{N} 2-\mathrm{C} 5-\mathrm{H} 5$	117.8
$\mathrm{C} 1-\mathrm{C} 5-\mathrm{H} 5$	117.8
$\mathrm{~N} 3-\mathrm{C} 6-\mathrm{N} 6$	$124.14(14)$
$\mathrm{N} 3-\mathrm{C} 6-\mathrm{C} 4$	$118.29(14)$
$\mathrm{N} 6-\mathrm{C} 6-\mathrm{C} 4$	$117.56(14)$
$\mathrm{N} 4-\mathrm{C} 7-\mathrm{N} 5$	$124.82(14)$
$\mathrm{N} 4-\mathrm{C} 7-\mathrm{C} 8$	$116.98(14)$
$\mathrm{N} 5-\mathrm{C} 7-\mathrm{C} 8$	$118.21(13)$
$\mathrm{N} 7-\mathrm{C} 8-\mathrm{C} 9$	$122.97(15)$
$\mathrm{N} 7-\mathrm{C} 8-\mathrm{C} 7$	$116.79(14)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	
$\mathrm{C} 5-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.8(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.4(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 2$	$1.2(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 6$	$-178.61(14)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 5-\mathrm{N} 2$	$-178.91(15)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 5-\mathrm{N} 2$	$1.5(2)$
$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 6-\mathrm{N} 3$	$-5.9(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 6-\mathrm{N} 3$	$173.94(13)$
$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 6-\mathrm{N} 6$	$175.42(13)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 6-\mathrm{N} 6$	$-4.8(2)$
$\mathrm{N} 4-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 7$	$-160.90(13)$
$\mathrm{N} 5-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 7$	$19.2(2)$
$\mathrm{N} 4-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$20.0(2)$
$\mathrm{N} 5-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-159.94(14)$
$\mathrm{N} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-0.2(2)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$178.84(14)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$-0.7(2)$

$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A}$	118.0
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 11$	$118.9(11)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 12$	$119.8(12)$
$\mathrm{H} 11-\mathrm{N} 1-\mathrm{H} 12$	$120.7(16)$
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 4$	$117.99(14)$
$\mathrm{N} 4-\mathrm{N} 3-\mathrm{C} 6$	$117.25(13)$
$\mathrm{N} 3-\mathrm{N} 4-\mathrm{C} 7$	$118.28(13)$
$\mathrm{N} 6-\mathrm{N} 5-\mathrm{C} 7$	$117.03(13)$
$\mathrm{N} 5-\mathrm{N} 6-\mathrm{C} 6$	$118.40(13)$
$\mathrm{C} 12-\mathrm{N} 7-\mathrm{C} 8$	$116.74(14)$
$\mathrm{H} 14-\mathrm{O} 1-\mathrm{H} 13$	$102.0(17)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$1.4(2)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{N} 7$	$-1.3(3)$
$\mathrm{C} 1-\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 4$	$-0.8(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 5$	$-0.6(2)$
$\mathrm{C} 6-\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 5$	$179.24(13)$
$\mathrm{N} 6-\mathrm{C} 6-\mathrm{N} 3-\mathrm{N} 4$	$-2.6(2)$
$\mathrm{C} 4-\mathrm{C} 6-\mathrm{N} 3-\mathrm{N} 4$	$178.76(12)$
$\mathrm{C} 6-\mathrm{N} 3-\mathrm{N} 4-\mathrm{C} 7$	$0.4(2)$
$\mathrm{N} 5-\mathrm{C} 7-\mathrm{N} 4-\mathrm{N} 3$	$2.2(2)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{N} 4-\mathrm{N} 3$	$-177.71(13)$
$\mathrm{N} 4-\mathrm{C} 7-\mathrm{N} 5-\mathrm{N} 6$	$-2.5(2)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{N} 5-\mathrm{N} 6$	$177.39(13)$
$\mathrm{C} 7-\mathrm{N} 5-\mathrm{N} 6-\mathrm{C} 6$	$0.2(2)$
$\mathrm{N} 3-\mathrm{C} 6-\mathrm{N} 6-\mathrm{N} 5$	$2.3(2)$
$\mathrm{C} 4-\mathrm{C} 6-\mathrm{N} 6-\mathrm{N} 5$	$-179.07(13)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{N} 7-\mathrm{C} 8$	$0.4(2)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{N} 7-\mathrm{C} 12$	$0.4(2)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 7-\mathrm{C} 12$	$-178.73(13)$

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 11 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.93 (2)	2.12 (2)	3.024 (2)	166.2 (16)
$\mathrm{N} 1-\mathrm{H} 12 \cdots \mathrm{O} 1^{\text {ii }}$	0.90 (2)	2.13 (2)	3.012 (2)	165.3 (16)
$\mathrm{O} 1-\mathrm{H} 14 \cdots \mathrm{~N} 5^{\text {iii }}$	0.87 (2)	2.614 (19)	3.1934 (18)	124.9 (15)
$\mathrm{O} 1-\mathrm{H} 14 \cdots \mathrm{~N} 7^{\text {iii }}$	0.87 (2)	2.12 (2)	2.9321 (18)	153.9 (17)
$\mathrm{O} 1-\mathrm{H} 13 \cdots \mathrm{~N} 2^{\mathrm{iv}}$	0.88 (2)	2.19 (2)	2.9688 (18)	147.4 (16)

Symmetry codes: (i) $-x+1 / 2, y+1 / 2,-z+1 / 2$; (ii) $-x,-y+1,-z$; (iii) $x, y, z+1$; (iv) $-x+1,-y+1,-z+1$.

