

Received 22 December 2015 Accepted 13 January 2016

Edited by V. V. Chernyshev, Moscow State University, Russia

Keywords: crystal structure; sulfonic acid; zwitterion; hydrogen bonding

CCDC reference: 1447138 Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of zwitterionic 2-[bis(2-methoxyphenyl)phosphaniumyl]-4-methylbenzenesulfonate monohydrate dichloromethane monosolvate

Hongyang Zhang, Ge Feng, Alexander S. Filatov and Richard F. Jordan*

Department of Chemistry, the University of Chicago, 5735 South Ellis ave, Chicago, IL 60637, USA. *Correspondence e-mail: rfjordan@uchicago.edu

In the title compound, $C_{21}H_{21}O_5PS \cdot H_2O \cdot CH_2Cl_2$, the phosphonium–sulfonate zwitterion has the acidic H atom located on the P atom rather than the sulfonate group. The S–O bond lengths [1.4453 (15)–1.4521 (14) Å] are essentially equal. In the crystal, the water molecules bridge two zwitterions *via* $O_{water} - H \cdots O_{sulfonate}$ hydrogen bonds into a centrosymmetric dimer. The dimers are further linked by weak $C_{Aryl} - H \cdots O_{sulfonate}$ hydrogen bonds into chains extending along [100]. The PH⁺ group is not involved in intermolecular interactions.

1. Chemical context

Phosphane ligands (Allen, 2014) are ubiquitous in coordination and organometallic chemistry and have been used to synthesize a wide variety of metal complexes and catalysts (Hartwig, 2010). Incorporation of additional potential donor groups within the phosphane structure provides added versatility to such ligands. For example, ortho-phosphanylbenzenesulfonate (PO) ligands, such as 2-[bis(2-methoxyphenyl)phosphanyl]benzenesulfonate, bind to Pd^{II} in a $\kappa^2 P, O$ mode to form (PO)PdR species that are active for the polymerization of ethylene (Cai et al., 2012; Contrella & Jordan, 2014; Zhou et al., 2014), copolymerization of ethylene and polar monomers (Drent et al., 2002a; Nakamura et al., 2013), non-alternating copolymerization of ethylene and CO (Drent et al., 2002b), and alternating copolymerization of CO with polar monomers (Nakamura et al., 2011, 2012). Phosphanylarenesulfonate ligands derived from para-toluenesulfonic acid are useful because the extra methyl group provides a convenient NMR handle for characterizing complexes and monitoring reactions.

 $\cdot CH_2Cl_2$ (I)

 $\cdot H_2O$

research communications

2. Structural commentary

Compound 1 crystallizes as the phosphonium–sulfonate zwitterion in which the acidic H atom is located on the P atom rather than the sulfonate group (Fig. 1). The S–O bond distances fall within the narrow range of 1.4453 (15) to 1.4521 (14) Å, and the P–C distances lie within the range of 1.7794 (18) to 1.7984 (18) Å. The P–H atom was located in a difference Fourier map and refined without additional

Figure 1

The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The dashed line denotes a hydrogen bond.

Table 1			
Hydrogen-bond	geometry	(Å,	°).

, , ,		/		
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O6-H1O\cdots O1$ $O6-H2O\cdots O2^{i}$	0.91 (3) 0.92 (3)	1.96 (3) 1.98 (3)	2.862 (2) 2.877 (2)	170 (3) 164 (3)
C19−H19···O3 ⁱⁱ	0.95	2.47	3.180 (2)	132

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x + 1, y, z.

restraints. The P-H bond length is 1.22 (2) Å. Compound **1** adopts an exo_3 conformation, *i.e.* the ortho methoxy and sulfonate groups point toward the PH⁺ group (Feng *et al.*, 2014). Tris(ortho-substituted aryl)phosphanes normally exhibit exo_3 conformations (Howell *et al.*, 1999) because the ortho substituents cause less steric congestion when they point toward the P lone pair (*exo*) rather than toward the other aryl rings (*endo*). Addition of an H⁺ at phosphorous should not add significant steric congestion and therefore it is not surprising that **1** also adopts the exo_3 conformation. The O_{methoxy}···P distances, 2.7691 (14) and 2.7940 (14) Å, are shorter than the sum of the O and P van der Waals radii (3.35 Å). The O3···H1(P1) distance is 2.44 (2) Å.

3. DFT calculations

The relative stability of the observed exo_3 conformation *versus* alternative exo_2 and exo_1 conformations was investigated by DFT calculations using the hybrid exchange-correlation functional PBE0 (Perdew *et al.*, 1996, 1997) and the 6-311G(d,p) basis set for all atoms. The optimized structure is the exo_3 conformer, in which the methoxy and sulfonate groups point toward the PH⁺ group. Geometry optimizations were also carried out on two conformers in which the SO₃ group was kept exo but one (exo_2) or two (exo_1) methoxy groups were rotated away from the PH⁺ group. The exo_2 and exo_1 conformers were calculated to be 1.2 and 2.5 kcal mol⁻¹ less stable than the exo_3 isomer, respectively. The HOMO of the exo_3 conformer is comprised of *p* orbitals of the sulfonate O atoms, while the LUMO is delocalized over the phenyl rings and P-C_{aromatic} bonds (Fig. 2).

