CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 6 January 2016
Accepted 14 January 2016

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; zinc; dithiocarbamate; hydrogen bonding

CCDC references: 1447175 ; 1447174
Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\begin{aligned} \text { ACCESS }\end{aligned}$

Crystal structures of ($2,2^{\prime}$-bipyridyl- $\kappa^{2} N, N^{\prime}$)bis[N, N -bis(2-hydroxyethyl)dithiocarbamato- $\left.\kappa^{2} S, S^{\prime}\right]$ zinc dihydrate and ($2,2^{\prime}$-bipyridyl- $\kappa^{2} N, N^{\prime}$)bis[N-(2-hydroxyethyl)- N-isopropyldithiocarbamato- κ^{2} S, $\left.S^{\prime}\right]$ zinc

Siti Artikah M. Safbri, ${ }^{\text {a }}$ Siti Nadiah Abdul Halim ${ }^{\text {a* }}$ and Edward R. T. Tiekink ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ${ }^{\mathbf{b}}$ Centre for Crystalline Materials, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
*Correspondence e-mail: nadiahhalim@um.edu.my, edwardt@sunway.edu.my

The common feature of the title compounds, $\left[\mathrm{Zn}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NO}_{2} \mathrm{~S}_{2}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$-$2 \mathrm{H}_{2} \mathrm{O}$, (I), and $\left[\mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{NOS}_{2}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$, (II), is the location of the $\mathrm{Zn}^{\text {II }}$ atoms on a twofold rotation axis. Further, each $\mathrm{Zn}^{\mathrm{II}}$ atom is chelated by two symmetry-equivalent and symmetrically coordinating dithiocarbamate ligands and a $2,2^{\prime}$-bipyridine ligand. The resulting $\mathrm{N}_{2} \mathrm{~S}_{4}$ coordination geometry is based on a highly distorted octahedron in each case. In the molecular packing of (I), supramolecular ladders mediated by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding are found whereby the uprights are defined by $\{\cdots \mathrm{HO} \text { (water) } \cdots \mathrm{HO} \text { (hydroxy) } \cdots\}_{n}$ chains parallel to the a axis and with the rungs defined by ' $\mathrm{Zn}\left[\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}\right]_{2}$ '. The water molecules connect the ladders into a supramolecular layer parallel to the $a b$ plane via water- $\mathrm{O}-\mathrm{H} \cdots \mathrm{S}$ and pyridyl- $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ (water) interactions, with the connections between layers being of the type pyridyl-C-H. S . In (II), supramolecular layers parallel to the $a b$ plane are sustained by hydroxy-OH‥S hydrogen bonds with connections between layers being of the type pyridyl-C-H \cdots.

1. Chemical context

The dithiocarbamate ligand ${ }^{-} \mathrm{S}_{2} \mathrm{CN} R R^{\prime}$, is well known as an effective chelator of transition metals, main group elements and lanthanides (Hogarth, 2005; Heard, 2005). The resulting four-membered $\mathrm{MS}_{2} \mathrm{C}$ chelate ring has metalloaromatic character (Masui, 2001) and may act as an acceptor for CH $\cdots \pi$ (chelate) interactions (Tiekink \& Zukerman-Schpector, 2011) much in the same way as the now widely accepted C$\mathrm{H} \cdots \pi$ (arene) interactions. While other 1,1-dithiolate species may also form analogous interactions - these were probably first discussed in cadmium xanthate (${ }^{-} \mathrm{S}_{2} \mathrm{COR}$) structures (Chen et al., 2003) - dithiocarbamate compounds have a greater propensity to form $\mathrm{C}-\mathrm{H} \cdots \pi$ (chelate) interactions, an observation related to the relatively greater contribution of the canonical structure ${ }^{2-} \mathrm{S}_{2} \mathrm{C}=\mathrm{N}^{+} R R^{\prime}$ to the overall electronic structure that enhances the electron density in the chelate ring (Tiekink \& Zukerman-Schpector, 2011). This factor explains the strong chelation ability of the dithiocarbamate ligand and at the same time accounts for the reduced Lewis acidity of the metal cation in metal dithiocarbamates which reduces the ability of these species to form extended architectures in their interactions with Lewis bases. One way of overcoming the relative inability of the metal cation to engage in supramolecular association is to functionalize the dithiocarbamate ligand with, relevant to the

Table 1
Geometric data (${ }^{\circ},{ }^{\circ}$) for (I), unsolvated (I) and for (II).

Parameter	$(\mathrm{I})^{a}$	unsolvated (I)	
$\mathrm{Zn}-\mathrm{S} 1$	$2.5361(5)$	$2.4632(12)$	$2.5068(5)$
$\mathrm{Zn}-\mathrm{S} 2$	$2.5163(5)$	$2.5968(13)$	
$\mathrm{Zn}-\mathrm{S} 3$	$2.5361(5)$	$2.5030(12)$	
$\mathrm{Zn}-\mathrm{S} 4$	$2.5163(5)$	$2.6045(13)$	
$\mathrm{Zn}-\mathrm{N} 2$	$2.1682(15)$	$2.157(4)$	$2.5068(5)$
$\mathrm{Zn}-\mathrm{N} 3$	$2.1682(15)$	$2.154(3)$	$2.5247(5)$
$\mathrm{C}-\mathrm{S}$	$1.7198(18)-1.7253(18)$	$1.696(4)-1.726(5)$	$2.1695(15)$
$\mathrm{S} 1-\mathrm{Zn}-\mathrm{S} 2$	$71.376(15)$	$70.46(4)$	$1.7695(15)$
$\mathrm{S} 3-\mathrm{Zn}-\mathrm{S} 4$	$71.376(15)$	$70.15(4)$	$71.289(19)-1.7301(18)$
$\mathrm{N} 2-\mathrm{Zn}-\mathrm{N} 2$	$75.71(8)$	$74.72(12)$	$71.289(16)$

Notes: (a) $\mathrm{S} 3, \mathrm{~S} 4$ and N 3 are $\mathrm{S} 1^{\mathrm{i}}, \mathrm{S} 2^{\mathrm{i}}$ and $\mathrm{N} 2^{\mathrm{i}}$ for (i) $\frac{3}{2}-x, \frac{1}{2}-y, z ;(b) \mathrm{S} 3, \mathrm{~S} 4$ and N 3 are $\mathrm{S} 1^{\mathrm{i}}, \mathrm{S} 2^{\mathrm{i}}$ and $\mathrm{N} 2^{\mathrm{i}}$ for (i) $1-x, y, \frac{3}{2}-z$.
present report, hydrogen-bonding functionality. In this context and as a continuation of earlier studies of the zinctriad elements with dithiocarbamate ligands featuring hydroxyethyl groups capable of forming hydrogen-bonding interactions (Benson et al., 2007; Broker \& Tiekink, 2011; Zhong et al., 2004; Tan et al., 2013, 2016; Safbri et al., 2016; Howie et al., 2009), herein, the crystal and molecular structures of two new zinc dithiocarbamates, $\mathrm{Zn}\left[\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)_{2}\right]_{2}-$ (bipy) $2 \mathrm{H}_{2} \mathrm{O}$, (I), and $\mathrm{Zn}\left[\mathrm{S}_{2} \mathrm{CN}(i \mathrm{Pr}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right]_{2}$ (bipy), (II) where bipy $=2,2^{\prime}$-bipyridine are described.

