

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 12 December 2015
Accepted 29 December 2015

Edited by S. V. Lindeman, Marquette University, USA

Keywords: crystal structure; homoserine lactone; carbonyl interaction; NBO analysis; hydrogen bonding

CCDC reference: 1444720
Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of N -(3-oxobutanoyl)-L-homoserine lactone

R.W. Newberry ${ }^{\mathrm{a}}$ and R.T. Raines ${ }^{\mathrm{a}, \mathrm{b} *}$

${ }^{\text {a }}$ Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI, 53706, USA, and ${ }^{\text {b }}$ Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr., Madison, WI, 53706, USA *Correspondence e-mail: rtraines@wisc.edu

The structure and absolute configuration of the title compound, $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}_{4}$, which is a known quorum-sensing modulator, have been determined. The molecule exhibits signs of an intramolecular attractive carbonyl-carbonyl $n \rightarrow \pi^{*}$ interaction between the amide and lactone ester groups, specifically - a short contact of 2.709 (2) \AA between the amide oxygen atom and ester carbon atom, approach of the amide oxygen atom to the ester carbonyl group along the Bürgi-Dunitz trajectory, at 99.1 (1) ${ }^{\circ}$, and pyramidalization of the ester carbonyl group by $1.1(1)^{\circ}$. Moreover, a similar $n \rightarrow \pi^{*}$ interaction is observed for the amide carbonyl group approached by the ketone oxygen donor. These interactions apparently affect the conformation of the uncomplexed molecule, which adopts a different shape when bound to protein receptors. In the crystal, the molecules form translational chains along the a axis via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

1. Chemical context

N-Acyl homoserine lactones (AHLs) mediate quorum sensing in Gram-negative bacteria (Miller \& Bassler, 2001; Waters \& Bassler, 2005). We have previously shown that AHLs engage in $n \rightarrow \pi^{*}$ interactions between the acyl and lactone ester carbonyl groups (Newberry \& Raines, 2014). These interactions cause attraction through donation of oxygen lone pair (n) electron density into the π^{*} antibonding orbital of an acceptor carbonyl group (Hinderaker \& Raines, 2003). This interaction is observed in the free molecule but not in structures of these compounds bound to their protein receptors, implicating these interactions in the potency of AHLs and their analogs. Background to carbonyl-carbonyl interactions is given by Bretscher et al. (2001), DeRider et al. (2002), Hinderaker \& Raines (2003), and Bartlett et al. (2010). Our previous studies were restricted to AHLs with simple acyl appendages, but natural AHLs are also often oxidized at the 3-position to yield β-keto acyl groups, such as that reported here.

2. Structural commentary and NBO analysis

This is, to our knowledge, the first report of the structure of a free 3-oxo AHL (Fig. 1). Individual molecules pack in linear arrays thanks to intermolecular hydrogen bonds between

Figure 1
Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
amide groups (Fig. 2). The molecule crystallizes as the keto tautomer, consistent with other β-keto amides (Allen, 2002). Like unoxidized AHLs, it displays the hallmark features of an attractive $n \rightarrow \pi^{*}$ interaction between the amide and ester carbonyl groups (Fig. 3). Specifically, the donor oxygen atom makes a sub-van der Waals contact of 2.709 (2) A with the acceptor carbonyl group, with an angle of approach of 99.1 (1) ${ }^{\circ}$, characteristic of the Bürgi-Dunitz trajectory for nucleophilic addition (Bürgi et al., 1973, 1974). This geometry enables electron donation that, in turn, causes a characteristic pyramidalization of the acceptor carbonyl group. We observe that the carbonyl carbon atom rises 0.016 (1) \AA out of the plane of its substituents, creating a distortion angle θ (see Fig. 3) of 1.1 (1) $)^{\circ}$. This signature has been used to diagnose the presence of these interactions in many molecules (Choudhary

Figure 2
Packing of the title compound.