Figure 2 HOMO (-0.2289 Hartrees, left) and LUMO (-0.0483 Hartrees, right) orbitals of **1**.

Figure 3 Dimer formation through O_{water} -H···O_{sulfonate} hydrogen bonds (dashed lines).

4. Supramolecular features

Two O atoms of the SO_3^- group are hydrogen bonded with the co-crystallized water molecule, forming inversion dimers (Fig. 3). The $O_{water} - H \cdots O_{sulfonate}$ contacts are 1.96 (3) and 1.98 (3) Å (Table 1). These dimers are further linked by $C_{Aryl} - H \cdots O_{sulfonate}$ hydrogen bonds into infinite chains running along the [100] direction (Fig. 4). A similar C_{Ar} - $SO_3^- \cdots H_2O \cdots C_{Ar}$ - $SO_3^- \cdots H_2O \cdots$ hydrogen-bonding motif was observed in [Na(18-crown-6)(H_2O)][2-{($o-CF_3-Ph)_2P$ }-4-Me-benzenesulfonate] (Feng *et al.*, 2014).

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.36, last update May 2015; Groom & Allen, 2014) revealed structural reports for two analogues of **1** that contain 4-chloro-substituted methoxyphenyl (CSD refcode ODUNOS; Wucher *et al.*, 2013) or 2,6-dimethoxyphenyl substituents at phosphorous (CSD refcode: LEXLEG; Liu *et al.*, 2007). These compounds also crystallized as zwitterions in which the acidic proton is located on the P atom and feature

Figure 4

A fragment of the crystal packing of the title compound with intermolecular hydrogen bonds shown as dashed light-blue lines. Color scheme: C grey, H white, O red, P orange, S yellow.