(I)

(II)

2. Structural commentary

The molecular structure of the zinc compound in (I) is shown in Fig. 1 and selected geometric parameters are given in Table 1. The zinc cation is located on a twofold rotation axis and is chelated by two symmetry-equivalent dithiocarbamate ligands and the $2,2^{\prime}$-bipyridine ligand, which is bisected by the twofold rotation axis. The dithiocarbamate ligand chelates in a symmetric mode with the difference between the $\mathrm{Zn}-\mathrm{S}_{\text {long }}$ and $\mathrm{Zn}-\mathrm{S}_{\text {short }}$ bond lengths being $0.02 \AA$. The shorter $\mathrm{Zn}-\mathrm{S}$ bond is approximately trans to a pyridyl-N atom. The $\mathrm{N}_{2} \mathrm{~S}_{4}$ coordination geometry is based on an octahedron. In this
description, one triangular face is defined by the $\mathrm{S} 1, \mathrm{~S} 2^{\mathrm{i}}$ and $\mathrm{N} 2^{\mathrm{i}}$ atoms, and the other by the symmetry equivalent atoms [symmetry code: (i) $\left.\frac{3}{2}-x, \frac{1}{2}-y, z\right]$. The dihedral angle between the two faces is $3.07(4)^{\circ}$ and the twist angle between them is approximately 35°, cf. 0 and 60° for ideal trigonalprismatic and octahedral angles, respectively. The twist toward a trigonal prism is related in part to the acute bite angles subtended by the chelating ligands (Table 1).

Compound (I) was characterized herein as a dihydrate and may be compared with an unsolvated literature precedent (Deng et al., 2007) for which selected geometric data are also collected in Table 1. First and foremost, the molecular symmetry observed in unsolvated (I) is lacking. Also, the range of $\mathrm{Zn}-\mathrm{S}$ bond lengths is significantly broader at $0.14 \AA$, but the trend that the shorter $\mathrm{Zn}-\mathrm{S}$ bonds are approximately trans to the pyridyl-N atoms persists. The dihedral angle between the trigonal faces is $5.33(6)^{\circ}$ and the twist between them is 31°, indicating an intermediate coordination geometry.

The molecule of compound (II) (Fig. 2) is also located about a twofold rotation axis and presents geometric features closely resembling those of (I), Table 1. The angle between the triangular faces is $1.50(5)^{\circ}$ and the twist angle is approxi-

Figure 1
The molecular structure of the zinc compound in (I), showing the atomlabelling scheme and displacement ellipsoids at the 70% probability level; the water molecules of crystallization have been omitted. The unlabelled atoms are related by the symmetry operation $\frac{3}{2}-x, \frac{1}{2}-y, z$.

Figure 2
The molecular structure of (II), showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level. The unlabelled atoms are related by the symmetry operation $1-x, y, \frac{3}{2}-z$.
mately 30°, again indicating a highly distorted coordination geometry.

3. Supramolecular features

Geometric parameters characterizing the intermolecular interactions operating in the crystal structures of (I) and (II) are collected in Tables 2 and 3, respectively.

In the molecular packing of (I), supramolecular ladders mediated by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding are found. There is an intramolecular hydroxy- $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ (hydroxy) hydrogen bond as well as intermolecular hydroxy-O-H. O (water) and water- $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ (hydroxy) hydrogen bonds. This mode of association results in supramolecular $\{\cdots \mathrm{HO}(\text { water }) \cdots \mathrm{HO}(\text { hydroxy }) \cdots \mathrm{HO}(\text { hydroxy }) \cdots\}_{n} \quad$ jagged

Table 2
Hydrogen-bond geometry ($\AA,^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{O} \cdots \mathrm{O} 1$	0.83 (2)	1.87 (2)	2.696 (2)	177 (3)
$\mathrm{O} 1-\mathrm{H} 1 O \cdots \mathrm{O} 1 W$	0.83 (2)	1.88 (2)	2.7115 (19)	177 (2)
$\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{O} 2^{\mathrm{i}}$	0.83 (2)	1.91 (2)	2.7216 (19)	166 (2)
$\mathrm{O} 1 W-\mathrm{H} 2 W \cdots \mathrm{~S}^{\text {ii }}$	0.83 (2)	2.45 (2)	3.2733 (15)	170 (2)
C7-H7 . ${ }^{\text {O }} 1 W^{\text {iii }}$	0.95	2.58	3.517 (2)	171
C6-H6 \cdot S $2^{\text {iv }}$	0.95	2.81	3.490 (2)	129
C9-H9 . . S1 ${ }^{\text {v }}$	0.95	2.84	3.6857 (18)	149

Symmetry codes: (i) $x+1, y, z$; (ii) $x+\frac{1}{2},-y+1,-z+\frac{1}{2}$; (iii) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$; (iv) $-x+\frac{1}{2},-y+\frac{1}{2}, z ;(\mathrm{v})-x+\frac{3}{2}, y, z+\frac{1}{2}$.

Table 3
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 O \cdots \mathrm{~S}^{\mathrm{i}}$	$0.84(2)$	$2.45(2)$	$3.2437(16)$	$160(2)$
C5-H5B $\cdots 1^{\mathrm{i}}$	0.98	2.54	$3.512(2)$	175
$\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{~S}^{\mathrm{ii}}$	0.95	2.86	$3.550(2)$	130

Symmetry codes: (i) $-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{3}{2}$; (ii) $-x+1,-y+2,-z+1$.
chains parallel to the a axis that serve as the uprights in the supramolecular ladders whereby the rungs are defined by $' \mathrm{Zn}\left(\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}{ }^{\prime}\right.$ (Fig. 3a). The water molecules are pivotal in connecting the ladders into a supramolecular layer parallel to the $a b$ plane by forming water- $\mathrm{O}-\mathrm{H} \cdots \mathrm{S}$ and
(a)

(b)

(c)

Figure 3
Molecular packing in (I), showing (a) the supramolecular ladders aligned along the a axis and sustained by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding, (b) the supramolecular layers parallel to the $a b$ plane whereby the ladders in (a) are connected by $\mathrm{O}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, and (c) a view of the unit-cell contents in projection down the a axis, showing $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ interactions along the c axis connecting the layers in (b). The $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$, $\mathrm{O}-\mathrm{H} \cdots \mathrm{S}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ interactions are shown as orange, blue, pink and green dashed lines, respectively.

Figure 4
Molecular packing in (II), showing (a) the supramolecular layers parallel to the $a b$ plane sustained by $\mathrm{O}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, and (b) a view of the unit-cell contents in projection down the b axis, showing $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ interactions along the c axis connecting the layers in (b). The $\mathrm{O}-\mathrm{H} \cdots \mathrm{S}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ interactions are shown as orange, blue and pink dashed lines, respectively.
pyridyl-C-H.. O(water) interactions (Fig. 3b). The connections between layers to consolidate the three-dimensional architecture are of the type pyridyl- $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ (Fig. 3c).