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.83(2)$	$2.05(2)$	$2.7973(19)$	$149(2)$

Symmetry code: (i) $x+1, y, z$.
et al., 2009, 2014; Choudhary \& Raines, 2011; Newberry et al., 2013), including polymers (Newberry \& Raines, 2013) and proteins (Newberry et al., 2014). Consistent with these observations, natural bond orbital (NBO) analysis (Reed et al., 1988; Glendening et al., 2012) of the crystal structure at the B3LYP/6-311+G(2d,p) level of theory predicts the release of $2.67 \mathrm{kcal} \mathrm{mol}^{-1}$ of energy due to the $n \rightarrow \pi^{*}$ interaction, indicating a significant contribution of this interaction to the conformation of this molecule (Fig. 4).

Interestingly, a short contact is also observed between the ketone oxygen and amide carbonyl groups. In this case, the donor oxygen atom makes a 2.746 (2) \AA contact at 107.5 (1) ${ }^{\circ}$ to the amide carbonyl group. This contact causes the amide carbonyl group to distort 0.008 (1) \AA out of plane, corre-

Figure 3
Structural parameters describing an $n \rightarrow \pi^{*}$ interaction

Figure 4
Overlap of amide lone pair (n) and ester π^{*} orbitals.

Figure 5
Overlap of ketone lone pair (n) and amide π^{*} orbitals.
sponding to a distortion angle Θ of 0.59 (6) ${ }^{\circ}$. The pyramidalization of the amide carbonyl group indicates a weaker $n \rightarrow \pi^{*}$ interaction from the ketone to the amide than from the amide to the ester, as would be expected for the enclosing of a fourmembered ring relative to the enclosing of a five-membered ring, respectively. Indeed, NBO analysis predicts release of $1.42 \mathrm{kcal} \mathrm{mol}^{-1}$ of energy due to the $n \rightarrow \pi^{*}$ interaction between the ketone and amide (Fig. 5), which is nevertheless a significant contribution that likely biases the conformation of this molecule.

Based on the specific geometric parameters measured in this crystal structure, we conclude that the structure of unbound oxo-AHLs are influenced by $n \rightarrow \pi^{*}$ interactions, similarly to simple AHLs. Moreover, an additional $n \rightarrow \pi^{*}$ interaction specific to oxo-AHLs might bias their conformation further and thus affect their binding to protein receptors.

3. Supramolecular features

In the crystal, the molecules form translational chains along the a axis via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1 and Fig. 2).

4. Synthesis and crystallization

The title compound was prepared as reported previously (Eberhard \& Schineller, 2000). A small amount of solid product was dissolved in hexanes with a minimal amount of dichloromethane. Slow evaporation afforded high-quality crystals after 4 days.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Except for hydrogen-bond donors and terminal methyl groups, all H atoms were placed in idealized locations and refined as riding with appropriate thermal displacement coefficients $U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 times $U_{\text {eq }}$ (bearing atom).

Table 2
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
$V\left(\AA^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
Absolute structure

Absolute structure parameter

$\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}_{4}$

185.18

Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
100
5.0215 (4), 9.8852 (10),

$$
17.7668 \text { (14) }
$$

881.91 (14)

4
$\mathrm{Cu} K \alpha$
0.96
$0.23 \times 0.13 \times 0.04$

Bruker APEXII CCD

Multi-scan (SADABS; Bruker, 2014/5)
$0.785,0.841$
11955, 1755, 1702
0.028
0.621
$0.026,0.067,1.04$
1755
134
H atoms treated by a mixture of independent and constrained refinement
$0.22,-0.15$
Flack x determined using 657 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$ (Parsons et al., 2013).
-0.01 (8)

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2013), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Acknowledgements