Experimental details.Crystal dataChemical formula $C_{21}H_{21}O_5PS \cdot CH_2Cl_2 \cdot H_2O$ M_r 519.35Crystal system, space groupMonoclinic, $P2_1/n$ Temperature (K)100 a, b, c (Å)9.6437 (6), 15.9441 (11), 15.9641 (11) β (°)105.051 (2) V (Å3)2370.4 (3) Z 4Radiation typeMo K α μ (mm ⁻¹)Other Crystal size (mm)0.32 × 0.18 × 0.12Data collectionBruker D8 Venture PHOTON 100 CMOSDiffractometerBruker D8 Venture PHOTON 100 CMOSAbsorption correctionMulti-scan (SADABS; Bruker, 2014) T_{min}, T_{max} 0.693, 0.745No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections0.30 (sin $\theta/\lambda)_{max}$ (Å ⁻¹)Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.038, 0.106, 1.05No. of parameters304H-atom treatmentH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)0.48, -0.66	Table 2	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Experimental details.	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Crystal data	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Chemical formula	$C_{21}H_{21}O_5PS \cdot CH_2Cl_2 \cdot H_2O$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	M _r	519.35
Temperature (K)100 a, b, c (Å)9.6437 (6), 15.9441 (11), 15.9641 (11) β (°)105.051 (2) V (Å3)2370.4 (3) Z 4Radiation typeMo K α μ (mm ⁻¹)0.47Crystal size (mm)0.32 × 0.18 × 0.12Data collectionBruker D8 Venture PHOTON 100 CMOSDiffractometerBruker D8 Venture PHOTON 100 CMOS λ bsorption correctionMulti-scan (SADABS; Bruker, 2014) T_{min}, T_{max} 0.693, 0.745No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections0.030 0.627Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.038, 0.106, 1.05 No. of reflectionsNo. of parameters304H-atom treatmentH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)0.48, -0.66	Crystal system, space group	Monoclinic, $P2_1/n$
a, b, c (Å) 9.6437 (6), 15.9441 (11), 15.9641 (11) β (°) 105.051 (2) V (Å ³) 2370.4 (3) Z 4 Radiation type Mo K α μ (mm ⁻¹) 0.47 Crystal size (mm) 0.32 × 0.18 × 0.12 Data collection Bruker D8 Venture PHOTON 100 CMOS Absorption correction Multi-scan (SADABS; Bruker, 2014) 2014) T_{min}, T_{max} 0.693, 0.745 No. of measured, independent and observed [$I > 2\sigma(I)$] reflections 0.300 R_{int} 0.030 $(\sin \theta/\lambda)_{max}$ (Å ⁻¹) 0.627 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ No. of parameters 304 H-atom treatment H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³) 0.48, -0.66	Temperature (K)	100
$ \begin{array}{lll} \beta\left(\stackrel{\circ}{\mathbf{c}} \right) & 105.051\left(2 \right) \\ V\left(\stackrel{\circ}{\mathbf{A}} \right) & 2370.4\left(3 \right) \\ Z & 4 \\ \text{Radiation type} & \text{Mo } K\alpha \\ \mu \left(mm^{-1} \right) & 0.47 \\ \text{Crystal size (mm)} & 0.32 \times 0.18 \times 0.12 \\ \end{array} $ Data collection Diffractometer & Bruker D8 Venture PHOTON 100 CMOS Absorption correction & Multi-scan (<i>SADABS</i> ; Bruker, 2014) \\ T_{\min}, T_{\max} & 0.693, 0.745 \\ \text{No. of measured, independent and observed } [I > 2\sigma(I)] \text{ reflections} \\ R_{\text{int}} & 0.030 \\ (\sin \theta/\lambda)_{\max} (\stackrel{\circ}{A}^{-1}) & 0.627 \\ \text{Refinement} \\ R[F^2 > 2\sigma(F^2)], wR(F^2), S & 0.038, 0.106, 1.05 \\ \text{No. of parameters} & 304 \\ \text{H-atom treatment} & \text{H atoms treated by a mixture of independent and constrained refinement} \\ \Delta\rho_{\max}, \Delta\rho_{\min} (e \stackrel{\circ}{A}^{-3}) & 0.48, -0.66 \\ \end{array}	a, b, c (Å)	9.6437 (6), 15.9441 (11), 15.9641 (11)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	β (°)	105.051 (2)
Z4Radiation typeMo $K\alpha$ μ (mm ⁻¹)0.47Crystal size (mm)0.32 × 0.18 × 0.12Data collectionBruker D8 Venture PHOTON 100DiffractometerBruker D8 Venture PHOTON 100Absorption correctionMulti-scan (SADABS; Bruker, 2014) T_{min}, T_{max} 0.693, 0.745No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections0.030 $(\sin \theta/\lambda)_{max}$ (Å ⁻¹)0.627Refinement $R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, SNo. of parameters304H-atom treatmentH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)0.48, -0.66	$V(Å^3)$	2370.4 (3)
Radiation typeMo Kαμ (mm ⁻¹)0.47Crystal size (mm)0.32 × 0.18 × 0.12Data collectionBruker D8 Venture PHOTON 100DiffractometerBruker D8 Venture PHOTON 100CMOSMulti-scan (SADABS; Bruker, 2014) T_{min}, T_{max} 0.693, 0.745No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections0.030 R_{int} 0.030 $(\sin \theta/\lambda)_{max}$ (Å ⁻¹)0.627Refinement $R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, SNo. of parameters304H-atom treatmentH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)0.48, -0.66	Z	4
μ (mm ⁻¹)0.47Crystal size (mm) $0.32 \times 0.18 \times 0.12$ Data collectionBruker D8 Venture PHOTON 100 CMOSDiffractometerBruker D8 Venture PHOTON 100 CMOSAbsorption correctionMulti-scan (<i>SADABS</i> ; Bruker, 2014) T_{min}, T_{max} $0.693, 0.745$ No. of measured, independent and 	Radiation type	Μο Κα
Crystal size (mm) $0.32 \times 0.18 \times 0.12$ Data collectionBruker D8 Venture PHOTON 100DiffractometerBruker D8 Venture PHOTON 100Absorption correctionMulti-scan (SADABS; Bruker, 2014) T_{min}, T_{max} $0.693, 0.745$ No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections 0.030 R_{int} 0.030 $(\sin \theta/\lambda)_{max}$ (Å ⁻¹) 0.627 Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ No. of parameters 304 H-atom treatmentH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³) $0.48, -0.66$	$\mu (\text{mm}^{-1})$	0.47
Data collectionBruker D8 Venture PHOTON 100 CMOSDiffractometerBruker D8 Venture PHOTON 100 CMOSAbsorption correctionMulti-scan (SADABS; Bruker, 2014) T_{min}, T_{max} 0.693, 0.745No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections53574, 4888, 4349 R_{int} 0.030 $(\sin \theta/\lambda)_{max}$ (Å ⁻¹)0.627Refinement $R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S0.038, 0.106, 1.05No. of parameters304H-atom treatmentH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)0.48, -0.66	Crystal size (mm)	$0.32 \times 0.18 \times 0.12$
DiffractometerBruker D8 Venture PHOTON 100 CMOSAbsorption correctionMulti-scan (SADABS; Bruker, 2014) T_{min}, T_{max} 0.693, 0.745No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections53574, 4888, 4349 R_{int} 0.030 0.627Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.038, 0.106, 1.05 4888No. of parameters304H-atom treatmentH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)0.48, -0.66	Data collection	
Absorption correctionMulti-scan (SADABS; Bruker, 2014) T_{\min}, T_{\max} 0.693, 0.745No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections53574, 4888, 4349 R_{int} 0.030 $(\sin \theta/\lambda)_{\max}$ (Å ⁻¹)0.627Refinement $R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S0.038, 0.106, 1.05No. of parameters304H-atom treatmentH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\max}, \Delta \rho_{\min}$ (e Å ⁻³)0.48, -0.66	Diffractometer	Bruker D8 Venture PHOTON 100 CMOS
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Absorption correction	Multi-scan (SADABS; Bruker, 2014)
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections53574, 4888, 4349 R_{int} 0.030 $(\sin \theta/\lambda)_{max}$ (Å ⁻¹)0.627Refinement $R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S0.038, 0.106, 1.05No. of reflections4888No. of parameters304H-atom treatmentH atoms treated by a mixture of independent and constrained 	T_{\min}, T_{\max}	0.693, 0.745
R_{int} 0.030 $(\sin \theta/\lambda)_{max}$ (Å ⁻¹)0.627Refinement $R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S0.038, 0.106, 1.05No. of reflections4888No. of parameters304H-atom treatmentH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}$, $\Delta \rho_{min}$ (e Å ⁻³)0.48, -0.66	No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	53574, 4888, 4349
$(\sin \theta/\lambda)_{max}$ (Å ⁻¹)0.627Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.038, 0.106, 1.05No. of reflections4888No. of parameters304H-atom treatmentH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)0.48, -0.66	R _{int}	0.030
Refinement $R[F^2 > 2\sigma(F^2)]$, $wR(F^2)$, S 0.038, 0.106, 1.05No. of reflections4888No. of parameters304H-atom treatmentH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}$, $\Delta \rho_{min}$ (e Å ⁻³)0.48, -0.66	$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.627
$\begin{split} R[F^2 > 2\sigma(F^2)], & R(F^2), S & 0.038, 0.106, 1.05 \\ \text{No. of reflections} & 4888 \\ \text{No. of parameters} & 304 \\ \text{H-atom treatment} & \text{H atoms treated by a mixture of independent and constrained refinement} \\ \Delta\rho_{\text{max}}, \Delta\rho_{\text{min}} (e \text{ Å}^{-3}) & 0.48, -0.66 \end{split}$	Refinement	
No. of reflections4888No. of parameters304H-atom treatmentH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)0.48, -0.66	$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.106, 1.05
No. of parameters 304 H-atom treatmentH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³) $0.48, -0.66$	No. of reflections	4888
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max}, \Delta \rho_{min}$ (e Å ⁻³)0.48, -0.66	No. of parameters	304
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3}) $ 0.48, -0.66	H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
	$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.48, -0.66