Naturally, the molecular packing in the unsolvated form of (I) is distinct (Deng et al., 2007). However, a detailed analysis of the packing is restricted as one of the hydroxy groups is disordered over two sites. Further, there are large voids in the crystal structure, amounting to approximately $570 \AA^{3}$ or
19.2% of the available volume (Spek, 2009). This is reflected in the crystal packing index of 59.2% which compares to 71.3% in (I). Globally, the crystal structure comprises alternating layers of hydrophilic and hydrophobic regions with the former arranged as supramolecular rods, indicating significant hydrogen bonding in this region of the crystal structure.

In the molecular packing of (II), hydroxy-O-H $\cdots \mathrm{S}$ hydrogen bonds lead to supramolecular layers parallel to the $a b$ plane (Fig. 4a). Additional stabilization to this arrangement is provided by methyl- $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ (hydroxy) interactions. Connections between layers to consolidate the three-dimensional packing are of the type pyridyl-C-H. . S (Fig. 4b).

4. Database survey

Binary zinc dithiocarbamates are generally binuclear as a result of the presence of chelating and tridentate, μ_{2}-bridging ligands, leading to penta-coordinate geometries (Tiekink, 2003). The exceptional structures arise when the steric bulk of at least one of the terminal substituents is too great to allow for supramolecular association, e.g. $R=$ cyclohexyl (Cox \& Tiekink, 2009) and $R=$ benzyl (Decken et al., 2004). However, there is a subtle energetic balance between the two forms as seen in the crystal structure of $\mathrm{Zn}\left[\mathrm{S}_{2} \mathrm{CN}(i-\mathrm{Bu})_{2}\right]_{2}$ which comprises equal numbers of mono- and bi-nuclear molecules (Ivanov et al., 2005). As the R groups are generally aliphatic, there is limited scope for controlled supramolecular aggregation between the molecules. This changes in the case of the present study as at least one R group has an hydroxyethyl substituent. Indeed, a rich tapestry of structures have been observed for zinc compounds with this family of dithiocarbamate ligands.

The common feature of the molecular structures of the known binary species, $\mathrm{Zn}\left[\mathrm{S}_{2} \mathrm{NC}(R) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right]_{2}$, is the adoption of a binuclear motif (Benson et al., 2007; Tan et al., 2015). In the molecular packing of these species, when $R=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, a three-dimensional architecture is constructed based on hydrogen bonding (Benson et al., 2007). When the hydrogen-bonding potential is reduced, as in the case when $R=\mathrm{Et}$, linear supramolecular chains are formed (Benson et al., 2007). When $R=\mathrm{Me}$, and in the $2: 1$ adduct with the bridging ligand (3-pyridyl) $\mathrm{CH}_{2} \mathrm{~N}(\mathrm{H}) \mathrm{C}(=\mathrm{O}) \mathrm{C}(=\mathrm{O})$ $\mathrm{N}(\mathrm{H}) \mathrm{CH}_{2}$ (3-pyridyl), interwoven supramolecular chains are formed based on hydrogen bonding (Poplaukhin \& Tiekink, 2010). Extensive hydrogen bonding is also noted in co-crystals, $e . g$. for $R=$ Me in the $2: 1$ adduct with (3-pyridyl) $\mathrm{CH}_{2} \mathrm{~N}(\mathrm{H})$ $\mathrm{C}(=\mathrm{S}) \mathrm{C}(=\mathrm{S}) \mathrm{N}(\mathrm{H}) \mathrm{CH}_{2}$ (3-pyridyl), a 2:1 co-crystal with S_{8} has been characterized in which a two-dimensional array sustained by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding is found (Poplaukhin et al., 2012). From the foregoing, it is clear that a rich structural chemistry exists for these compounds, well worthy of further investigation. Complementing these interests are the observations that zinc compounds with these ligands (Tan et al., 2015), along with gold (Jamaludin et al., 2013) and bismuth (Ishak et al., 2014) exhibit exciting anti-cancer potential.

Table 4
Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	$\left[\mathrm{Zn}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NO}_{2} \mathrm{~S}_{2}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$\left[\mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{NOS}_{2}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right.$]
$M_{\text {r }}$	618.10	578.12
Crystal system, space group	Orthorhombic, Pccn	Monoclinic, C2/c
Temperature (K)	100	100
a, b, c (A)	6.7730 (3), 23.1063 (11), 16.9483 (8)	19.4997 (11), 9.0027 (5), 15.5352 (8)
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	90, 90, 90	90, 98.031 (5), 90
$V\left(\AA^{3}\right)$	2652.4 (2)	2700.5 (3)
Z	4	4
Radiation type	Mo $K \alpha$	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	1.28	1.25
Crystal size (mm)	$0.40 \times 0.30 \times 0.20$	$0.25 \times 0.25 \times 0.15$
Data collection		
Diffractometer	Agilent SuperNova Dual diffractometer with an Atlas detector	Agilent SuperNova Dual diffractometer with Atlas detector
Absorption correction	Multi-scan (CrysAlis PRO; Agilent, 2012)	Multi-scan (CrysAlis PRO; Agilent, 2012)
$T_{\min }, T_{\max }$	$0.778,1.000$	0.737, 1.000
No. of measured, independent and observed [$I>2 \sigma(I)$] reflections	21039, 3047, 2607	11190, 3095, 2657
$R_{\text {int }}$	0.049	0.048
$(\sin \theta / \lambda)_{\text {max }}\left(\mathrm{A}^{-1}\right)$	0.650	0.650
Refinement		
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.027, 0.066, 1.02	0.030, $0.073,1.03$
No. of reflections	3047	3095
No. of parameters	171	155
No. of restraints	4	1
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.39, -0.34	0.38, -0.35

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

5. Synthesis and crystallization

The potassium salts of the dithiocarbamate anions (Howie et al., 2008; Tan et al., 2013) and zinc compounds (Benson et al., 2007) were prepared in accord with the literature methods. The $1: 1$ adducts with $2,2^{\prime}$-bipyridine were prepared in the following manner. $\mathrm{Zn}\left[\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)_{2}\right]_{2} \quad(0.20 \mathrm{~g}$, 0.47 mmol) and 2,2'-bipyridine (Sigma Aldrich; 0.07 g , 0.47 mmol) were dissolved in acetone (30 ml) and ethanol $(10 \mathrm{ml})$, respectively. The solution of $2,2^{\prime}$-bipyridine was added dropwise into the other solution with stirring for about 30 mins, resulting in a change from a colourless to a light-yellow solution. The mixture was left to stand to allow for crystallization and crystals of (I) for X-ray analysis were harvested directly. Compound (II) was prepared and harvested similarly from the reaction of $\mathrm{Zn}\left[\mathrm{S}_{2} \mathrm{CN}(i \mathrm{Pr}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right]_{2}(0.20 \mathrm{~g}$, 0.47 mmol) in chloroform (30 ml) and 2, 2'-bipyridine (0.07 g , $0.47 \mathrm{mmol})$ in acetone $(10 \mathrm{ml})$.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. For each of (I) and (II), carbonbound H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=$ $0.95-1.00 \AA$) and were included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})$ set to $1.2-$ $1.5 U_{\mathrm{eq}}(\mathrm{C})$. The O-bound H atoms were located in a difference

Fourier map but were refined with a distance restraint of O $\mathrm{H}=0.84 \pm 0.01 \AA$, and with $U_{\text {iso }}(\mathrm{H})$ set to $1.5 U_{\text {eq }}(\mathrm{O})$.