We thank I. A. Guzei and the Molecular Structure Laboratory at UW-Madison for assistance with the data collection. This work was funded by grants CHE-1124944 (NSF) and R01 AR044276 (NIH). RWN was supported by NIH Biotechnology Training Grant T32 GM008349 and by an ACS Division of Organic Chemistry Graduate Fellowship.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bartlett, G. J., Choudhary, A., Raines, R. T. \& Woolfson, D. N. (2010). Nat. Chem. Biol. 6, 615-620.
Bretscher, L. E., Jenkins, C. L., Taylor, K. M., DeRider, M. L. \& Raines, R. T. (2001). J. Am. Chem. Soc. 123, 777-778.
Bruker (2012). APEX2. Buker AXS, Inc., Madison, Wisconsin, USA.
Bruker (2013). SAINT. Buker AXS, Inc., Madison, Wisconsin, USA.
Bruker (2014/5). SADABS. Buker AXS, Inc., Madison, Wisconsin, USA.
Bürgi, H. B., Dunitz, J. D. \& Shefter, E. (1973). J. Am. Chem. Soc. 95, 5065-5067.
Bürgi, H. B., Dunitz, J. D. \& Shefter, E. (1974). Acta Cryst. B30, 15171527.

Choudhary, A., Gandla, D., Krow, G. R. \& Raines, R. T. (2009). J. Am. Chem. Soc. 131, 7244-7246.
Choudhary, A., Newberry, R. W. \& Raines, R. T. (2014). Org. Lett. 16, 3421-3423.
Choudhary, A. \& Raines, R. T. (2011). Protein Sci. 20, 1077-1081.

DeRider, M. L., Wilkens, S. J., Waddell, M. J., Bretscher, L. E., Weinhold, F., Raines, R. T. \& Markley, J. L. (2002). J. Am. Chem. Soc. 124, 2497-2505.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Eberhard, A. \& Schineller, J. B. (2000). Methods in Enzymology, Vol. 305, Bioluminescence and Chemiluminescence, Part C, edited by Miriam M. Ziegler \& Thomas O. Baldwin, pp. 301-315. New York: Academic Press.
Glendening, E. D., Badenhoop, J. K., Reed, A. E., Carpenter, J. E., Bohmann, J. A., Morales, C. M. \& Weinhold, F. (2012). NBO 5.9.
Hinderaker, M. P. \& Raines, R. T. (2003). Protein Sci. 12, 11881194.

Miller, M. B. \& Bassler, B. L. (2001). Annu. Rev. Microbiol. 55, 165199.

Newberry, R. W., Bartlett, G. J., VanVeller, B., Woolfson, D. N. \& Raines, R. T. (2014). Protein Sci. 23, 284-288.
Newberry, R. W. \& Raines, R. T. (2013). Chem. Commun. 49, 76997701.

Newberry, R. W. \& Raines, R. T. (2014). ACS Chem. Biol. 9, 880-883.
Newberry, R. W., VanVeller, B., Guzei, I. A. \& Raines, R. T. (2013). J. Am. Chem. Soc. 135, 7843-7846.
Parsons, S., Flack, H. D. \& Wagner, T. (2013). Acta Cryst. B69, 249259.

Reed, A. E., Curtiss, L. A. \& Weinhold, F. (1988). Chem. Rev. 88, 899926.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Waters, C. M. \& Bassler, B. L. (2005). Annu. Rev. Cell Dev. Biol. 21, 319-346.

supporting information

Acta Cryst. (2016). E72, 136-139 [doi:10.1107/S2056989015024913]

Crystal structure of N -(3-oxobutanoyl)-L-homoserine lactone

R.W. Newberry and R.T. Raines

Computing details

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).
N-(3-Oxobutanoyl)-L-homoserine lactone

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}_{4}$
$M_{r}=185.18$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=5.0215$ (4) \AA
$b=9.8852(10) \AA$
$c=17.7668(14) \AA$
$V=881.91(14) \AA^{3}$
$Z=4$
$F(000)=392$

Data collection

Bruker APEXII CCD
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2014/5)
$T_{\text {min }}=0.785, T_{\text {max }}=0.841$
11955 measured reflections
$D_{\mathrm{x}}=1.395 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$
Cell parameters from 6262 reflections
$\theta=5.0-73.3^{\circ}$
$\mu=0.96 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, colourless
$0.23 \times 0.13 \times 0.04 \mathrm{~mm}$