Computer programs: *APEX2* and *SAINT* (Bruker, 2014), *SHELXT* (Sheldrick, 2015*a*), *SHELXL2014* (Sheldrick, 2015*b*), *OLEX2* (Dolomanov *et al.*, 2009), *Mercury* (Macrae *et al.*, 2008) and *publCIF* (Westrip, 2010).

close $O_{methoxy} \cdots P$ contacts (2.764 to 2.927 Å). The structure of the triethylammonium salt of 2-[bis(2-methoxyphenyl)phosphanyl]benzenesulfonate has also been reported (CSD refcode HAGKEH; Bettucci *et al.*, 2008). In this case, the acidic H atom is located at triethylamine rather than on the P atom and the $O_{methoxy} \cdots P$ distances are 2.877 and 2.903 Å.

6. Synthesis and crystallization

Compound **1** was synthesized by a modification of a previously reported procedure (Vela *et al.*, 2007) comprising sequential reaction of PCl₃ with dilithiated *p*-toluenesulfonate and 1-lithio-2-methoxybenzene, followed by acidification of HCl, to afford **1** in 70–75% yield on a 3–4 g scale (Scheme 2). The product was purified by recrystallization (CH₂Cl₂/Et₂O, volume ratio 1/3, layering at 273K). Crystals of **1**·H₂O·CH₂Cl₂ (**I**) suitable for the X-ray diffraction analysis were obtained by layering Et₂O on a CH₂Cl₂ solution of **1** at 277 K.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Carbon-bound H atoms were placed in calculated positions (C–H = 0.95–0.98 Å) and were included in the refinement in the riding-model approximation,

with $U_{iso}(H)$ set to 1.2–1.5 $U_{eq}(C)$. The P- and O-bound H atoms were located in a difference Fourier map and refined isotropically.

Acknowledgements

This work was supported by the National Science Foundation (grants CHE-0911180 and CHE-1048528). Calculations were carried out with the GAMESS-US computational package provided by the University of Chicago Research Computing Center (Midway high-performance computing cluster).