Acknowledgements

The University of Malaya's Postgraduate Research Grant Scheme (No. PG097-2014B) is gratefully acknowledged.

References

Agilent (2012). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.
Benson, R. E., Ellis, C. A., Lewis, C. E. \& Tiekink, E. R. T. (2007). CrystEngComm, 9, 930-941.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Broker, G. A. \& Tiekink, E. R. T. (2011). Acta Cryst. E67, m320m321.
Chen, D., Lai, C. S. \& Tiekink, E. R. T. (2003). Z. Kristallogr. 218, 747-752.
Cox, M. J. \& Tiekink, E. R. T. (2009). Z. Kristallogr. 214, 184-190.
Decken, A., Gossage, R. A., Chan, M. Y., Lai, C. S. \& Tiekink, E. R. T. (2004). Appl. Organomet. Chem. 18, 101-102.

Deng, Y.-H., Liu, J., Li, N., Yang, Y.-L. \& Ma, H.-W. (2007). Acta Chim. Sin. 65, 2868-2874.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Heard, P. J. (2005). Prog. Inorg. Chem. 53, 1-69.
Hogarth, G. (2005). Prog. Inorg. Chem. 53, 71-561.
Howie, R. A., de Lima, G. M., Menezes, D. C., Wardell, J. L., Wardell, S. M. S. V., Young, D. J. \& Tiekink, E. R. T. (2008). CrystEngComm, 10, 1626-1637.

Howie, R. A., Tiekink, E. R. T., Wardell, J. L. \& Wardell, S. M. S. V. (2009). J. Chem. Crystallogr. 39, 293-298.

Ishak, D. H. A., Ooi, K. K., Ang, K. P., Akim, A. Md., Cheah, Y. K., Nordin, N., Halim, S. N. B. A., Seng, H.-L. \& Tiekink, E. R. T. (2014). J. Inorg. Biochem. 130, 38-51.

Ivanov, A. V., Korneeva, E. V., Gerasimenko, A. V. \& Forsling, W. (2005). Russ. J. Coord. Chem. 31, 695-707.

Jamaludin, N. S., Goh, Z.-J., Cheah, Y. K., Ang, K.-P., Sim, J. H., Khoo, C. H., Fairuz, Z. A., Halim, S. N. B. A., Ng, S. W., Seng, H.-L. \& Tiekink, E. R. T. (2013). Eur. J. Med. Chem. 67, 127-141.
Masui, H. (2001). Coord. Chem. Rev. 219-221, 957-992.
Poplaukhin, P., Arman, H. D. \& Tiekink, E. R. T. (2012). Z. Kristallogr. 227, 363-368.
Poplaukhin, P. \& Tiekink, E. R. T. (2010). CrystEngComm, 12, 13021306.

Safbri, S. A. M., Halim, S. N. A., Jotani, M. M. \& Tiekink, E. R. T. (2016). Acta Cryst. E72 158-163.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Tan, Y. S., Halim, S. N. A. \& Tiekink, E. R. T. (2016). Z. Kristallogr. 231. doi: 10.1515/zkri-2015-1889.

Tan, Y. S., Ooi, K. K., Ang, K. P., Akim, A. Md., Cheah, Y.-K., Halim, S. N. A., Seng, H.-L. \& Tiekink, E. R. T. (2015). J. Inorg. Biochem. 150, 48-62.
Tan, Y. S., Sudlow, A. L., Molloy, K. C., Morishima, Y., Fujisawa, K., Jackson, W. J., Henderson, W., Halim, S. N., Ng, S. W. \& Tiekink, E. R. T. (2013). Cryst. Growth Des. 13, 3046-3056.

Tiekink, E. R. T. (2003). CrystEngComm, 5, 101-113.
Tiekink, E. R. T. \& Zukerman-Schpector, J. (2011). Chem. Commun. 47, 6623-6625.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Zhong, Y., Zhang, W., Fan, J., Tan, M., Lai, C. S. \& Tiekink, E. R. T. (2004). Acta Cryst. E60, m1633-m1635.

supporting information

Crystal structures of (2, $2^{\prime}-$ bipyridyl- $\kappa^{2} N, N^{\prime}$)bis[N, N-bis(2-hydroxyethyl)dithio-carbamato- $\left.\kappa^{2} S, S^{\prime}\right]$ zinc dihydrate and ($2,2^{\prime}$-bipyridyl- $\kappa^{2} N, N^{\prime}$)bis[N-(2-hydroxy-ethyl)- N-isopropyldithiocarbamato- $\left.\kappa^{2} S, S^{\prime}\right]$ zinc

Siti Artikah M. Safbri, Siti Nadiah Abdul Halim and Edward R. T. Tiekink

Computing details

For both compounds, data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
(I) (2,2'-Bipyridyl- $\left.\kappa^{2} N, N^{\prime}\right)$ bis[N, N-bis(2-hydroxyethyl)dithiocarbamato- $\left.\kappa^{2} S, S^{\prime}\right]$ zinc dihydrate

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NO}_{2} \mathrm{~S}_{2}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=618.10$
Orthorhombic, Pccn
$a=6.7730$ (3) \AA
$b=23.1063$ (11) \AA
$c=16.9483$ (8) \AA
$V=2652.4$ (2) \AA^{3}
$Z=4$
$F(000)=1288$

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector
Radiation source: SuperNova (Mo) X-ray Source
Mirror monochromator
Detector resolution: 10.4041 pixels mm^{-1}

ω scan

Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.066$
$S=1.02$
3047 reflections
171 parameters
$D_{\mathrm{x}}=1.548 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5870 reflections
$\theta=2.6-27.5^{\circ}$
$\mu=1.28 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Prism, light-yellow
$0.40 \times 0.30 \times 0.20 \mathrm{~mm}$
$T_{\text {min }}=0.778, T_{\text {max }}=1.000$
21039 measured reflections
3047 independent reflections
2607 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.049$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=-8 \rightarrow 8$
$k=-30 \rightarrow 29$
$l=-22 \rightarrow 21$

