OPEN a ACCESS

Crystal structure of aqua(nitrato- κO)dioxido{2-[3-(pyridin-2-yl- κN)-1H-1,2,4-triazol-5-yl- κN^4]phenolato- κO }uranium(VI) acetonitrile monosolvate monohydrate

Oleksandr Vashchenko,^a Ilona Raspertova,^a* Viktoriya Dyakonenko,^b Svitlana Shishkina,^b Dmytro Khomenko,^a Roman Doroschuk^a and Rostislav Lampeka^a

^aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Str., Kyiv, 01601, Ukraine, and ^bSTC "Institute for Single Crystals", National Academy of Science of Ukraine, 60 Lenina Ave., Kharkiv 61001, Ukraine. *Correspondence e-mail: lana_@univ.kiev.ua

In the title compound, $[U(C_{13}H_9N_4O)(NO_3)O_2(H_2O)]\cdot CH_3CN\cdot H_2O$, the U^{VI} atom is seven-coordinated in a distorted pentagonal–bipyramidal N₂O₅ manner by one tridentate triazole ligand, one monodentate nitrate anion and one water molecule in the equatorial plane and by two uranyl(VI) O atoms in the axial positions. In the crystal, the U^{VI} complex molecule is linked to the water and acetonitrile solvent molecules through N–H···N, O–H···O and O–H···N hydrogen bonds, forming a sheet structure parallel to the *bc* plane. The sheets are further linked by an additional O–H···O hydrogen bond, forming a three-dimensional network.

1. Chemical context

The synthesis of coordination compounds with *N*-donor heterocyclic ligands is one of the fastest growing areas of coordination chemistry. 1,2,4-Triazoles and their derivatives can be assigned for such types of ligands. The presence of the 1,2,4-triazole ring in the organic ligand provides an additional site for coordination (Aromí *et al.*, 2011). The presence of additional donor groups in the 3- and 5-positions of the triazole moiety provides a greater number of possibilities for chelation of metal ions, involving tridentate bis-chelate functions.

ligands have rarely been investigated. Thus, only three uranyl complexes with 1,2,4-triazole derivatives have been characterized (Daro *et al.*, 2001; Weng *et al.*, 2012; Raspertova *et al.*, 2012). As part of our continuing study of uranium coordination compounds with nitrogen-donor ligands (Raspertova *et al.*, 2012), we report here the structure of the title compound.

doi:10 1107/S205698901502438X

CrossMark

ISSN 2056-9890

1,2,4-triazole

CCDC reference: 1443165

Received 30 November 2015

Accented 18 December 2015

Edited by H. Ishida, Okayama University, Japan

Keywords: crystal structure; uranyl(VI) ion;

Supporting information: this article has

supporting information at journals.iucr.org/e

CRYSTALLOGRAPHIC

COMMUNICATIONS

Figure 1

The molecular structure of the title compound, shown with 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.

2. Structural commentary

The coordination polyhedron of the U^{VI} atom in the title complex is a distorted pentagonal bipyramid. It is coordinated in a tridentate manner by the 1,2,4,-triazole ligand together with the water molecule and the monodentate nitrate anion in the equatorial plane. Two oxido ligands are placed in the axial positions (Fig. 1). The U1–O1 bond length [2.206 (3) Å] is comparable with those reported for related six-membered chelate fragments involving phenolate and N-atom donors (Sopo et al., 2008; Ahmadi et al., 2012). The U-N bond lengths [2.489 (4) and 2.658 (4) Å] are consistent with the situation in other pyridine-bonded uranium complexes (Amoroso et al., 1996; Gatto et al., 2004). The uranyl group is not exactly linear $[O2=U1=O3 = 175.36 (14)^{\circ}]$. Non-linear O=U groups are generally found in uranyl complexes with five non-symmetrically bonding equatorial ligands. All nonhydrogen atoms of the organic ligand are coplanar within 0.01 Å. The N1–C7 and C7–N2 bond lengths of the triazole ring are equalized [1.336 (5) Å for both]. This value is longer than a $Csp^2 = N$ double bond (1.276 Å) and shorter than a Csp^2 -N single bond (1.347 Å) (Orpen *et al.*, 1994). It can be assumed that the structure of the triazole ring is the superposition of two possible resonance structures as shown in Fig. 2.