References

- Allen, D. W. (2014). Organophosphorous Chemistry, Vol. 43, pp. 1–51. London: Royal Society of Chemistry.
- Bettucci, L., Bianchini, C., Meli, A. & Oberhauser, W. (2008). J. Mol. Catal. A Chem. 291, 57–65.
- Bruker (2014). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cai, Z., Shen, Z., Zhou, X. & Jordan, R. F. (2012). ACS Catal. 2, 1187– 1195.
- Contrella, N. D. & Jordan, R. F. (2014). Organometallics, 33, 7199–7208.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Drent, E., van Dijk, R., van Ginkel, R., van Oort, B. & Pugh, R. I. (2002a). Chem. Commun. pp. 744–745.
- Drent, E., van Dijk, R., van Ginkel, R., van Oort, B. & Pugh, R. I. (2002b). Chem. Commun. pp. 964–965.
- Feng, G., Conley, M. P. & Jordan, R. F. (2014). Organometallics, 33, 4486–4496.

- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- Hartwig, J. F. (2010). In Organotransition Metal Chemistry, from Bonding to Catalysis. New York: University Science Books.
- Howell, J. A. S., Fey, N., Lovatt, J. D., Yates, P. C., McArdle, P., Cunningham, D., Sadeh, E., Gottlieb, H. E., Goldschmidt, Z., Hursthouse, M. B. & Light, M. E. J. (1999). J. Chem. Soc. Dalton Trans. pp. 3015–3028.
- Liu, S., Borkar, D., Newsham, D., Yennawar, H. & Sen, A. (2007). Organometallics, 26, 210–216.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Nakamura, A., Anselment, T. M. J., Claverie, J., Goodall, B., Jordan, R. F., Mecking, S., Rieger, B., Sen, A., van Leeuwen, P. W. N. M. & Nozaki, K. (2013). Acc. Chem. Res. 46, 1438–1449.
- Nakamura, A., Kageyama, T., Goto, H., Carrow, B. P., Ito, S. & Nozaki, K. (2012). J. Am. Chem. Soc. **134**, 12366–12369.
- Nakamura, A., Munakata, K., Ito, S., Kochi, T., Chung, L. W., Morokuma, K. & Nozaki, K. (2011). J. Am. Chem. Soc. 133, 6761– 6779.
- Perdew, J. P., Burke, K. & Ernzerhof, M. (1996). Phys. Rev. Lett. 77, 3865–3868.
- Perdew, J. P., Burke, K. & Ernzerhof, M. (1997). Phys. Rev. Lett. 78, 1396.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Vela, J., Lief, G. R., Shen, Z. & Jordan, R. F. (2007). *Organometallics*, **26**, 6624–6635.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wucher, P., Goldbach, S. & Mecking, S. (2013). Organometallics, **32**, 4516–4522.
- Zhou, X., Lau, K.-C., Petro, B. J. & Jordan, R. F. (2014). Organometallics, **33**, 7209–7214.

supporting information

Acta Cryst. (2016). E72, 229-232 [doi:10.1107/S2056989016000669]

Crystal structure of zwitterionic 2-[bis(2-methoxyphenyl)phosphaniumyl]-4methylbenzenesulfonate monohydrate dichloromethane monosolvate

Hongyang Zhang, Ge Feng, Alexander S. Filatov and Richard F. Jordan

Computing details

Data collection: *APEX2* (Bruker, 2014); cell refinement: *SAINT* (Bruker, 2014); data reduction: *SAINT* (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

2-[Bis(2-methoxyphenyl)phosphaniumyl]-4-methylbenzenesulfonate monohydrate dichloromethane monosolvate

Crystal data

 $C_{21}H_{21}O_5PS \cdot CH_2Cl_2 \cdot H_2O$ $M_r = 519.35$ Monoclinic, $P2_1/n$ a = 9.6437 (6) Å b = 15.9441 (11) Å c = 15.9641 (11) Å $\beta = 105.051$ (2)° V = 2370.4 (3) Å³ Z = 4

Data collection

Bruker D8 Venture PHOTON 100 CMOS diffractometer
Radiation source: INCOATEC ImuS microfocus source
Mirrors monochromator
Detector resolution: 10.4167 pixels mm⁻¹ ω and phi scans
Absorption correction: multi-scan (SADABS; Bruker, 2014)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.106$ S = 1.054888 reflections 304 parameters 0 restraints F(000) = 1080 $D_x = 1.455 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9610 reflections $\theta = 2.2-26.4^{\circ}$ $\mu = 0.47 \text{ mm}^{-1}$ T = 100 KBlock, colorless $0.32 \times 0.18 \times 0.12 \text{ mm}$

 $T_{\min} = 0.693, T_{\max} = 0.745$ 53574 measured reflections
4888 independent reflections
4349 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.030$ $\theta_{\text{max}} = 26.5^{\circ}, \theta_{\text{min}} = 2.2^{\circ}$ $h = -12 \rightarrow 12$ $k = -19 \rightarrow 19$ $l = -20 \rightarrow 19$

