

Received 22 December 2015 Accepted 24 December 2015

Edited by P. C. Healy, Griffith University, Australia

Keywords: crystal structure; phosphonium salt; hydrogen bonding

CCDC reference: 1444199

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

Crystal structure of (*n*-butyl)[2-(2,6-dimethoxyphenyl)-6-methylphenyl](2-methoxyphenyl)phosphonium chloride monohydrate

Ge Feng, Alexander S. Filatov and Richard F. Jordan*

Department of Chemistry, the University of Chicago, 5735 South Ellis ave, Chicago, IL 60637, USA. *Correspondence e-mail: rfjordan@uchicago.edu

The title hydrated salt, $C_{26}H_{32}O_3P^+\cdot Cl^-\cdot H_2O$, contains four different substituents (H, alkyl, aryl, and biaryl) on the P atom. The P-H hydrogen atom of the phosphonium ion was located in a difference Fourier map and refined without imposing additional restraints. In the crystal, the Cl⁻ ions and water molecules are linked by pairs of O_{water} -H···Cl⁻ hydrogen bonds and further linked to the phosphonium cation by P-H⁺···Cl⁻ and $C_{Ar/OMe}$ -H···O_{water} hydrogen bonds to form an infinite one-dimensional chain along the [010] direction.

1. Chemical context

Palladium(II) alkyl complexes that contain ortho-phosphinoarenesulfonate ligands ([PO]⁻) exhibit unique behavior in olefin polymerization (Nakamura et al., 2009; Ito & Nozaki, 2010; Nakamura et al., 2013). One of the main drawbacks of traditional (PO)Pd alkyl catalysts is that they produce polyethylene with only low-to-moderate molecular weight (Drent et al., 2002; Vela et al., 2007). Studies have shown that incorporating bulky substituents on phosphorous in the [PO]⁻ ligand is an effective strategy to increase the molecular weight of the produced polymer (Skupov et al., 2007; Shen & Jordan, 2009; Ota et al., 2014). Therefore we were interested in developing the new $[PO]^-$ ligand 2 that contains bulky Psubstituents (see Scheme). We attempted to prepare 2 by the reaction of (2-{2,6-(OMe)₂-Ph}-6-Me-Ph)(2-OMe-Ph)PCl (3) with in situ-generated dilithiated benzenesulfonate to generate 2', followed by acidification with HCl. However, this procedure did not afford 2 but rather produced [(2-{2,6- $(OMe)_2$ -Ph}-6-Me-Ph)(2-OMe-Ph)(*n*-Bu)PH]Cl (1) in low vield after workup, which crystallizes as the monohydrate $1 \cdot H_2O(I)$. 1 likely formed by the reaction of 3 with the slight excess of *n*-BuLi present in the dilithiated benzenesulfonate solution. Here we report the crystal structure of I.

Figure 1

(a) The molecular structure of I drawn with the 50% probability ellipsoids and showing the atom-labelling scheme. (b) A different view of I with H_2O and Cl^- molecular structure of relative.

2. Structural commentary

Crystals of $1 \cdot H_2O$ (I) suitable for X-ray diffraction analysis were obtained by recrystallization from wet CH_2Cl_2/Et_2O (Fig. 1*a*). The P–C bond lengths are almost equal for the alkyl, aryl, and biaryl substituents [1.7994 (14), 1.7824 (14), and 1.8043 (13) Å, respectively]. The C–P–H angles are also very similar [106.2 (7), 104.9 (7), and 107.5 (7)° for the alkyl, aryl, and biaryl substituents, respectively]. The aryl rings in the biaryl unit are essentially perpendicular to each other, with the angle between the mean planes passing through the sixmembered rings being 88.60 (6)°. This conformation minimizes steric interactions between the *ortho*-methoxy groups and the *ortho*-hydrogens on the two rings. The mean planes passing through 2,6-dimethoxyphenyl ring and the C-atoms of the 2-methoxyphenyl and *n*-butyl groups are almost parallel to each other [the angle is $10.36 (5)^\circ$, Fig. 1*b*]. The P–H hydrogen atom was located in a difference Fourier map and refined without additional restraints. The refined P–H bond length of 1.313 (16) Å is similar to those previously reported (Burke *et al.*, 2000, Zhu *et al.*, 2007, Wucher *et al.*, 2013).

3. Supramolecular features

The P-H⁺, Cl⁻, and water molecule are involved in intermolecular hydrogen bonding (Fig. 2, Table 1). Two Cl⁻ ions and two water molecules form a rhombus (Fig. 3) in which the O···Cl distances are almost equal [3.1717 (13) and

Figure 2 Hydrogen bonds in **I**. [Symmetry codes: (i) x - 1, y + 1, z; (ii) -x + 1, -y, -z + 1; (iii) x - 1, y, z.]