Figure 2 Scheme showing two possible resonance structures in the triazole ligand.

···A
)
)
)
)

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) x, $-y + \frac{3}{2}$, $z + \frac{1}{2}$; (iii) x, y + 1, z.

3. Supramolecular features

In the crystal, the complex molecule is linked to the water and acetonitrile solvent molecules through N2–H2···N6, O4– H4B···O8, O8–H8A···N3ⁱⁱ and O8–H8B···O6ⁱⁱⁱ hydrogen bonds (symmetry codes in Table 1), forming a sheet structure parallel to the *bc* plane. The sheets are further linked by an O4–H4A···O5ⁱ hydrogen bond (Table 1), forming a three-dimensional network (Fig. 3).

4. Database survey

In the Cambridge Structural Database (Version 5.36, November 2014; Groom & Allen, 2014), only three uranyl complexes with derivatives of 1,2,4-triazole are reported (Daro et al., 2001; Weng et al., 2012; Raspertova et al., 2012). 72 structures containing a 5-pyridin-1H-1,2,4-triazole fragment are found. A search for the 3-hydroxyphenyl-1,2,4-triazole fragment yielded 14 hits, including: 2,2'-[1-(2,4,6-trichlorophenyl)-1H-1,2,4-triazole-3,5-diyl]diphenol (Li et al., 2008); 2-[5-(2-pyridyl)-1,2,4-triazole-3-yl]phenol 2-[3-(2-pyridyl)-1,2,4triazole-5-yl]phenol bis(7,7,8,8-tetracyanoquinodimethane) (Bentiss *et al.*, 2002); bis[μ_2 -1-phenyl-3,5-bis(2-oxyphenyl)-1,2,4-triazole]bis(pyridine)dicopper (Steinhauser et al., 2004). Only one compound containing both hydroxyphenyl and pyridyl, as substituents in the 3- and 5-positions of 1,2,4-triazole, was found (Bentiss et al., 2002).

Table 2Experimental details.

. .

$\begin{bmatrix} U(C_{13}H_9N_4O)(NO_3)O_2(H_2O) \end{bmatrix} - \\ CH_3CN \cdot H_2O \end{bmatrix}$
646.37
Monoclinic, $P2_1/c$
294
12.0962 (3), 7.87839 (17), 20.4041 (4)
94.829 (2)
1937.57 (7)
4
Μο Κα
8.44
$0.5 \times 0.3 \times 0.2$
Agilent Xcalibur, Sapphire3
Multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2014)
0.055, 0.185
9385, 4446, 3936
0.032
0.650
0.029, 0.064, 1.05
4446
284
4
H atoms treated by a mixture of independent and constrained refinement
1.81, -0.88

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

5. Synthesis and crystallization

A mixture of 3-(2-hydroxyphenyl)-5-(pyridin-2-yl)-1H-1,2,4triazole (0.5 mmol) and [UO₂(NO₃)₂]·2H₂O (0.5 mmol) in acetonitrile (20 ml) was stirred for 20 min. The solution was left to evaporate slowly at room temperature. Red single crystals suitable for X-ray analysis were obtained after 2 d.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All hydrogen atoms were located in a difference Fourier map. The positional parameters of water H atoms were refined, with the restraint O-H =0.860 (2) Å and the constraint $U_{iso}(H) = 1.5U_{eq}(O)$. All other H atoms were constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C, N)$.