4 restraints

Hydrogen site location: mixed
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0256 P)^{2}+1.8882 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.39 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.34$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Zn	0.7500	0.2500	0.25218 (2)	0.01179 (9)
S1	0.88162 (6)	0.32477 (2)	0.15608 (3)	0.01323 (11)
S2	0.48554 (6)	0.32443 (2)	0.22814 (3)	0.01403 (11)
N1	0.5960 (2)	0.39933 (6)	0.11619 (8)	0.0123 (3)
N2	0.5960 (2)	0.21427 (6)	0.35319 (8)	0.0122 (3)
O1	0.8068 (2)	0.51852 (6)	0.09325 (9)	0.0221 (3)
H1O	0.899 (3)	0.5406 (9)	0.1051 (14)	0.033*
O2	0.4459 (2)	0.52831 (6)	0.15907 (9)	0.0273 (3)
H2O	0.559 (2)	0.5263 (11)	0.1401 (14)	0.041*
O1W	1.1132 (2)	0.58995 (6)	0.12670 (8)	0.0202 (3)
H1W	1.225 (2)	0.5761 (10)	0.1348 (14)	0.030*
H2W	1.096 (3)	0.6133 (8)	0.1634 (10)	0.030*
C1	0.6497 (3)	0.35475 (8)	0.16217 (10)	0.0123 (4)
C2	0.7307 (3)	0.42078 (8)	0.05455 (10)	0.0151 (4)
H2A	0.6521	0.4409	0.0137	0.018*
H2B	0.7958	0.3872	0.0291	0.018*
C3	0.8882 (3)	0.46162 (8)	0.08437 (11)	0.0178 (4)
H3A	0.9390	0.4478	0.1358	0.021*
H3B	0.9996	0.4627	0.0466	0.021*
C4	0.3983 (3)	0.42555 (8)	0.12367 (11)	0.0151 (4)
H4A	0.3018	0.3948	0.1369	0.018*
H4B	0.3597	0.4422	0.0721	0.018*
C5	0.3875 (3)	0.47266 (8)	0.18629 (12)	0.0200 (4)
H5A	0.2503	0.4750	0.2061	0.024*
H5B	0.4731	0.4615	0.2311	0.024*
C6	0.4312 (3)	0.18264 (8)	0.34890 (11)	0.0161 (4)
H6	0.3897	0.1689	0.2988	0.019*
C7	0.3183 (3)	0.16904 (8)	0.41461 (11)	0.0170 (4)
H7	0.2017	0.1465	0.4096	0.020*
C8	0.3791 (3)	0.18905 (8)	0.48773 (11)	0.0154 (4)
H8	0.3034	0.1810	0.5336	0.019*
C9	0.5519 (3)	0.22098 (8)	0.49310 (10)	0.0140 (4)
H9	0.5975	0.2346	0.5428	0.017*
C10	0.6574 (2)	0.23279 (7)	0.42442 (10)	0.0115 (3)

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn	$0.01403(15)$	$0.01109(16)$	$0.01025(15)$	$0.00054(11)$	0.000	0.000

S1	$0.0126(2)$	$0.0131(2)$	$0.0140(2)$	$0.00237(17)$	$0.00144(16)$	$0.00154(16)$
S2	$0.0142(2)$	$0.0131(2)$	$0.0149(2)$	$0.00035(17)$	$0.00304(17)$	$0.00135(16)$
N1	$0.0122(7)$	$0.0119(7)$	$0.0127(7)$	$0.0013(6)$	$-0.0001(6)$	$-0.0003(6)$
N2	$0.0126(7)$	$0.0115(7)$	$0.0124(7)$	$0.0007(6)$	$-0.0003(6)$	$-0.0006(6)$
O1	$0.0191(7)$	$0.0139(7)$	$0.0332(8)$	$-0.0013(6)$	$0.0019(6)$	$0.0008(6)$
O2	$0.0186(7)$	$0.0141(7)$	$0.0491(10)$	$0.0024(6)$	$0.0051(7)$	$-0.0030(6)$
O1W	$0.0197(7)$	$0.0191(8)$	$0.0219(7)$	$0.0019(6)$	$0.0003(6)$	$-0.0048(6)$
C1	$0.0142(9)$	$0.0118(9)$	$0.0110(8)$	$-0.0004(7)$	$-0.0005(7)$	$-0.0028(6)$
C2	$0.0182(9)$	$0.0148(9)$	$0.0123(9)$	$0.0008(7)$	$0.0018(7)$	$0.0027(7)$
C3	$0.0151(9)$	$0.0147(10)$	$0.0236(10)$	$0.0024(7)$	$0.0032(7)$	$0.0034(8)$
C4	$0.0130(9)$	$0.0145(9)$	$0.0176(9)$	$0.0033(7)$	$-0.0019(7)$	$0.0004(7)$
C5	$0.0168(9)$	$0.0196(10)$	$0.0235(10)$	$0.0026(8)$	$0.0020(8)$	$-0.0027(8)$
C6	$0.0169(9)$	$0.0149(9)$	$0.0164(9)$	$-0.0014(7)$	$-0.0036(7)$	$-0.0019(7)$
C7	$0.0131(9)$	$0.0150(10)$	$0.0228(10)$	$-0.0033(7)$	$-0.0017(7)$	$0.0023(8)$
C8	$0.0137(9)$	$0.0157(9)$	$0.0169(9)$	$0.0007(7)$	$0.0027(7)$	$0.0047(7)$
C9	$0.0159(9)$	$0.0131(9)$	$0.0129(9)$	$0.0007(7)$	$-0.0003(7)$	$0.0017(7)$
C10	$0.0115(8)$	$0.0093(8)$	$0.0136(9)$	$0.0004(7)$	$-0.0017(7)$	$0.0001(7)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Zn}-\mathrm{N} \mathbf{2}^{\text {i }}$	2.1682 (15)	C2-C3	1.511 (3)
$\mathrm{Zn}-\mathrm{N} 2$	2.1682 (14)	C2-H2A	0.9900
$\mathrm{Zn}-\mathrm{S} \mathbf{S}^{\text {i }}$	2.5163 (5)	C2-H2B	0.9900
$\mathrm{Zn}-\mathrm{S} 2$	2.5163 (5)	C3-H3A	0.9900
$\mathrm{Zn}-\mathrm{Sl}^{\text {i }}$	2.5361 (5)	C3-H3B	0.9900
$\mathrm{Zn}-\mathrm{S} 1$	2.5361 (5)	C4- C 5	1.522 (3)
S1-C1	1.7198 (18)	C4-H4A	0.9900
S2-C1	1.7253 (18)	C4-H4B	0.9900
N1-C1	1.342 (2)	C5-H5A	0.9900
N1-C2	1.473 (2)	C5-H5B	0.9900
N1-C4	1.475 (2)	C6-C7	1.387 (3)
N2-C6	1.336 (2)	C6-H6	0.9500
N2-C10	1.347 (2)	C7- 88	1.385 (3)
O1-C3	1.434 (2)	C7-H7	0.9500
$\mathrm{O} 1-\mathrm{H} 1 \mathrm{O}$	0.832 (10)	C8-C9	1.386 (3)
O2-C5	1.422 (2)	C8-H8	0.9500
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{O}$	0.830 (10)	C9-C10	1.393 (2)
O1W-H1W	0.835 (10)	C9-H9	0.9500
O1W-H2W	0.832 (9)	$\mathrm{C} 10-\mathrm{C} 10^{\text {i }}$	1.485 (3)
$\mathrm{N} \mathrm{N}^{\text {i }}$ - $\mathrm{Zn}-\mathrm{N} 2$	75.71 (8)	H2A-C2-H2B	107.6
$\mathrm{N} 2^{\text {i }}$ - $\mathrm{Zn}-\mathrm{S} 2^{\text {i }}$	92.61 (4)	$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 2$	109.67 (15)
$\mathrm{N} 2-\mathrm{Zn}-\mathrm{S} 2^{\text {i }}$	102.13 (4)	$\mathrm{O} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.7
N2 ${ }^{\text {i }}$ - $\mathrm{Zn}-\mathrm{S} 2$	102.13 (4)	C2-C3-H3A	109.7
N2-Zn-S2	92.61 (4)	$\mathrm{O} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.7
S2- $\mathrm{Zn}-\mathrm{S} 2$	161.36 (2)	C2-C3-H3B	109.7
$\mathrm{N} 2^{\text {i }}-\mathrm{Zn}-\mathrm{S} 1^{\text {i }}$	159.33 (4)	H3A-C3-H3B	108.2
$\mathrm{N} 2-\mathrm{Zn}-\mathrm{S} 1^{\text {i }}$	94.50 (4)	N1-C4-C5	113.40 (15)