Figure 3 A fragment of the crystal packing of **I**.

research communications

Table 1Hydrogen-bond	l geometry (Å,	°).	
	ם מ	Ц Л	מ

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$P1-H1P\cdots Cl1^i$	1.313 (16)	2.523 (16)	3.5798 (5)	135.5 (10)
$C21 - H21 \cdots O4$	0.95	2.53	3.4594 (19)	167
C26−H26C···O4	0.98	2.53	3.2250 (19)	128
$O4-H4X\cdots Cl1^{ii}$	0.93 (2)	2.24 (2)	3.1717 (13)	173 (2)
$O4-H4Y\cdots Cl1^{iii}$	0.94 (2)	2.25 (2)	3.1841 (13)	173 (2)

Symmetry codes: (i) x - 1, y + 1, z; (ii) -x + 1, -y, -z + 1; (iii) x - 1, y, z.

3.1841 (13) Å]. The Cl⁻ ions are further engaged in P– H⁺···Cl⁻ hydrogen bonds [2.523 (16) Å], and the water molecules are also involved in C_{Ar/OMe}–H···O_{water} contacts [2.243 (16) and 2.254 (16) Å], forming infinite chains along the [010] direction (Fig. 3). The involvement of the P–H hydrogen atom in hydrogen bonding stands in contrast to what has been observed in some related structures. For example, in the structures of triphenylphosphonium perchlorate (Zhu *et al.*, 2007) and tris(*ortho*-tolyl)phosphonium tetrachloroborate (Burke *et al.*, 2000), there is no evidence for involvement of the P–H hydrogen atom in hydrogen bonding.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.36, last update May 2015; Groom & Allen, 2014) revealed that structures of phosphonium salts having different alkyl/aryl/biaryl substituents on phosphorous are rare [CSD refcodes: BZMNPB (Böhme *et al.*, 1975), EDOSOF (Schiemenz *et al.*, 2002), SUXFUN (Dziuba *et al.*, 2010)]. To the best of our knowledge I is the first example of a crystallographically characterized phosphonium salt having four different substituents at phosphorous. Moreover, there are only three other examples of structures of protonated phosphonium aryl/biaryl salts [CSD refcodes: WEMSIQ (Carre *et al.*, 1997), OCOWUY (Karaçar *et al.*, 2001), TOMZIF (Wang *et al.*, 2008)].

5. Synthesis and crystallization

(2-{2,6-(OMe)₂-Ph}-6-Me-Ph)(2-OMe-Ph)PCl (**3**) was synthesized by a modification of a previously reported procedure (Neuwald *et al.*, 2013). The reaction of **3** with *in situ*-generated dilithiated benzenesulfonate was attempted to synthesize **2'** (see Scheme). However ³¹P and ESI-MS of the reaction mixture showed that **2'** was not formed. The reaction mixture was acidified with aqueous HCl and extracted with Et₂O. After removal of volatiles from the Et₂O fraction under vacuum, a yellow oil and white crystals (low yield) were obtained. Recrystallization of the white crystals from wet CH₂Cl₂/Et₂O yielded crystals of [(2-{2,6-(OMe)₂-Ph}-6-Me-Ph)(2-OMe-Ph)-(*n*-Bu)PH]Cl·H₂O (**1**·H₂O, **I**), which was identified by X-ray crystallography analysis.

Table 2	
Experimental details.	
Crystal data	
Chemical formula	$C_{26}H_{32}O_3P^+ \cdot Cl^- \cdot H_2O$
M _r	476.95
Crystal system, space group	Triclinic, P1
Temperature (K)	100
a, b, c (Å)	9.6920 (6), 10.2790 (6), 12.4154 (8)
α, β, γ (°)	96.836 (2), 98.481 (2), 94.188 (2)
$V(Å^3)$	1209.47 (13)
Ζ	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.25
Crystal size (mm)	$0.22 \times 0.15 \times 0.14$
Data collection	
Diffractometer	Bruker D8 Venture PHOTON 100 CMOS
Absorption correction	Numerical (<i>SADABS</i> ; Bruker, 2014)
T_{\min}, T_{\max}	0.959, 0.987
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	33225, 6228, 5241
R _{int}	0.028
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.677
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.096, 1.04
No. of reflections	6228
No. of parameters	339
No. of restraints	2
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e} { m \AA}^{-3})$	0.51, -0.18

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXT2014 (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2008), and publCIF (Westrip, 2010).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Most of the carbon-bound H atoms were included in idealized positions for structure factor calculations [C-H = 0.95–0.98 Å, $U_{\rm iso}({\rm H})$ set to 1.2– 1.5 $U_{\rm eq}({\rm C})$]. The P-H hydrogen atom and the H atoms of the butyl group were located in a difference Fourier map and refined without additional restraints. The H atoms bound to oxygen atom O4 were also located in the difference Fourier map but were restrained to be at 0.96 Å from O4 (within 0.02 Å) with their thermal parameters set to 1.5 $U_{\rm eq}$ of O4.