References

- Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
- Ahmadi, M., Mague, J., Akbari, A. & Takjoo, R. (2012). *Polyhedron*, **42**, 128–134.
- Amoroso, A. J., Jeffery, J. C., Jones, P. L., McCleverty, J. A. & Ward, M. D. (1996). *Polyhedron*, **15**, 2023–2027.
- Aromí, G., Barrios, L. A., Roubeau, O. & Gamez, P. (2011). Coord. Chem. Rev. 255, 485–546.
- Bentiss, F., Lagrenée, M., Mentré, O., Wignacourt, J. P., Vezin, H. & Holt, E. M. (2002). J. Mol. Struct. 607, 31–41.
- Daro, N., Guionneau, P., Golhen, S., Chasseau, D., Ouahab, L. & Sutter, J.-P. (2001). *Inorg. Chim. Acta*, **326**, 47–52.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Gatto, C. C., Schulz Lang, E., Kupfer, A., Hagenbach, A. & Abram, U. (2004). Z. Anorg. Allg. Chem. 630, 1286–1295.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- Li, Z.-S., Li, X.-B. & Sun, B.-W. (2008). Acta Cryst. E64, 0491.
- Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1994). *Structure Correlation*, edited by H.-B. Bürgi & J. D. Dunitz, Vol. 2, pp. 751–858. VCH: Weinheim.
- Raspertova, I., Doroschuk, R., Khomenko, D. & Lampeka, R. (2012). *Acta Cryst.* C68, m61–m63.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Sopo, H., Lehtonen, A. & Sillanpää, R. (2008). Polyhedron, 27, 95– 104.
- Steinhauser, S., Heinz, U., Bartholoma, M., Weyhermuller, T., Nick, H. & Hegetschweiler, K. (2004). *Eur. J. Inorg. Chem.* pp. 4177– 4192.
- Weng, Z., Wang, S., Ling, J., Morrison, J. M. & Burns, P. C. (2012). *Inorg. Chem.* 51, 7185–7191.

supporting information

Acta Cryst. (2016). E72, 111-113 [doi:10.1107/S205698901502438X]

Crystal structure of aqua(nitrato- κO)dioxido{2-[3-(pyridin-2-yl- κN)-1*H*-1,2,4-triazol-5-yl- κN^4]phenolato- κO }uranium(VI) acetonitrile monosolvate monohydrate

Oleksandr Vashchenko, Ilona Raspertova, Viktoriya Dyakonenko, Svitlana Shishkina, Dmytro Khomenko, Roman Doroschuk and Rostislav Lampeka

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2014); cell refinement: *CrysAlis PRO* (Agilent, 2014); data reduction: *CrysAlis PRO* (Agilent, 2014); program(s) used to solve structure: *SHELXT* (Sheldrick, 2015*a*); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015*b*); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

 $\label{eq:aqua} Aqua(nitrato-\kappa O)dioxido{2-[3-(pyridin-2-yl-\kappa N)-1H-1,2,4-triazol-5-yl-\kappa N^4]phenolato-\kappa O}uranium(Vl) acetonitrile monosolvate monohydrate$

Crystal data

$[U(C_{13}H_9N_4O)(NO_3)O_2(H_2O)]\cdot CH_3CN\cdot H_2O$
$M_r = 646.37$
Monoclinic, $P2_1/c$
a = 12.0962 (3) Å
b = 7.87839 (17) Å
c = 20.4041 (4) Å
$\beta = 94.829(2)^{\circ}$
V = 1937.57 (7) Å ³
Z = 4

Data collection

Agilent Xcalibur, Sapphire3 diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 16.1827 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2014) $T_{\min} = 0.055, T_{\max} = 0.185$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.064$ F(000) = 1216 $D_x = 2.216 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4414 reflections $\theta = 3.3-31.9^{\circ}$ $\mu = 8.44 \text{ mm}^{-1}$ T = 294 KBlock, red $0.5 \times 0.3 \times 0.2 \text{ mm}$

9385 measured reflections 4446 independent reflections 3936 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 3.1^{\circ}$ $h = -15 \rightarrow 15$ $k = -5 \rightarrow 10$ $l = -26 \rightarrow 26$

S = 1.054446 reflections 284 parameters 4 restraints

Hydrogen site location: mixed	$w = 1/[\sigma^2(F_0^2) + (0.0276P)^2]$
H atoms treated by a mixture of independent	where $P = (F_o^2 + 2F_c^2)/3$
and constrained refinement	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta \rho_{\rm max} = 1.81 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.88 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