$\mathrm{S} 2 \mathrm{i}-\mathrm{Zn}-\mathrm{S} 1^{\text {i }}$	71.377 (15)
$\mathrm{S} 2-\mathrm{Zn}-\mathrm{S} 1^{\text {i }}$	96.394 (15)
$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Zn}-\mathrm{S} 1$	94.50 (4)
$\mathrm{N} 2-\mathrm{Zn}-\mathrm{S} 1$	159.33 (4)
S2 ${ }^{\text {i }}$ - Zn - S 1	96.394 (15)
S2-Zn-S1	71.376 (15)
S1- ${ }^{\text {i }} \mathrm{Zn}$-S1	100.09 (2)
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{Zn}$	85.11 (6)
C1-S2-Zn	85.62 (6)
C1-N1-C2	120.14 (14)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	120.76 (15)
C2-N1-C4	119.02 (14)
C6-N2-C10	118.74 (15)
C6-N2-Zn	124.56 (12)
C10-N2-Zn	115.97 (11)
C3-O1-H1O	107.5 (17)
C5-O2- H 2 O	109.3 (18)
H1W-O1W-H2W	105 (2)
N1-C1-S1	121.46 (13)
N1-C1-S2	120.88 (13)
S1-C1-S2	117.64 (10)
N1-C2-C3	114.22 (15)
N1-C2-H2A	108.7
C3-C2-H2A	108.7
N1-C2-H2B	108.7
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.7
C2-N1-C1-S1	4.9 (2)
C4-N1-C1-S1	-178.34 (12)
C2-N1-C1-S2	-173.68 (12)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 2$	3.1 (2)
$\mathrm{Zn}-\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 1$	-173.88 (14)
$\mathrm{Zn}-\mathrm{S} 1-\mathrm{C} 1-\mathrm{S} 2$	4.70 (9)
$\mathrm{Zn}-\mathrm{S} 2-\mathrm{C} 1-\mathrm{N} 1$	173.85 (14)
$\mathrm{Zn}-\mathrm{S} 2-\mathrm{C} 1-\mathrm{S} 1$	-4.73 (9)
C1-N1-C2-C3	-81.8 (2)
C4-N1-C2-C3	101.31 (18)
N1-C2-C3-O1	-80.47 (19)
C1-N1-C4-C5	86.7 (2)
C2-N1-C4-C5	-96.50 (19)

N1-C4-H4A	108.9
C5-C4- H 4 A	108.9
N1-C4-H4B	108.9
C5-C4-H4B	108.9
H4A-C4-H4B	107.7
O2-C5-C4	114.03 (16)
O2-C5-H5A	108.7
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	108.7
O2- $\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	108.7
C4-C5-H5B	108.7
H5A-C5-H5B	107.6
N2-C6-C7	122.73 (17)
N2-C6-H6	118.6
C7-C6-H6	118.6
C8-C7-C6	118.61 (17)
C8-C7-H7	120.7
C6-C7-H7	120.7
C7-C8-C9	119.16 (17)
C7-C8-H8	120.4
C9-C8-H8	120.4
C8-C9-C10	118.85 (16)
C8-C9-H9	120.6
C10-C9-H9	120.6
N2-C10-C9	121.89 (16)
$\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 10^{\text {i }}$	115.54 (10)
C9-C10-C10 ${ }^{\text {i }}$	122.56 (11)
N1-C4-C5-O2	85.17 (19)
C10-N2-C6-C7	1.4 (3)
$\mathrm{Zn}-\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 7$	-168.48 (14)
N2-C6-C7-C8	-0.1 (3)
C6-C7-C8-C9	-1.1(3)
C7-C8-C9-C10	1.1 (3)
C6-N2-C10-C9	-1.4 (3)
$\mathrm{Zn}-\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 9$	169.27 (13)
C6-N2-C10-C10 ${ }^{\text {i }}$	179.44 (18)
$\mathrm{Zn}-\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 10^{\text {i }}$	-9.8 (2)
C8-C9-C10-N2	0.2 (3)
C8-C9-C10-C10 ${ }^{\text {i }}$	179.3 (2)

Symmetry code: (i) $-x+3 / 2,-y+1 / 2, z$.

Hydrogen-bond geometry ($\AA,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 2 O \cdots \mathrm{O} 1$	$0.83(2)$	$1.87(2)$	$2.696(2)$	$177(3)$
$\mathrm{O} 1 — \mathrm{H} 1 O \cdots \mathrm{O} 1 W$	$0.83(2)$	$1.88(2)$	$2.7115(19)$	$177(2)$

$\mathrm{O} 1 W-\mathrm{H} 1 W \cdots \mathrm{O} 2^{\mathrm{ii}}$	$0.83(2)$	$1.91(2)$	$2.7216(19)$	$166(2)$
$\mathrm{O} 1 W-\mathrm{H} 2 W \cdots \mathrm{~S} 2^{\mathrm{iii}}$	$0.83(2)$	$2.45(2)$	$3.2733(15)$	$170(2)$
$\mathrm{C} 7 — \mathrm{H} 7 \cdots \mathrm{O} 1 W^{\text {iv }}$	0.95	2.58	$3.517(2)$	171
$\mathrm{C} 6 — \mathrm{H} 6 \cdots \mathrm{~S}^{\mathrm{v}}$	0.95	2.81	$3.490(2)$	129
$\mathrm{C} 9 — \mathrm{H} 9 \cdots \mathrm{~S}^{\mathrm{vi}}$	0.95	2.84	$3.6857(18)$	149

Symmetry codes: (ii) $x+1, y, z$; (iii) $x+1 / 2,-y+1,-z+1 / 2$; (iv) $-x+1, y-1 / 2,-z+1 / 2$; (v) $-x+1 / 2,-y+1 / 2, z$; (vi) $-x+3 / 2, y, z+1 / 2$.
(II) (2,2'-Bipyridyl- $\left.\kappa^{2} N, N^{\prime}\right)$ bis[N-(2-hydroxyethyl)- N-isopropyldithiocarbamato- $\left.\kappa^{2} S, S^{\prime}\right]$ zinc