Acknowledgements

This work was supported by the National Science Foundation (grants CHE-0911180 and CHE-1048528).

References

- Böhme, R., Burzlaff, H., Gomm, M., Bestmann, H.-J. & Luckenbach, R. (1975). *Chem. Ber.* **108**, 3525–3532.
- Bruker (2014). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burke, J. M., Howard, J. A. K., Marder, T. B. & Wilson, C. (2000). *Acta Cryst.* C56, 1354–1355.
- Carre, F., Chauhan, M., Chuit, C., Corriu, R. J. P. & Reye, C. (1997). Phosphorus Sulfur Silicon, 123, 181–195.

- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Drent, E., van Dijk, R., van Ginkel, R., van Oort, B. & Pugh, R. I. (2002). *Chem. Commun.* pp. 744–745.
- Dziuba, K., Flis, A., Szmigielska, A. & Pietrusiewicz, K. M. (2010). Tetrahedron Asymmetry, 21, 1401–1405.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- Ito, S. & Nozaki, K. (2010). Chem. Rec. 10, 315-325.
- Karaçar, A., Klaukien, V., Freytag, M., Thönnessen, H., Omelanczuk, J., Jones, P. G., Bartsch, R. & Schmutzler, R. (2001). Z. Anorg. Allg. Chem. 627, 2589–2603.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Nakamura, A., Anselment, T. M. J., Claverie, J., Goodall, B., Jordan, R. F., Mecking, S., Rieger, B., Sen, A., van Leeuwen, P. W. N. M. & Nozaki, K. (2013). Acc. Chem. Res. 46, 1438–1449.
- Nakamura, A., Ito, S. & Nozaki, K. (2009). Chem. Rev. 109, 5215–5244.

- Neuwald, B., Caporaso, L., Cavallo, L. & Mecking, S. (2013). J. Am. Chem. Soc. 135, 1026–1036.
- Ota, Y., Ito, S., Kuroda, J.-I., Okumura, Y. & Nozaki, K. (2014). J. Am. Chem. Soc. 136, 11898–11901.
- Schiemenz, G. P., Pörksen, S., Dominiak, P. M. & Wozniak, K. (2002). Z. Naturforsch. Teil B, 57, 8–19.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shen, Z. & Jordan, R. F. (2009). J. Am. Chem. Soc. 132, 52-53.
- Skupov, K. M., Marella, P. R., Simard, M., Yap, G. P. A., Allen, N., Conner, D., Goodall, B. L. & Claverie, J. P. (2007). *Macromol. Rapid Commun.* 28, 2033–2038.
- Vela, J., Lief, G. R., Shen, Z. & Jordan, R. F. (2007). *Organometallics*, **26**, 6624–6635.
- Wang, H., Fröhlich, R., Kehr, G. & Erker, G. (2008). *Chem. Commun.* pp. 5966–5968.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wucher, P., Goldbach, S. & Mecking, S. (2013). Organometallics, 32, 4516–4522.
- Zhu, J., Dai, J.-X. & Zhang, Q.-F. (2007). Acta Cryst. E63, 0363-0364.

supporting information

Acta Cryst. (2016). E72, 174-177 [doi:10.1107/S2056989015024780]

Crystal structure of (*n*-butyl)[2-(2,6-dimethoxyphenyl)-6-methylphenyl](2-methoxyphenyl)phosphonium chloride monohydrate

Ge Feng, Alexander S. Filatov and Richard F. Jordan

Computing details

Data collection: *APEX2* (Bruker, 2014); cell refinement: *SAINT* (Bruker, 2012); data reduction: *SAINT* (Bruker, 2012); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

(n-Butyl) [2-(2,6-dimethoxyphenyl)-6-methylphenyl] (2-methoxyphenyl) phosphonium chloride monohydrate and a statistical stat

Crystal data

 $C_{26}H_{32}O_{3}P^{+}\cdot C1^{-}\cdot H_{2}O$ $M_{r} = 476.95$ Triclinic, *P*1 *a* = 9.6920 (6) Å *b* = 10.2790 (6) Å *c* = 12.4154 (8) Å *a* = 96.836 (2)° *β* = 98.481 (2)° *γ* = 94.188 (2)° *V* = 1209.47 (13) Å³