1755 independent reflections
1702 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=73.3^{\circ}, \theta_{\text {min }}=5.0^{\circ}$
$h=-6 \rightarrow 6$
$k=-12 \rightarrow 11$
$l=-22 \rightarrow 21$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.067$
$S=1.04$
1755 reflections
134 parameters
0 restraints
Hydrogen site location: mixed

> H atoms treated by a mixture of independent and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0377 P)^{2}+0.2168 P\right]$
> where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.22 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.15$ e \AA^{-3}
> Absolute structure: Flack x determined using 657 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$(Parsons et al., 2013).

Absolute structure parameter: -0.01 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
O1	$0.1639(3)$	$0.52850(12)$	$0.55760(7)$	$0.0190(3)$
O2	$-0.0589(2)$	$0.37968(12)$	$0.41512(7)$	$0.0189(3)$
N1	$0.3857(3)$	$0.39964(14)$	$0.42086(8)$	$0.0156(3)$
O3	$0.0157(2)$	$0.68079(12)$	$0.47556(7)$	$0.0164(3)$
O4	$0.2366(3)$	$0.25259(13)$	$0.26283(7)$	$0.0253(3)$
C4	$0.0901(4)$	$0.73341(18)$	$0.40163(10)$	$0.0189(4)$
H4A	0.1855	0.8206	0.4069	0.023^{*}
H4B	-0.0703	0.7480	0.3703	0.023^{*}
C7	$0.2289(3)$	$0.15843(17)$	$0.30622(9)$	$0.0166(3)$
C1	$0.1762(3)$	$0.57897(16)$	$0.49600(9)$	$0.0141(3)$
C8	$0.2475(5)$	$0.01346(18)$	$0.28126(11)$	$0.0230(4)$
C5	$0.1638(3)$	$0.32746(17)$	$0.41024(9)$	$0.0142(3)$
C6	$0.2005(3)$	$0.17999(16)$	$0.39064(9)$	$0.0161(3)$
H6A	0.0454	0.1279	0.4092	0.019^{*}
H6B	0.3615	0.1451	0.4163	0.019^{*}
C2	$0.3719(3)$	$0.54444(16)$	$0.43286(10)$	$0.0158(3)$
H2	0.5528	0.5780	0.4472	0.019^{*}
C3	$0.2703(4)$	$0.62767(17)$	$0.36590(10)$	$0.0200(4)$
H3A	0.4199	0.6710	0.3387	0.024^{*}
H3B	0.1696	0.5701	0.3303	0.024^{*}
H1	$0.534(5)$	$0.363(2)$	$0.4159(12)$	$0.018(5)^{*}$
H8A	$0.389(5)$	$-0.031(3)$	$0.3095(14)$	$0.030(6)^{*}$
H8B	$0.073(6)$	$-0.032(3)$	$0.2945(15)$	$0.044(8)^{*}$
H8C	$0.272(6)$	$0.006(3)$	$0.2277(15)$	$0.034(6)^{*}$

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0201(6)$	$0.0182(6)$	$0.0187(6)$	$-0.0031(5)$	$0.0022(5)$	$0.0006(5)$
O2	$0.0105(5)$	$0.0182(6)$	$0.0279(6)$	$0.0009(5)$	$0.0000(5)$	$-0.0035(5)$
N1	$0.0093(6)$	$0.0163(7)$	$0.0213(7)$	$0.0032(6)$	$0.0009(5)$	$-0.0034(6)$
O3	$0.0141(5)$	$0.0160(6)$	$0.0192(6)$	$0.0013(5)$	$0.0027(5)$	$-0.0007(5)$
O4	$0.0359(8)$	$0.0200(6)$	$0.0201(6)$	$0.0004(6)$	$0.0007(6)$	$0.0030(5)$
C4	$0.0192(8)$	$0.0199(8)$	$0.0176(8)$	$0.0009(7)$	$-0.0012(7)$	$0.0018(7)$
C7	$0.0131(7)$	$0.0182(8)$	$0.0185(8)$	$-0.0006(7)$	$-0.0008(6)$	$0.0003(6)$
C1	$0.0107(7)$	$0.0125(7)$	$0.0191(8)$	$-0.0046(6)$	$0.0004(6)$	$-0.0033(6)$
C8	$0.0316(10)$	$0.0185(8)$	$0.0190(8)$	$0.0005(8)$	$-0.0004(8)$	$-0.0024(7)$
C5	$0.0125(7)$	$0.0170(7)$	$0.0132(7)$	$0.0016(7)$	$0.0000(6)$	$0.0009(6)$
C6	$0.0158(8)$	$0.0145(7)$	$0.0180(8)$	$0.0011(7)$	$-0.0001(6)$	$0.0005(6)$