Primary atom site location: dual Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0536P)^2 + 2.7024P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta\rho_{\rm max} = 0.48$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\Delta \rho_{\rm min} = -0.66 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
P1	0.63863 (5)	0.30456 (3)	0.33309 (3)	0.01288 (12)	
H1P	0.592 (2)	0.2397 (14)	0.2950 (14)	0.018 (5)*	
S 1	0.43769 (5)	0.17697 (3)	0.41453 (3)	0.01702 (12)	
01	0.50338 (15)	0.10620 (9)	0.38266 (10)	0.0261 (3)	
O2	0.34252 (15)	0.15453 (10)	0.46751 (10)	0.0269 (3)	
03	0.37411 (14)	0.23600 (9)	0.34604 (9)	0.0210 (3)	
O4	0.86431 (15)	0.19197 (8)	0.35798 (9)	0.0210 (3)	
05	0.51406 (15)	0.34403 (9)	0.15930 (8)	0.0206 (3)	
C1	0.77958 (19)	0.33171 (11)	0.50245 (12)	0.0155 (4)	
H1	0.8372	0.3678	0.4781	0.019*	
C2	0.66711 (19)	0.28789 (11)	0.44773 (11)	0.0139 (3)	
C3	0.58188 (19)	0.23434 (11)	0.48294 (12)	0.0155 (4)	
C4	0.6117 (2)	0.22566 (12)	0.57215 (12)	0.0188 (4)	
H4	0.5552	0.1890	0.5966	0.023*	
C5	0.7235 (2)	0.27025 (12)	0.62605 (12)	0.0187 (4)	
H5	0.7417	0.2642	0.6871	0.022*	
C6	0.8093 (2)	0.32358 (12)	0.59237 (12)	0.0170 (4)	
C7	0.9324 (2)	0.37081 (13)	0.65044 (13)	0.0227 (4)	
H7A	0.9220	0.3708	0.7099	0.034*	
H7B	0.9323	0.4287	0.6299	0.034*	
H7C	1.0231	0.3437	0.6493	0.034*	
C8	0.51505 (19)	0.38810(11)	0.29746 (12)	0.0159 (4)	
C9	0.4711 (2)	0.44064 (12)	0.35526 (13)	0.0202 (4)	
H9	0.5089	0.4336	0.4160	0.024*	
C10	0.3720 (2)	0.50321 (13)	0.32356 (14)	0.0239 (4)	
H10	0.3426	0.5402	0.3624	0.029*	
C11	0.3158 (2)	0.51167 (13)	0.23483 (15)	0.0246 (4)	
H11	0.2461	0.5540	0.2136	0.030*	
C12	0.3583 (2)	0.46027 (12)	0.17634 (13)	0.0209 (4)	
H12	0.3185	0.4670	0.1157	0.025*	
C13	0.46023 (19)	0.39848 (12)	0.20784 (12)	0.0173 (4)	
C14	0.4860 (2)	0.36077 (14)	0.06819 (13)	0.0261 (4)	
H14A	0.3827	0.3561	0.0413	0.039*	
H14B	0.5378	0.3201	0.0416	0.039*	
H14C	0.5184	0.4176	0.0595	0.039*	
C15	0.80656 (19)	0.32846 (12)	0.31142 (11)	0.0152 (4)	