Data collection

Bruker D8 Venture PHOTON 100 CMOS diffractometer
Radiation source: INCOATEC IμS micro-focus source
Mirrors monochromator
Detector resolution: 10.4167 pixels mm⁻¹ ω and phi scans
Absorption correction: numerical (SADABS; Bruker, 2014)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.096$ S = 1.046228 reflections 339 parameters 2 restraints Z = 2 F(000) = 508 $D_x = 1.310 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9958 reflections $\theta = 2.4-28.7^{\circ}$ $\mu = 0.25 \text{ mm}^{-1}$ T = 100 KBlock, colorless $0.22 \times 0.15 \times 0.14 \text{ mm}$

 $T_{\min} = 0.959, T_{\max} = 0.987$ 33225 measured reflections
6228 independent reflections
5241 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.028$ $\theta_{\text{max}} = 28.8^\circ, \theta_{\text{min}} = 2.1^\circ$ $h = -13 \rightarrow 13$ $k = -13 \rightarrow 13$ $l = -16 \rightarrow 16$

Primary atom site location: dual Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0446P)^2 + 0.6272P]$ where $P = (F_o^2 + 2F_c^2)/3$

$(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.51$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\Delta \rho_{\rm min} = -0.18 \ {\rm e} \ {\rm \AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

		1 1	1 1 1		
	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.99543 (4)	0.06475 (3)	0.71011 (3)	0.02320 (9)	
P1	0.22865 (3)	0.81030 (3)	0.70834 (3)	0.01537 (9)	
H1P	0.1976 (17)	0.9280 (16)	0.6876 (14)	0.021 (4)*	
01	0.28474 (11)	0.98104 (10)	0.90415 (8)	0.0218 (2)	
O2	0.41677 (10)	0.67819 (10)	0.96813 (8)	0.0191 (2)	
03	0.39185 (11)	0.49203 (9)	0.60356 (8)	0.0202 (2)	
C1	0.14332 (15)	0.69712 (15)	0.59177 (11)	0.0191 (3)	
H1A	0.1528 (17)	0.6081 (17)	0.6062 (14)	0.021 (4)*	
H1B	0.0437 (19)	0.7148 (17)	0.5838 (14)	0.025 (4)*	
C2	0.20590 (15)	0.71909 (15)	0.48809 (11)	0.0200 (3)	
H2A	0.3053 (18)	0.7053 (16)	0.4998 (14)	0.020 (4)*	
H2B	0.1977 (17)	0.8097 (17)	0.4745 (14)	0.021 (4)*	
C3	0.13321 (16)	0.62469 (15)	0.38878 (12)	0.0228 (3)	
H3A	0.035 (2)	0.6419 (17)	0.3743 (15)	0.028 (5)*	
H3B	0.1359 (19)	0.5340 (19)	0.4054 (15)	0.029 (5)*	
C4	0.20372 (19)	0.63906 (17)	0.28846 (13)	0.0266 (3)	
H4A	0.300(2)	0.6220 (18)	0.3021 (15)	0.027 (5)*	
H4B	0.157 (2)	0.581 (2)	0.2247 (17)	0.038 (5)*	
H4C	0.201 (2)	0.725 (2)	0.2709 (16)	0.034 (5)*	
C5	0.15371 (14)	0.78501 (14)	0.82781 (11)	0.0165 (3)	
C6	0.05961 (14)	0.67784 (15)	0.83277 (12)	0.0201 (3)	
H6	0.0367	0.6102	0.7721	0.024*	
C7	-0.00070 (15)	0.67025 (16)	0.92696 (13)	0.0239 (3)	
H7	-0.0642	0.5969	0.9314	0.029*	
C8	0.03227 (15)	0.77041 (16)	1.01452 (12)	0.0245 (3)	
H8	-0.0104	0.7652	1.0782	0.029*	
C9	0.12588 (15)	0.87774 (15)	1.01127 (12)	0.0225 (3)	
H9	0.1471	0.9456	1.0718	0.027*	
C10	0.18838 (14)	0.88450 (14)	0.91790 (11)	0.0186 (3)	
C11	0.32790 (17)	1.08374 (15)	0.99388 (13)	0.0269 (3)	
H11A	0.2459	1.1266	1.0125	0.040*	
H11B	0.3947	1.1486	0.9728	0.040*	
H11C	0.3727	1.0463	1.0577	0.040*	
C12	0.43520 (17)	1.03920 (15)	0.66031 (14)	0.0288 (3)	
H12A	0.5106	1.1035	0.6504	0.043*	
H12B	0.3830	1.0780	0.7160	0.043*	