				TT & /TT	
	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	
U1	0.81873 (2)	0.51832 (2)	0.40174 (2)	0.01286 (6)	
01	0.7272 (3)	0.2815 (4)	0.37710 (15)	0.0193 (7)	
02	0.6934 (2)	0.6205 (4)	0.41869 (15)	0.0189 (7)	
03	0.9494 (2)	0.4323 (4)	0.38551 (15)	0.0179 (6)	
04	0.9187 (2)	0.7071 (4)	0.47688 (15)	0.0164 (6)	
H4A	0.9886 (8)	0.709 (7)	0.489 (2)	0.025*	
H4B	0.890 (3)	0.768 (5)	0.5061 (16)	0.025*	
05	0.8563 (2)	0.3461 (4)	0.50215 (14)	0.0186 (7)	
06	0.8368 (3)	0.2773 (4)	0.60322 (15)	0.0234 (7)	
O7	0.7619 (3)	0.5091 (4)	0.56334 (18)	0.0258 (8)	
N1	0.7589 (3)	0.5025 (4)	0.28218 (18)	0.0128 (7)	
N2	0.6933 (3)	0.4457 (5)	0.18299 (18)	0.0162 (7)	
H2	0.6608	0.3920	0.1501	0.019*	
N3	0.7399 (3)	0.6016 (4)	0.17900 (18)	0.0159 (8)	
N4	0.8707 (3)	0.7819 (4)	0.32904 (18)	0.0134 (7)	
N5	0.8162 (3)	0.3796 (5)	0.55859 (18)	0.0174 (8)	
N6	0.5829 (3)	0.3255 (5)	0.0595 (2)	0.0266 (9)	
C1	0.6794 (3)	0.1782 (5)	0.3324 (2)	0.0138 (8)	
C2	0.6414 (3)	0.0177 (5)	0.3517 (2)	0.0184 (9)	
H2A	0.6503	-0.0141	0.3957	0.022*	
C3	0.5915 (3)	-0.0919 (5)	0.3057 (2)	0.0183 (9)	
H3	0.5661	-0.1965	0.3194	0.022*	
C4	0.5781 (3)	-0.0498 (5)	0.2396 (2)	0.0166 (9)	
H4	0.5443	-0.1250	0.2090	0.020*	
C5	0.6158 (3)	0.1056 (5)	0.2200 (2)	0.0155 (9)	
H5	0.6081	0.1343	0.1756	0.019*	
C6	0.6654 (3)	0.2206 (5)	0.2653 (2)	0.0126 (8)	
C7	0.7042 (3)	0.3861 (5)	0.2445 (2)	0.0114 (8)	
C8	0.7785 (3)	0.6308 (5)	0.2401 (2)	0.0142 (9)	
C9	0.8385 (3)	0.7813 (5)	0.2635 (2)	0.0142 (9)	
C10	0.8617 (3)	0.9142 (5)	0.2225 (2)	0.0163 (9)	
H10	0.8386	0.9105	0.1778	0.020*	
C11	0.9198 (3)	1.0527 (6)	0.2489 (2)	0.0184 (9)	
H11	0.9361	1.1435	0.2222	0.022*	