C2	$0.0121(7)$	$0.0155(8)$	$0.0196(8)$	$-0.0013(6)$	$0.0021(6)$	$-0.0028(6)$
C3	$0.0205(8)$	$0.0202(8)$	$0.0193(8)$	$-0.0001(8)$	$0.0037(7)$	$0.0012(6)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{O} 1-\mathrm{C} 1$	1.204 (2)	C2-C3	1.534 (2)
O2-C5	1.235 (2)	C2-H2	1.000
N1-C5	1.337 (2)	C3-H3a	0.990
N1-C2	1.449 (2)	C3-H3b	0.990
O3-C4	1.461 (2)	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{a}$	0.990
$\mathrm{O} 3-\mathrm{C} 1$	1.340 (2)	C4-H4b	0.990
O4-C7	1.209 (2)	N1-H1	0.83 (2)
C4-C3	1.521 (2)	C6-H6a	0.990
C7-C8	1.503 (2)	C6-H6b	0.990
C7-C6	1.522 (2)	C8-H8a	0.98 (3)
C1-C2	1.530 (2)	C8-H8b	1.01 (3)
C5-C6	1.510 (2)	C8-H8c	0.96 (3)
C5-N1-C2	120.55 (14)	C4-C3-H3a	111.0
$\mathrm{C} 1-\mathrm{O} 3-\mathrm{C} 4$	110.93 (13)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~b}$	111.0
O3-C4-C3	106.42 (13)	H3a-C3-H3b	109.0
O4-C7-C8	122.95 (15)	C3-C4-H4a	110.4
O4-C7-C6	121.57 (15)	C3-C4-H4b	110.4
C8-C7-C6	115.48 (14)	$\mathrm{O} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{a}$	110.4
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 3$	121.79 (15)	O3-C4-H4b	110.4
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	127.35 (15)	$\mathrm{H} 4 \mathrm{a}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~b}$	108.6
$\mathrm{O} 3-\mathrm{C} 1-\mathrm{C} 2$	110.82 (14)	C2-N1-H1	119.2 (15)
O2-C5-N1	121.47 (15)	C5-N1-H1	119.9 (15)
O2-C5-C6	122.02 (15)	C5-C6-H6a	109.2
N1-C5-C6	116.50 (14)	C5-C6-H6b	109.2
C5-C6-C7	111.96 (13)	C7-C6-H6a	109.2
N1-C2-C1	111.04 (13)	C7-C6-H6b	109.2
N1-C2-C3	115.58 (15)	H6a-C6-H6b	107.9
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	103.61 (14)	C7-C8-H8a	108.9 (17)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	104.05 (14)	C7-C8-H8b	107.5 (17)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	108.8	C7-C8-H8c	111.9 (18)
N1-C2-H2	108.8	H8a-C8-H8b	108 (2)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	108.8	H8b-C8-H8c	108 (2)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{a}$	111.0	$\mathrm{H8} \mathrm{c}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{a}$	112 (2)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~b}$	111.0		

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.83(2)$	$2.05(2)$	$2.7973(19)$	$149(2)$

Symmetry code: (i) $x+1, y, z$.