H12C	0.3718	1.0145	0.5905	0.043*
C13	0.49738 (14)	0.91817 (13)	0.69739 (11)	0.0173 (3)
C14	0.41672 (13)	0.81018 (13)	0.72460 (10)	0.0141 (2)
C15	0.48062 (13)	0.70142 (12)	0.76063 (10)	0.0138 (2)
C16	0.62572 (14)	0.70164 (13)	0.76972 (11)	0.0165 (3)
H16	0.6703	0.6293	0.7952	0.020*
C17	0.70582 (14)	0.80644 (14)	0.74193 (11)	0.0185 (3)
H17	0.8045	0.8052	0.7476	0.022*
C18	0.64171 (15)	0.91265 (14)	0.70595 (11)	0.0192 (3)
H18	0.6974	0.9836	0.6866	0.023*
C19	0.39855 (13)	0.58266 (13)	0.78584 (11)	0.0145 (3)
C20	0.35655 (14)	0.47546 (13)	0.70350 (11)	0.0166 (3)
C21	0.28231 (14)	0.36210 (13)	0.72404 (12)	0.0197 (3)
H21	0.2515	0.2913	0.6671	0.024*
C22	0.25470 (14)	0.35547 (14)	0.82964 (13)	0.0212 (3)
H22	0.2044	0.2786	0.8446	0.025*
C23	0.29803 (14)	0.45739 (14)	0.91409 (12)	0.0202 (3)
H23	0.2791	0.4499	0.9861	0.024*
C24	0.36994 (14)	0.57144 (13)	0.89184 (11)	0.0164 (3)
C25	0.38278 (16)	0.67481 (16)	1.07612 (12)	0.0233 (3)
H25A	0.2811	0.6580	1.0716	0.035*
H25B	0.4148	0.7595	1.1211	0.035*
H25C	0.4291	0.6046	1.1097	0.035*
C26	0.36073 (17)	0.38149 (15)	0.51867 (12)	0.0267 (3)
H26A	0.4082	0.3066	0.5429	0.040*
H26B	0.3934	0.4048	0.4518	0.040*
H26C	0.2593	0.3577	0.5034	0.040*
O4	0.12871 (13)	0.13559 (12)	0.50244 (11)	0.0373 (3)
H4X	0.097 (2)	0.072 (2)	0.4420 (16)	0.056*
H4Y	0.085 (2)	0.108 (2)	0.5594 (16)	0.056*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.02306 (18)	0.02389 (18)	0.02263 (18)	0.00422 (13)	0.00472 (13)	0.00038 (13)
P1	0.01430 (16)	0.01926 (17)	0.01294 (17)	0.00220 (13)	0.00277 (12)	0.00249 (13)
01	0.0250 (5)	0.0225 (5)	0.0166 (5)	-0.0003 (4)	0.0035 (4)	-0.0008(4)
O2	0.0213 (5)	0.0242 (5)	0.0124 (5)	0.0012 (4)	0.0050 (4)	0.0025 (4)
03	0.0268 (5)	0.0180 (5)	0.0148 (5)	-0.0052 (4)	0.0061 (4)	-0.0008(4)
C1	0.0161 (6)	0.0259 (7)	0.0145 (6)	0.0002 (5)	0.0012 (5)	0.0024 (5)
C2	0.0201 (7)	0.0246 (7)	0.0150 (7)	0.0006 (6)	0.0029 (5)	0.0020 (5)
C3	0.0250 (8)	0.0263 (8)	0.0167 (7)	0.0005 (6)	0.0029 (6)	0.0021 (6)
C4	0.0359 (9)	0.0280 (8)	0.0164 (7)	0.0028 (7)	0.0079 (6)	0.0002 (6)
C5	0.0138 (6)	0.0232 (7)	0.0138 (6)	0.0049 (5)	0.0038 (5)	0.0038 (5)
C6	0.0148 (6)	0.0265 (7)	0.0192 (7)	0.0026 (5)	0.0027 (5)	0.0034 (6)
C7	0.0148 (6)	0.0341 (8)	0.0250 (8)	0.0013 (6)	0.0059 (5)	0.0094 (6)
C8	0.0177 (7)	0.0401 (9)	0.0192 (7)	0.0092 (6)	0.0076 (5)	0.0086 (6)
C9	0.0211 (7)	0.0301 (8)	0.0172 (7)	0.0100 (6)	0.0041 (5)	0.0013 (6)