C12	0.9532 (3)	1.0555 (6)	0.3147 (2)	0.0169 (9)	
H12	0.9923	1.1478	0.3331	0.020*	
C13	0.9277 (3)	0.9180 (5)	0.3534 (2)	0.0176 (9)	
H13	0.9510	0.9201	0.3980	0.021*	
C14	0.5369 (4)	0.2758 (6)	0.0120 (2)	0.0199 (10)	
C15	0.4767 (4)	0.2097 (6)	-0.0472 (2)	0.0271 (11)	
H15A	0.4567	0.3017	-0.0767	0.041*	
H15B	0.4107	0.1531	-0.0358	0.041*	
H15C	0.5227	0.1308	-0.0682	0.041*	
08	0.8271 (3)	0.9203 (5)	0.55170 (19)	0.0344 (9)	
H8A	0.811 (5)	0.899 (8)	0.5911 (11)	0.052*	
H8B	0.844 (5)	1.026 (2)	0.554 (3)	0.052*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
U1	0.01190 (9)	0.01556 (9)	0.01102 (9)	0.00016 (6)	0.00039 (6)	-0.00106 (6)
01	0.0240 (17)	0.0209 (15)	0.0128 (16)	-0.0051 (14)	0.0006 (13)	0.0014 (13)
O2	0.0149 (15)	0.0223 (16)	0.0193 (16)	0.0039 (13)	0.0005 (13)	0.0015 (14)
03	0.0129 (14)	0.0216 (15)	0.0190 (17)	0.0029 (13)	0.0000 (13)	-0.0040 (14)
O4	0.0138 (15)	0.0233 (15)	0.0120 (16)	0.0025 (14)	-0.0002 (13)	-0.0054 (13)
05	0.0216 (16)	0.0249 (16)	0.0089 (15)	0.0012 (13)	-0.0011 (13)	-0.0012 (13)
O6	0.0261 (18)	0.0266 (17)	0.0173 (17)	0.0002 (15)	0.0008 (14)	0.0083 (15)
O7	0.0230 (17)	0.0289 (18)	0.0260 (19)	0.0110 (14)	0.0042 (15)	0.0026 (15)
N1	0.0115 (16)	0.0133 (17)	0.0135 (18)	0.0012 (14)	0.0007 (14)	0.0015 (14)
N2	0.0154 (17)	0.0184 (17)	0.0144 (19)	-0.0051 (15)	-0.0009 (15)	-0.0043 (16)
N3	0.0167 (18)	0.0177 (18)	0.0134 (19)	-0.0033 (15)	0.0017 (15)	0.0001 (15)
N4	0.0104 (16)	0.0174 (17)	0.0120 (18)	0.0003 (14)	-0.0015 (14)	-0.0026 (15)
N5	0.0140 (18)	0.0236 (19)	0.0150 (19)	-0.0034 (16)	0.0033 (15)	0.0007 (16)
N6	0.027 (2)	0.033 (2)	0.019 (2)	-0.0034 (19)	-0.0013 (18)	-0.0018 (19)
C1	0.0110 (19)	0.0156 (19)	0.015 (2)	0.0022 (16)	0.0003 (16)	-0.0033 (18)
C2	0.012 (2)	0.023 (2)	0.020 (2)	0.0018 (18)	0.0005 (18)	0.0047 (19)
C3	0.013 (2)	0.016 (2)	0.027 (3)	-0.0022 (18)	0.0048 (19)	-0.0059 (19)
C4	0.013 (2)	0.016 (2)	0.020 (2)	-0.0016 (18)	-0.0021 (17)	-0.0070 (19)
C5	0.0103 (19)	0.020 (2)	0.017 (2)	0.0040 (17)	0.0032 (17)	-0.0005 (18)
C6	0.0065 (18)	0.017 (2)	0.015 (2)	0.0020 (16)	0.0026 (16)	0.0008 (17)
C7	0.0084 (18)	0.0141 (19)	0.012 (2)	0.0010 (16)	0.0011 (16)	-0.0027 (17)
C8	0.0112 (19)	0.018 (2)	0.014 (2)	0.0017 (17)	0.0039 (17)	0.0002 (18)
C9	0.0075 (19)	0.020 (2)	0.016 (2)	0.0015 (17)	0.0026 (17)	-0.0018 (18)
C10	0.013 (2)	0.023 (2)	0.014 (2)	-0.0004 (18)	0.0044 (17)	-0.0014 (19)
C11	0.014 (2)	0.020 (2)	0.022 (2)	-0.0016 (18)	0.0037 (18)	0.004 (2)
C12	0.013 (2)	0.0138 (19)	0.024 (2)	-0.0029 (17)	0.0018 (18)	-0.0033 (19)
C13	0.013 (2)	0.017 (2)	0.022 (2)	-0.0021 (18)	0.0002 (18)	-0.0036 (19)
C14	0.019 (2)	0.022 (2)	0.020 (2)	-0.0022 (19)	0.0042 (19)	0.001 (2)
C15	0.030 (3)	0.029 (3)	0.022 (3)	-0.007 (2)	-0.002 (2)	0.000 (2)
08	0.049 (2)	0.0243 (18)	0.033 (2)	0.0018 (18)	0.0193 (19)	-0.0056 (18)

Geometric parameters (Å, °)