C16	0.9266(2)	0 40458 (12)	0.27726(12)	0.0102(4)
	0.8300 (2)	0.40438 (12)	0.27750(12)	0.0192 (4)
H16	0.7672	0.4482	0.2665	0.023*
C17	0.9686 (2)	0.41647 (13)	0.25930 (13)	0.0224 (4)
H17	0.9894	0.4678	0.2349	0.027*
C18	1.0697 (2)	0.35248 (13)	0.27735 (13)	0.0226 (4)
H18	1.1612	0.3615	0.2670	0.027*
C19	1.0407 (2)	0.27600 (13)	0.30998 (13)	0.0208 (4)
H19	1.1106	0.2326	0.3208	0.025*
C20	0.9083 (2)	0.26368 (12)	0.32663 (12)	0.0173 (4)
C21	0.9467 (2)	0.11736 (13)	0.35617 (14)	0.0258 (4)
H21A	0.9509	0.1062	0.2965	0.039*
H21B	0.9012	0.0699	0.3775	0.039*
H21C	1.0442	0.1251	0.3932	0.039*
C22	0.2653 (5)	0.3457 (2)	0.5203 (2)	0.0676 (11)
H22A	0.2056	0.3047	0.4801	0.081*
H22B	0.3569	0.3518	0.5038	0.081*
C11	0.30192 (7)	0.30568 (5)	0.62409 (4)	0.04587 (19)
C12	0.17791 (9)	0.44136 (4)	0.50619 (5)	0.0517 (2)
O6	0.73753 (17)	-0.00322 (11)	0.45863 (11)	0.0308 (4)
H1O	0.656 (4)	0.027 (2)	0.436 (2)	0.049 (8)*
H2O	0.701 (3)	-0.053 (2)	0.4720 (19)	0.043 (8)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0121 (2)	0.0138 (2)	0.0124 (2)	0.00178 (16)	0.00263 (17)	0.00083 (16)
S1	0.0143 (2)	0.0180 (2)	0.0173 (2)	-0.00200 (17)	0.00148 (17)	0.00157 (17)
O1	0.0245 (7)	0.0214 (7)	0.0283 (8)	0.0011 (6)	-0.0007 (6)	-0.0049 (6)
O2	0.0227 (7)	0.0324 (8)	0.0255 (8)	-0.0092 (6)	0.0062 (6)	0.0041 (6)
O3	0.0141 (6)	0.0255 (7)	0.0207 (7)	-0.0009 (5)	-0.0003 (5)	0.0048 (6)
O4	0.0217 (7)	0.0174 (7)	0.0268 (7)	0.0068 (5)	0.0115 (6)	0.0045 (5)
O5	0.0244 (7)	0.0213 (7)	0.0148 (7)	0.0010 (6)	0.0027 (5)	0.0006 (5)
C1	0.0151 (8)	0.0143 (8)	0.0173 (9)	0.0025 (7)	0.0044 (7)	-0.0010 (7)
C2	0.0147 (8)	0.0138 (8)	0.0134 (8)	0.0043 (7)	0.0043 (7)	0.0012 (7)
C3	0.0137 (8)	0.0159 (9)	0.0162 (9)	0.0026 (7)	0.0025 (7)	0.0006 (7)
C4	0.0182 (9)	0.0209 (9)	0.0179 (9)	0.0014 (7)	0.0058 (7)	0.0035 (7)
C5	0.0213 (9)	0.0210 (9)	0.0139 (9)	0.0045 (7)	0.0047 (7)	0.0015 (7)
C6	0.0160 (9)	0.0168 (9)	0.0173 (9)	0.0047 (7)	0.0026 (7)	-0.0020(7)
C7	0.0234 (10)	0.0239 (10)	0.0186 (9)	-0.0010 (8)	0.0017 (8)	-0.0030 (8)
C8	0.0123 (8)	0.0153 (9)	0.0198 (9)	0.0020 (7)	0.0038 (7)	0.0036 (7)
C9	0.0198 (9)	0.0202 (10)	0.0211 (9)	0.0029 (7)	0.0063 (8)	0.0025 (7)
C10	0.0229 (10)	0.0199 (10)	0.0323 (11)	0.0051 (8)	0.0131 (9)	0.0028 (8)
C11	0.0159 (9)	0.0206 (10)	0.0381 (12)	0.0039 (7)	0.0080 (8)	0.0117 (9)
C12	0.0162 (9)	0.0209 (9)	0.0229 (10)	-0.0024 (7)	0.0002 (7)	0.0093 (8)
C13	0.0133 (8)	0.0172 (9)	0.0211 (9)	-0.0029 (7)	0.0039 (7)	0.0027 (7)
C14	0.0339 (11)	0.0273 (11)	0.0166 (9)	-0.0028 (9)	0.0055 (8)	0.0023 (8)
C15	0.0136 (8)	0.0191 (9)	0.0131 (8)	-0.0004 (7)	0.0037 (7)	-0.0023 (7)
C16	0.0199 (9)	0.0189 (9)	0.0183 (9)	-0.0006 (7)	0.0040 (7)	-0.0011 (7)

supporting information

C17	0.0247 (10)	0.0223 (10)	0.0213 (10)	-0.0082 (8)	0.0077 (8)	-0.0020 (8)
C18	0.0170 (9)	0.0303 (11)	0.0221 (10)	-0.0056 (8)	0.0083 (8)	-0.0079 (8)
C19	0.0158 (9)	0.0272 (10)	0.0196 (9)	0.0025 (8)	0.0049 (7)	-0.0045 (8)
C20	0.0183 (9)	0.0196 (9)	0.0140 (8)	-0.0001 (7)	0.0042 (7)	-0.0015 (7)
C21	0.0311 (11)	0.0198 (10)	0.0289 (11)	0.0109 (8)	0.0117 (9)	0.0024 (8)
C22	0.126 (3)	0.0495 (18)	0.0368 (15)	0.043 (2)	0.0374 (19)	0.0161 (13)
Cl1	0.0453 (4)	0.0621 (4)	0.0305 (3)	0.0225 (3)	0.0103 (3)	0.0118 (3)
Cl2	0.0798 (5)	0.0347 (3)	0.0452 (4)	0.0190 (3)	0.0245 (4)	0.0098 (3)
O6	0.0241 (8)	0.0272 (8)	0.0389 (9)	-0.0020 (7)	0.0040 (7)	0.0056 (7)

Geometric parameters (Å, °)