supporting information

C10	0.0169 (6)	0.0223 (7)	0.0172 (7)	0.0058 (5)	0.0015 (5)	0.0042 (5)
C11	0.0322 (8)	0.0238 (7)	0.0219 (7)	0.0016 (6)	0.0004 (6)	-0.0036 (6)
C12	0.0285 (8)	0.0207 (7)	0.0391 (9)	0.0007 (6)	0.0052 (7)	0.0133 (7)
C13	0.0210 (7)	0.0156 (6)	0.0151 (6)	-0.0004(5)	0.0032 (5)	0.0018 (5)
C14	0.0137 (6)	0.0167 (6)	0.0118 (6)	-0.0001 (5)	0.0030 (5)	0.0006 (5)
C15	0.0155 (6)	0.0155 (6)	0.0098 (6)	-0.0016 (5)	0.0031 (5)	0.0001 (5)
C16	0.0161 (6)	0.0180 (6)	0.0155 (6)	0.0026 (5)	0.0032 (5)	0.0013 (5)
C17	0.0151 (6)	0.0222 (7)	0.0176 (7)	-0.0010 (5)	0.0048 (5)	-0.0009 (5)
C18	0.0204 (7)	0.0184 (6)	0.0182 (7)	-0.0058 (5)	0.0058 (5)	0.0012 (5)
C19	0.0123 (6)	0.0161 (6)	0.0159 (6)	0.0013 (5)	0.0024 (5)	0.0047 (5)
C20	0.0146 (6)	0.0181 (6)	0.0173 (6)	0.0011 (5)	0.0026 (5)	0.0041 (5)
C21	0.0168 (6)	0.0163 (6)	0.0257 (7)	-0.0007 (5)	0.0021 (5)	0.0045 (5)
C22	0.0154 (6)	0.0210 (7)	0.0296 (8)	-0.0004 (5)	0.0056 (5)	0.0113 (6)
C23	0.0166 (6)	0.0268 (7)	0.0208 (7)	0.0035 (5)	0.0071 (5)	0.0114 (6)
C24	0.0134 (6)	0.0200 (6)	0.0171 (6)	0.0041 (5)	0.0035 (5)	0.0050 (5)
C25	0.0236 (7)	0.0348 (8)	0.0147 (7)	0.0091 (6)	0.0079 (5)	0.0059 (6)
C26	0.0329 (8)	0.0233 (7)	0.0209 (7)	-0.0081 (6)	0.0074 (6)	-0.0062 (6)
04	0.0384 (7)	0.0375 (7)	0.0322 (7)	-0.0162 (5)	0.0104 (5)	-0.0042 (5)

Geometric parameters (Å, °)

P1—C5	1.7824 (14)	C11—H11B	0.9800
P1—C1	1.7994 (14)	C11—H11C	0.9800
P1-C14	1.8043 (13)	C12—C13	1.512 (2)
P1—H1P	1.313 (16)	C12—H12A	0.9800
O1—C10	1.3557 (17)	C12—H12B	0.9800
O1—C11	1.4313 (17)	C12—H12C	0.9800
O2—C24	1.3639 (17)	C13—C18	1.3930 (19)
O2—C25	1.4307 (16)	C13—C14	1.4135 (18)
O3—C20	1.3611 (16)	C14—C15	1.4042 (18)
O3—C26	1.4367 (17)	C15—C16	1.3940 (18)
C1—C2	1.5347 (19)	C15—C19	1.4979 (17)
C1—H1A	0.962 (17)	C16—C17	1.3884 (19)
C1—H1B	0.988 (18)	C16—H16	0.9500
C2—C3	1.522 (2)	C17—C18	1.382 (2)
C2—H2A	0.976 (17)	C17—H17	0.9500
C2—H2B	0.973 (17)	C18—H18	0.9500
C3—C4	1.523 (2)	C19—C24	1.4005 (18)
С3—НЗА	0.975 (19)	C19—C20	1.4030 (18)
С3—Н3В	0.980 (19)	C20—C21	1.3939 (19)
C4—H4A	0.952 (19)	C21—C22	1.385 (2)
C4—H4B	0.96 (2)	C21—H21	0.9500
C4—H4C	0.94 (2)	C22—C23	1.385 (2)
C5—C6	1.391 (2)	C22—H22	0.9500
C5—C10	1.4058 (19)	C23—C24	1.3967 (19)
С6—С7	1.390 (2)	С23—Н23	0.9500
С6—Н6	0.9500	C25—H25A	0.9800
C7—C8	1.388 (2)	C25—H25B	0.9800