U1—O1	2.206 (3)	C2—H2A	0.9300
U1—O2	1.776 (3)	C2—C3	1.376 (6)
U1—O3	1.777 (3)	С3—Н3	0.9300
U1—O4	2.390 (3)	C3—C4	1.386 (6)
U1—O5	2.467 (3)	C4—H4	0.9300
U1—N1	2.489 (4)	C4—C5	1.378 (6)
U1—N4	2.658 (4)	С5—Н5	0.9300
O1—C1	1.319 (5)	C5—C6	1.394 (6)
O4—H4A	0.860 (2)	C6—C7	1.461 (5)
O4—H4B	0.860 (2)	C8—C9	1.451 (6)
O5—N5	1.313 (4)	C9—C10	1.385 (6)
O6—N5	1.226 (5)	C10—H10	0.9300
O7—N5	1.221 (5)	C10—C11	1.383 (6)
N1—C7	1.336 (5)	C11—H11	0.9300
N1—C8	1.360 (5)	C11—C12	1.368 (6)
N2—H2	0.8600	C12—H12	0.9300
N2—N3	1.357 (5)	C12—C13	1.391 (6)
N2—C7	1.336 (5)	С13—Н13	0.9300
N3—C8	1.314 (5)	C14—C15	1.453 (6)
N4—C9	1.360 (5)	C15—H15A	0.9600
N4—C13	1.347 (5)	C15—H15B	0.9600
N6—C14	1.146 (6)	C15—H15C	0.9600
C1—C2	1.413 (6)	O8—H8A	0.860 (2)
C1—C6	1.405 (6)	O8—H8B	0.860 (2)
O1—U1—O4	152.83 (11)	C3—C2—C1	120.4 (4)
O1—U1—O5	77.17 (10)	C3—C2—H2A	119.8
O1—U1—N1	68.61 (11)	С2—С3—Н3	119.3
O1—U1—N4	132.17 (11)	C2—C3—C4	121.5 (4)
O2—U1—O1	90.45 (12)	С4—С3—Н3	119.3
O2—U1—O3	175.36 (14)	C3—C4—H4	120.6
O2—U1—O4	89.24 (12)	C5—C4—C3	118.8 (4)
O2—U1—O5	100.84 (12)	C5—C4—H4	120.6
O2—U1—N1	91.78 (13)	С4—С5—Н5	119.3
O2—U1—N4	90.02 (12)	C4—C5—C6	121.3 (4)
O3—U1—O1	94.15 (13)	С6—С5—Н5	119.3
O3—U1—O4	86.96 (12)	C1—C6—C7	118.7 (4)
O3—U1—O5	80.83 (12)	C5—C6—C1	120.1 (4)
O3—U1—N1	89.32 (13)	C5—C6—C7	121.2 (4)
O3—U1—N4	86.43 (13)	N1—C7—C6	126.9 (4)
O4—U1—O5	76.21 (10)	N2—C7—N1	107.7 (4)
O4—U1—N1	138.56 (11)	N2—C7—C6	125.3 (4)
O4—U1—N4	75.00 (11)	N1—C8—C9	120.5 (4)
O5—U1—N1	143.57 (10)	N3—C8—N1	113.7 (4)
O5—U1—N4	149.01 (10)	N3—C8—C9	125.7 (4)
N1—U1—N4	63.57 (10)	N4—C9—C8	114.9 (4)