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{NOS}_{2}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$
$M_{r}=578.12$
Monoclinic, C2/c
$a=19.4997$ (11) \AA
$b=9.0027(5) \AA$
$c=15.5352(8) \AA$
$\beta=98.031(5)^{\circ}$
$V=2700.5(3) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& F(000)=1208 \\
& D_{\mathrm{x}}=1.422 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 3771 \text { reflections } \\
& \theta=2.3-27.5^{\circ} \\
& \mu=1.25 \mathrm{~mm}^{-1} \\
& T=100 \mathrm{~K} \\
& \text { Prism, light-yellow } \\
& 0.25 \times 0.25 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

Data collection

Agilent SuperNova Dual
diffractometer with Atlas detector
Radiation source: SuperNova (Mo) X-ray
Source
Mirror monochromator
Detector resolution: 10.4041 pixels mm^{-1}
ω scan
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
$T_{\min }=0.737, T_{\max }=1.000$
11190 measured reflections
3095 independent reflections
2657 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.048$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=2.5^{\circ}$
$h=-21 \rightarrow 25$
$k=-11 \rightarrow 10$
$l=-20 \rightarrow 20$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
1 restraint
Hydrogen site location: mixed
$w R\left(F^{2}\right)=0.073$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0309 P)^{2}+1.2812 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$S=1.03$
3095 reflections
155 parameters
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.38$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.35 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Zn	0.5000	$0.74113(3)$	0.7500	$0.01278(9)$
S1	$0.58946(2)$	$0.56650(5)$	$0.82428(3)$	$0.01649(12)$
S2	$0.58906(2)$	$0.69208(5)$	$0.65006(3)$	$0.01671(12)$
O1	$0.81368(8)$	$0.48579(17)$	$0.82921(10)$	$0.0311(4)$

H1O	0.8403 (11)	0.416 (2)	0.8210 (17)	0.047*
N1	0.67544 (8)	0.47424 (17)	0.71467 (10)	0.0146 (3)
N2	0.46566 (8)	0.93220 (16)	0.67036 (10)	0.0138 (3)
C1	0.62467 (10)	0.56746 (19)	0.72861 (12)	0.0141 (4)
C2	0.70163 (10)	0.3630 (2)	0.78132 (12)	0.0193 (4)
H2A	0.7249	0.2822	0.7533	0.023*
H2B	0.6619	0.3191	0.8056	0.023*
C3	0.75234 (11)	0.4277 (2)	0.85548 (13)	0.0270 (5)
H3A	0.7288	0.5078	0.8837	0.032*
H3B	0.7651	0.3491	0.8994	0.032*
C4	0.69560 (10)	0.4583 (2)	0.62598 (12)	0.0182 (4)
H4	0.6837	0.5539	0.5946	0.022*
C5	0.65197 (11)	0.3372 (2)	0.57632 (13)	0.0256 (5)
H5A	0.6028	0.3617	0.5737	0.038*
H5B	0.6613	0.2419	0.6061	0.038*
H5C	0.6638	0.3301	0.5172	0.038*
C6	0.77272 (11)	0.4326 (3)	0.62649 (14)	0.0273 (5)
H6A	0.7989	0.5095	0.6617	0.041*
H6B	0.7836	0.4371	0.5668	0.041*
H6C	0.7854	0.3347	0.6513	0.041*
C7	0.43644 (10)	0.9239 (2)	0.58712 (12)	0.0169 (4)
H7	0.4245	0.8288	0.5631	0.020*
C8	0.42296 (10)	1.0474 (2)	0.53475 (12)	0.0208 (4)
H8	0.4014	1.0375	0.4763	0.025*
C9	0.44151 (11)	1.1856 (2)	0.56917 (13)	0.0242 (5)
H9	0.4330	1.2725	0.5346	0.029*
C10	0.47270 (11)	1.1956 (2)	0.65477 (13)	0.0212 (4)
H10	0.4863	1.2894	0.6795	0.025*
C11	0.48384 (10)	1.0669 (2)	0.70400 (11)	0.0151 (4)

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn	$0.01357(17)$	$0.01108(16)$	$0.01328(16)$	0.000	$0.00045(12)$	0.000
S 1	$0.0208(3)$	$0.0152(2)$	$0.0139(2)$	$0.00390(18)$	$0.00368(19)$	$0.00164(17)$
S 2	$0.0166(3)$	$0.0176(3)$	$0.0158(2)$	$0.00287(19)$	$0.00185(18)$	$0.00486(18)$
O 1	$0.0267(9)$	$0.0260(9)$	$0.0369(9)$	$0.0060(7)$	$-0.0081(7)$	$-0.0051(7)$
N 1	$0.0148(8)$	$0.0147(8)$	$0.0139(8)$	$0.0021(6)$	$0.0006(6)$	$-0.0012(6)$
N 2	$0.0136(8)$	$0.0141(8)$	$0.0135(8)$	$-0.0003(6)$	$0.0015(6)$	$-0.0003(6)$
C 1	$0.0145(10)$	$0.0128(9)$	$0.0142(9)$	$-0.0027(7)$	$-0.0008(7)$	$-0.0016(7)$
C 2	$0.0231(11)$	$0.0150(10)$	$0.0191(10)$	$0.0072(8)$	$0.0004(8)$	$0.0017(8)$
C 3	$0.0301(13)$	$0.0275(12)$	$0.0208(11)$	$0.0131(9)$	$-0.0054(9)$	$-0.0023(9)$
C 4	$0.0202(10)$	$0.0195(10)$	$0.0157(10)$	$0.0018(8)$	$0.0053(8)$	$-0.0018(7)$
C 5	$0.0280(12)$	$0.0292(12)$	$0.0191(10)$	$-0.0040(9)$	$0.0020(9)$	$-0.0073(9)$
C 6	$0.0200(11)$	$0.0360(13)$	$0.0266(12)$	$0.0052(9)$	$0.0051(9)$	$-0.0051(9)$
C 7	$0.0150(10)$	$0.0201(10)$	$0.0152(9)$	$-0.0009(7)$	$0.0006(7)$	$-0.0020(7)$
C8	$0.0199(11)$	$0.0300(12)$	$0.0119(9)$	$0.0049(8)$	$0.0002(8)$	$0.0041(8)$
C9	$0.0296(12)$	$0.0224(11)$	$0.0211(11)$	$0.0079(9)$	$0.0058(9)$	$0.0099(8)$

C10	$0.0304(12)$	$0.0127(10)$	$0.0205(10)$	$0.0032(8)$	$0.0042(9)$	$0.0015(8)$
C11	$0.0166(10)$	$0.0144(9)$	$0.0149(10)$	$0.0022(7)$	$0.0041(8)$	$-0.0007(7)$

Geometric parameters (A, ${ }^{\circ}$)