supporting information

С7—Н7	0.9500	C25—H25C	0.9800
C8—C9	1.385 (2)	С26—Н26А	0.9800
C8—H8	0.9500	C26—H26B	0.9800
C9—C10	1.3913 (19)	С26—Н26С	0.9800
С9—Н9	0.9500	O4—H4X	0.933 (16)
C11—H11A	0.9800	O4—H4Y	0.935 (16)
	0.9000		0.955 (10)
C5—P1—C1	110.72 (7)	H11B—C11—H11C	109.5
C5—P1—C14	115.02 (6)	C13—C12—H12A	109.5
C1—P1—C14	111.73 (6)	C13—C12—H12B	109.5
C5—P1—H1P	104.9 (7)	H12A—C12—H12B	109.5
C1—P1—H1P	106.2 (7)	C13—C12—H12C	109.5
C14—P1—H1P	107.5 (7)	H12A—C12—H12C	109.5
C10-01-C11	11740(11)	H12B— $C12$ — $H12C$	109.5
$C_{24} = 0^{2} = C_{25}^{25}$	117.30(11)	C18 - C13 - C14	118.04 (12)
$C_{20} = 03 = 026$	117.23 (11)	C18 - C13 - C12	118.55(12)
C_{2} C_{1} P_{1}	117.25(11) 111.17(10)	C_{14} C_{13} C_{12}	110.55(12) 123.41(12)
$C_2 = C_1 = H_1 \Lambda$	111.17(10) 100.2(10)	$C_{14} = C_{13} = C_{12}$	123.41(12) 120.80(12)
$C_2 = C_1 = H_1 A$	109.2(10) 110.0(10)	$C_{15} = C_{14} = C_{15}$	120.89(12) 110.76(10)
$F_1 = C_1 = H_1 R$	110.0(10) 111.4(10)	C13 - C14 - F1	119.70(10)
	111.4(10) 105.0(10)	C15 - C14 - F1	119.31(10) 119.99(12)
	103.0 (10)	C10 - C13 - C14	118.66 (12)
HIA - CI - HIB	110.1 (14)	C16 - C15 - C19	118.49 (12)
	111.50 (12)		122.59 (11)
C3—C2—H2A	108.6 (10)	C17—C16—C15	120.72 (13)
C1—C2—H2A	109.4 (10)	С17—С16—Н16	119.6
C3—C2—H2B	110.2 (10)	C15—C16—H16	119.6
C1—C2—H2B	109.0 (10)	C18—C17—C16	119.89 (13)
H2A—C2—H2B	108.0 (14)	C18—C17—H17	120.1
C2—C3—C4	111.23 (12)	C16—C17—H17	120.1
С2—С3—НЗА	108.7 (11)	C17—C18—C13	121.55 (12)
С4—С3—Н3А	110.7 (11)	C17—C18—H18	119.2
С2—С3—Н3В	109.5 (11)	C13—C18—H18	119.2
С4—С3—Н3В	109.1 (11)	C24—C19—C20	118.43 (12)
НЗА—СЗ—НЗВ	107.5 (15)	C24—C19—C15	121.77 (12)
C3—C4—H4A	111.1 (11)	C20—C19—C15	119.66 (11)
C3—C4—H4B	111.9 (12)	O3—C20—C21	123.42 (12)
H4A—C4—H4B	108.7 (16)	O3—C20—C19	115.07 (11)
C3—C4—H4C	110.1 (12)	C21—C20—C19	121.51 (13)
H4A—C4—H4C	107.5 (16)	C22—C21—C20	118.23 (13)
H4B—C4—H4C	107.3 (16)	C22—C21—H21	120.9
C6—C5—C10	120.16 (12)	C20—C21—H21	120.9
C6—C5—P1	123.45 (11)	C21—C22—C23	122.09 (13)
C10—C5—P1	116.29 (10)	C21—C22—H22	119.0
C7—C6—C5	119.61 (13)	C23—C22—H22	119.0
C7—C6—H6	120.2	C^{22} C^{23} C^{24}	119.05 (13)
C5—C6—H6	120.2	C22—C23—H23	120.5
C8 - C7 - C6	119 68 (14)	C24—C23—H23	120.5
C8-C7-H7	120.2	02-024-023	120.0
	120.2	02 027 023	127,22 (12)