149.5 (3)	N4—C9—C10	122.4 (4)
129 (4)	С10—С9—С8	122.7 (4)
126 (3)	C9—C10—H10	120.6
104 (4)	C11—C10—C9	118.8 (4)
124.2 (2)	C11—C10—H10	120.6
133.5 (3)	C10-C11-H11	120.2
104.5 (4)	C12—C11—C10	119.6 (4)
122.0 (3)	C12—C11—H11	120.2
124.3	C11—C12—H12	120.5
124.3	C11—C12—C13	119.0 (4)
111.5 (3)	C13—C12—H12	120.5
102.6 (3)	N4—C13—C12	122.7 (4)
118.9 (3)	N4—C13—H13	118.6
123.6 (3)	C12—C13—H13	118.6
117.5 (4)	N6—C14—C15	178.4 (5)
116.9 (4)	C14—C15—H15A	109.5
118.6 (4)	C14—C15—H15B	109.5
124.6 (4)	C14—C15—H15C	109.5
119.5 (4)	H15A—C15—H15B	109.5
122.5 (4)	H15A—C15—H15C	109.5
118.0 (4)	H15B—C15—H15C	109.5
119.8	H8A—O8—H8B	102 (6)
		()
172.3 (4)	C1—C6—C7—N1	4.2 (6)
-7.1 (8)	C1—C6—C7—N2	-177.7 (4)
175.9 (2)	C2-C1-C6-C5	-0.3 (6)
-4.3 (5)	C2-C1-C6-C7	180.0 (4)
179.1 (3)	C2—C3—C4—C5	-0.1 (6)
-2.6 (6)	C3—C4—C5—C6	-0.8 (6)
-179.2 (3)	C4C5C1	1.0 (6)
1.8 (5)	C4—C5—C6—C7	-179.3 (4)
-0.6 (4)	C5—C6—C7—N1	-175.5 (4)
179.5 (3)	C5—C6—C7—N2	2.6 (6)
-179.3 (3)	C6—C1—C2—C3	-0.6 (6)
-180.0 (4)	C7—N1—C8—N3	-0.1 (5)
179.0 (4)	C7—N1—C8—C9	-179.2 (4)
-0.7 (6)	C7—N2—N3—C8	0.1 (4)
-0.7 (5)	C8—N1—C7—N2	0.2 (4)
179.2 (4)	C8—N1—C7—C6	178.5 (4)
0.0 (4)	C8—C9—C10—C11	-179.8 (4)
179.0 (4)	C9—N4—C13—C12	0.6 (6)
-0.2 (5)	C9—C10—C11—C12	0.1 (6)
-178.6 (4)	C10-C11-C12-C13	0.0 (6)
-179.6 (4)	C11—C12—C13—N4	-0.4 (6)
0.2 (6)	C13—N4—C9—C8	179.4 (4)
0.1 (6)	C13—N4—C9—C10	-0.4 (6)
0.8 (6)		
	149.5 (3) 129 (4) 126 (3) 104 (4) 124.2 (2) 133.5 (3) 104.5 (4) 122.0 (3) 124.3 124.3 111.5 (3) 102.6 (3) 118.9 (3) 123.6 (3) 117.5 (4) 116.9 (4) 118.6 (4) 124.6 (4) 119.5 (4) 122.5 (4) 118.0 (4) 119.8 172.3 (4) -7.1 (8) 175.9 (2) -4.3 (5) 179.1 (3) -2.6 (6) -179.2 (3) 1.8 (5) -0.6 (4) 179.0 (4) -0.7 (6) -0.7 (6) -0.7 (5) 179.2 (4) 0.0 (4) 179.0 (4) -0.2 (5) -178.6 (4) -179.6 (4) 0.2 (6) 0.1 (6) 0.8 (6)	149.5 (3) N4—C9—C10 129 (4) C10—C9—C8 126 (3) C9—C10—H10 104 (4) C11—C10—C9 123.2 (2) C11—C10—H10 133.5 (3) C10—C11—H11 104.5 (4) C12—C11—H11 124.3 C11—C12—H12 124.3 C11—C12—H12 124.3 C11—C12—H12 102.6 (3) N4—C13—C12 118.9 (3) N4—C13—H13 123.6 (3) C12—C13—H13 117.5 (4) N6—C14—C15 116.9 (4) C14—C15—H15A 118.6 (4) C14—C15—H15B 124.6 (4) C14—C15—H15B 125.4 (4) C14—C15—H15C 119.5 (4) H15A—C15—H15C 119.5 (4) H15A—C15—H15C 119.8 H8A—O8—H8B 172.3 (4) C1—C6—C7—N1 -7.1 (8) C1—C6—C7 175.9 (2) C2—C1—C6—C5 -4.3 (5) C4—C5—C6—C7 -179.2 (3) C4—C5—C6—C7 -179.2 (3) C4—C5—C6—C7 -179.3 (3) C6—C1—C2—C3 -179.3 (3) C5—C6—C7—N2

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
04—H4 <i>A</i> ···O5 ⁱ	0.86(1)	1.92 (2)	2.752 (4)	162 (5)
O4—H4 <i>B</i> …O8	0.86(1)	1.73 (1)	2.581 (5)	168 (5)
N2—H2…N6	0.86	2.07	2.909 (5)	165
O8—H8A····N3 ⁱⁱ	0.86(1)	2.05 (2)	2.890 (5)	164 (6)
O8—H8 <i>B</i> ···O6 ⁱⁱⁱ	0.86 (1)	2.22 (3)	3.001 (5)	150 (6)

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*+1; (ii) *x*, -*y*+3/2, *z*+1/2; (iii) *x*, *y*+1, *z*.