$\mathrm{Zn}-\mathrm{N} 2^{\text {i }}$	2.1695 (15)	C3-H3B	0.9900
$\mathrm{Zn}-\mathrm{N} 2$	2.1695 (15)	C4-C6	1.521 (3)
$\mathrm{Zn}-\mathrm{S} 1$	2.5068 (5)	C4-C5	1.525 (3)
$\mathrm{Zn}-\mathrm{Sl}{ }^{\text {i }}$	2.5068 (5)	C4-H4	1.0000
$\mathrm{Zn}-\mathrm{S} 2^{\text {i }}$	2.5247 (5)	C5-H5A	0.9800
$\mathrm{Zn}-\mathrm{S} 2$	2.5247 (5)	C5-H5B	0.9800
S1-C1	1.7221 (19)	C5-H5C	0.9800
S2-C1	1.7301 (18)	C6-H6A	0.9800
O1-C3	1.417 (3)	C6-H6B	0.9800
$\mathrm{O} 1-\mathrm{H} 1 \mathrm{O}$	0.833 (10)	C6-H6C	0.9800
N1-C1	1.338 (2)	C7-C8	1.381 (3)
N1-C2	1.479 (2)	C7-H7	0.9500
N1-C4	1.492 (2)	C8-C9	1.382 (3)
N2-C7	1.340 (2)	C8-H8	0.9500
N2-C11	1.348 (2)	C9-C10	1.386 (3)
C2-C3	1.525 (3)	C9-H9	0.9500
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9900	C10-C11	1.388 (3)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9900	C10-H10	0.9500
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9900	C11-C11 ${ }^{\text {i }}$	1.479 (4)
$\mathrm{N} 2{ }^{\text {i }}$ - $\mathrm{Zn}-\mathrm{N} 2$	75.08 (8)	$\mathrm{O} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	108.7
$\mathrm{N} 2 \mathrm{i}-\mathrm{Zn}-\mathrm{S} 1$	95.47 (4)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	108.7
$\mathrm{N} 2-\mathrm{Zn}-\mathrm{S} 1$	154.06 (4)	H3A-C3-H3B	107.6
$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Zn}-\mathrm{S} 1^{\text {i }}$	154.07 (4)	N1-C4-C6	113.45 (16)
$\mathrm{N} 2-\mathrm{Zn}-\mathrm{S} 1^{\text {i }}$	95.47 (4)	N1-C4-C5	109.62 (16)
$\mathrm{S} 1-\mathrm{Zn}-\mathrm{S} 1^{\text {i }}$	102.32 (2)	C6-C4-C5	112.05 (17)
$\mathrm{N} 2{ }^{\text {i }}-\mathrm{Zn}-\mathrm{S} 2{ }^{\text {i }}$	88.40 (4)	N1-C4-H4	107.1
$\mathrm{N} 2-\mathrm{Zn}-\mathrm{S} 2^{\mathrm{i}}$	107.78 (4)	C6-C4-H4	107.1
$\mathrm{S} 1-\mathrm{Zn}-\mathrm{S} 2^{\text {i }}$	95.822 (17)	C5-C4-H4	107.1
$\mathrm{S} 1^{\mathrm{i}}-\mathrm{Zn}-\mathrm{S} 2^{\mathrm{i}}$	71.289 (16)	C4-C5-H5A	109.5
$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Zn}-\mathrm{S} 2$	107.78 (4)	C4-C5-H5B	109.5
$\mathrm{N} 2-\mathrm{Zn}-\mathrm{S} 2$	88.39 (4)	H5A-C5-H5B	109.5
$\mathrm{S} 1-\mathrm{Zn}-\mathrm{S} 2$	71.288 (16)	C4-C5- H 5 C	109.5
$\mathrm{S} 1{ }^{\text {i }} \mathrm{Z} \mathrm{Zn}-\mathrm{S} 2$	95.822 (17)	H5A-C5-H5C	109.5
$\mathrm{S} 2{ }^{\text {i }} \mathrm{Z} \mathrm{Zn}-\mathrm{S} 2$	159.86 (3)	H5B-C5-H5C	109.5
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{Zn}$	86.29 (6)	C4-C6-H6A	109.5
$\mathrm{C} 1-\mathrm{S} 2-\mathrm{Zn}$	85.55 (6)	C4-C6-H6B	109.5
C3-O1-H1O	109.6 (19)	H6A-C6-H6B	109.5
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	120.14 (15)	C4-C6-H6C	109.5
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	120.40 (15)	H6A-C6-H6C	109.5
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 4$	118.15 (14)	H6B-C6-H6C	109.5
C7-N2-C11	118.51 (16)	N2-C7-C8	122.95 (17)
C7-N2-Zn	124.18 (12)	N2-C7-H7	118.5

$\mathrm{C} 11-\mathrm{N} 2-\mathrm{Zn}$	$116.66(12)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	$121.98(14)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 2$	$121.71(14)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{S} 2$	$116.28(11)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$113.23(16)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.9
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.9
$\mathrm{~N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.9
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.9
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.7
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 2$	$114.06(17)$
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	108.7
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	108.7
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	$1.8(2)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	$168.55(13)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 2$	$-176.25(13)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 2$	$-9.5(2)$
$\mathrm{Zn}-\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 1$	$-170.98(15)$
$\mathrm{Zn}-\mathrm{S} 1-\mathrm{C} 1-\mathrm{S} 2$	$7.21(9)$
$\mathrm{Zn}-\mathrm{S} 2-\mathrm{C} 1-\mathrm{N} 1$	$171.03(15)$
$\mathrm{Zn}-\mathrm{S} 2-\mathrm{C} 1-\mathrm{S} 1$	$-7.16(9)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$-79.6(2)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$113.39(18)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 1$	$-62.3(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 6$	$144.80(18)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 6$	$-48.2(2)$

$\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 7$	118.5
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$118.59(18)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8$	120.7
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 8$	120.7
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$119.06(18)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9$	120.5
$\mathrm{C} 10-\mathrm{C} 9-\mathrm{H} 9$	120.5
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$119.24(18)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10$	120.4
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{H} 10$	120.4
$\mathrm{~N} 2-\mathrm{C} 11-\mathrm{C} 10$	$121.63(17)$
$\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 11^{\mathrm{i}}$	$115.33(10)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 11^{\mathrm{i}}$	$123.03(11)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	$-89.1(2)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	$77.9(2)$
$\mathrm{C} 11-\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8$	$-1.2(3)$
$\mathrm{Zn}-\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8$	$-171.67(14)$
$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$1.2(3)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-0.2(3)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$-0.7(3)$
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 10$	$0.3(3)$
$\mathrm{Zn}-\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 10$	$171.46(14)$
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 11^{\mathrm{i}}$	$-179.62(19)$
$\mathrm{Zn}-\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 11^{\mathrm{i}}$	$-8.5(3)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{N} 2$	$0.7(3)$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 11^{\mathrm{i}}$	$-179.4(2)$

Symmetry code: (i) $-x+1, y,-z+3 / 2$.

Hydrogen-bond geometry ($\AA,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 O \cdots \mathrm{~S} 2^{\mathrm{ii}}$	$0.84(2)$	$2.45(2)$	$3.2437(16)$	$160(2)$
$\mathrm{C} 5 — \mathrm{H} 5 B \cdots 1^{\mathrm{ii}}$	0.98	2.54	$3.512(2)$	175
$\mathrm{C} 9 — \mathrm{H} 9 \cdots \mathrm{~S}^{\mathrm{iii}}$	0.95	2.86	$3.550(2)$	130

Symmetry codes: (ii) $-x+3 / 2, y-1 / 2,-z+3 / 2$; (iii) $-x+1,-y+2,-z+1$.