С6—С7—Н7	120.2	O2—C24—C19	115.16 (12)
C9—C8—C7	121.58 (13)	C23—C24—C19	120.62 (13)
С9—С8—Н8	119.2	O2—C25—H25A	109.5
C7—C8—H8	119.2	02—C25—H25B	109.5
C8—C9—C10	118.89 (14)	H25A—C25—H25B	109.5
C8—C9—H9	120.6	$\Omega^2 - C^{25} - H^{25}C$	109.5
C10—C9—H9	120.6	H_{25A} $-C_{25}$ $-H_{25C}$	109.5
01	125.57 (13)	H25B—C25—H25C	109.5
01	114.38 (12)	03—C26—H26A	109.5
C9-C10-C5	120.05(12)	03—C26—H26B	109.5
01-C11-H11A	109 5	H26A—C26—H26B	109.5
01—C11—H11B	109.5	03-C26-H26C	109.5
H11A—C11—H11B	109.5	$H_{26A} - C_{26} - H_{26C}$	109.5
01-C11-H11C	109.5	$H_{26B} = C_{26} = H_{26C}$	109.5
	109.5	H4X - O4 - H4Y	105.0
	109.5		105 (2)
C5—P1—C1—C2	179.34 (10)	C13—C14—C15—C19	-177.42 (12)
C14—P1—C1—C2	-51.05 (12)	P1-C14-C15-C19	0.53 (17)
P1—C1—C2—C3	-179.38 (10)	C14—C15—C16—C17	-1.07 (19)
C1—C2—C3—C4	-175.19 (13)	C19—C15—C16—C17	176.72 (12)
C1—P1—C5—C6	10.21 (14)	C15—C16—C17—C18	0.7 (2)
C14—P1—C5—C6	-117.62 (12)	C16—C17—C18—C13	0.5 (2)
C1—P1—C5—C10	-166.26 (10)	C14—C13—C18—C17	-1.2(2)
C14—P1—C5—C10	65.91 (12)	C12—C13—C18—C17	178.38 (13)
C10—C5—C6—C7	0.5 (2)	C16—C15—C19—C24	90.26 (16)
P1C5C6C7	-175.84 (11)	C14—C15—C19—C24	-92.04 (16)
C5—C6—C7—C8	0.8 (2)	C16—C15—C19—C20	-85.45 (16)
C6—C7—C8—C9	-0.9 (2)	C14—C15—C19—C20	92.25 (16)
C7—C8—C9—C10	-0.2 (2)	C26—O3—C20—C21	-5.6 (2)
C11—O1—C10—C9	1.2 (2)	C26—O3—C20—C19	175.38 (12)
C11—O1—C10—C5	-178.31 (12)	C24—C19—C20—O3	-178.00 (11)
C8—C9—C10—O1	-177.92 (13)	C15—C19—C20—O3	-2.15 (18)
C8—C9—C10—C5	1.5 (2)	C24—C19—C20—C21	2.9 (2)
C6—C5—C10—O1	177.84 (12)	C15—C19—C20—C21	178.79 (12)
P1-C5-C10-O1	-5.57 (16)	O3—C20—C21—C22	178.79 (12)
C6—C5—C10—C9	-1.7 (2)	C19—C20—C21—C22	-2.2(2)
P1—C5—C10—C9	174.93 (10)	C20—C21—C22—C23	0.2 (2)
C18—C13—C14—C15	0.86 (19)	C21—C22—C23—C24	1.0 (2)
C12—C13—C14—C15	-178.75 (13)	C25—O2—C24—C23	-3.54(19)
C18—C13—C14—P1	-177.10 (10)	C25—O2—C24—C19	176.32 (11)
C12—C13—C14—P1	3.30 (18)	C22—C23—C24—O2	179.57 (12)
C5—P1—C14—C15	55.82 (12)	C22—C23—C24—C19	-0.3 (2)
C1—P1—C14—C15	-71.50 (12)	C20—C19—C24—O2	178.49 (11)
C5—P1—C14—C13	-126.20 (11)	C15—C19—C24—O2	2.72 (18)
C1—P1—C14—C13	106.48 (11)	C20—C19—C24—C23	-1.65 (19)
C13—C14—C15—C16	0.27 (19)	C15—C19—C24—C23	-177.41 (12)
P1—C14—C15—C16	178.22 (10)		()

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
P1—H1P…C11 ⁱ	1.313 (16)	2.523 (16)	3.5798 (5)	135.5 (10)
C21—H21···O4	0.95	2.53	3.4594 (19)	167
C26—H26C···O4	0.98	2.53	3.2250 (19)	128
O4—H4X···Cl1 ⁱⁱ	0.93 (2)	2.24 (2)	3.1717 (13)	173 (2)
O4—H4 <i>Y</i> …Cl1 ⁱⁱⁱ	0.94 (2)	2.25 (2)	3.1841 (13)	173 (2)

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) *x*-1, *y*+1, *z*; (ii) -*x*+1, -*y*, -*z*+1; (iii) *x*-1, *y*, *z*.