P1—C8	1.7794 (18)	C10—C11	1.386 (3)
P1—C15	1.7828 (18)	C10—H10	0.9500
P1—C2	1.7984 (18)	C11—C12	1.382 (3)
P1—H1P	1.22 (2)	C11—H11	0.9500
S1—O2	1.4453 (15)	C12—C13	1.390 (3)
S1—O1	1.4495 (15)	C12—H12	0.9500
S1—O3	1.4521 (14)	C14—H14A	0.9800
S1—C3	1.7816 (19)	C14—H14B	0.9800
O4—C20	1.359 (2)	C14—H14C	0.9800
O4—C21	1.435 (2)	C15—C16	1.391 (3)
O5—C13	1.354 (2)	C15—C20	1.402 (3)
O5—C14	1.434 (2)	C16—C17	1.389 (3)
C1—C2	1.391 (3)	C16—H16	0.9500
C1—C6	1.395 (3)	C17—C18	1.389 (3)
C1—H1	0.9500	C17—H17	0.9500
C2—C3	1.400 (3)	C18—C19	1.383 (3)
C3—C4	1.385 (3)	C18—H18	0.9500
C4—C5	1.388 (3)	C19—C20	1.384 (3)
C4—H4	0.9500	C19—H19	0.9500
C5—C6	1.388 (3)	C21—H21A	0.9800
С5—Н5	0.9500	C21—H21B	0.9800
C6—C7	1.505 (3)	C21—H21C	0.9800
C7—H7A	0.9800	C22—Cl1	1.725 (3)
С7—Н7В	0.9800	C22—Cl2	1.728 (3)
С7—Н7С	0.9800	C22—H22A	0.9900
C8—C9	1.391 (3)	C22—H22B	0.9900
C8—C13	1.400 (3)	O6—H1O	0.91 (3)
C9—C10	1.384 (3)	O6—H2O	0.92 (3)
С9—Н9	0.9500		
C8—P1—C15	110.16 (9)	C12—C11—C10	121.81 (18)
C8—P1—C2	110.40 (8)	C12—C11—H11	119.1
C15—P1—C2	108.82 (8)	C10-C11-H11	119.1
C8—P1—H1P	110.0 (10)	C11—C12—C13	118.80 (18)
C15—P1—H1P	108.8 (10)	C11—C12—H12	120.6
C2—P1—H1P	108.6 (10)	C13—C12—H12	120.6

O2—S1—O1	114.48 (9)	O5—C13—C12	125.99 (18)
O2—S1—O3	113.14 (9)	O5—C13—C8	114.20 (16)
O1—S1—O3	112.20 (9)	C12—C13—C8	119.81 (18)
O2—S1—C3	106.35 (9)	O5—C14—H14A	109.5
O1—S1—C3	105.80 (8)	O5—C14—H14B	109.5
O3—S1—C3	103.80 (8)	H14A—C14—H14B	109.5
C20—O4—C21	117.55 (15)	05—C14—H14C	109.5
C13—O5—C14	117.51 (15)	H14A—C14—H14C	109.5
C2-C1-C6	121.17 (17)	H14B—C14—H14C	109.5
C2—C1—H1	119.4	C16—C15—C20	120.20 (17)
C6—C1—H1	119.4	C16—C15—P1	123.67 (14)
C1-C2-C3	119.83 (17)	C_{20} C_{15} P_{1}	116.05 (14)
C1 - C2 - P1	116.93 (14)	C17 - C16 - C15	119 71 (18)
$C_3 - C_2 - P_1$	123.24 (14)	C17—C16—H16	120.1
C4-C3-C2	119 16 (17)	C15—C16—H16	120.1
C4-C3-S1	119.96 (14)	C16 - C17 - C18	119 23 (19)
$C_{2} = C_{3} = S_{1}$	120.87 (14)	C16 - C17 - H17	120.4
C_{3} C_{4} C_{5}	120.67(11) 120.43(18)	C18 - C17 - H17	120.4
C3 - C4 - H4	119.8	C19 - C18 - C17	121.78 (18)
C5-C4-H4	119.8	C19 - C18 - H18	119.1
C6-C5-C4	121 25 (17)	C17—C18—H18	119.1
С6—С5—Н5	119.4	C18 - C19 - C20	118 94 (18)
C4—C5—H5	119.4	C18—C19—H19	120.5
C5-C6-C1	118 16 (17)	C20-C19-H19	120.5
C_{5}	121.47(17)	04-C20-C19	125.57 (18)
C1 - C6 - C7	120.37(17)	$04-C_{20}-C_{15}$	114.34 (16)
C6-C7-H7A	109 5	C19 - C20 - C15	120.09(18)
C6—C7—H7B	109.5	$04-C_{21}-H_{21}A$	109.5
H7A—C7—H7B	109.5	04—C21—H21B	109.5
С6—С7—Н7С	109.5	H21A—C21—H21B	109.5
H7A—C7—H7C	109.5	04—C21—H21C	109.5
H7B—C7—H7C	109.5	H21A—C21—H21C	109.5
C9—C8—C13	120.48 (17)	H21B— $C21$ — $H21C$	109.5
C9—C8—P1	122.19 (15)	C11 - C22 - C12	115.01 (17)
C13—C8—P1	117.32 (14)	Cl1—C22—H22A	108.5
C10-C9-C8	119.47 (19)	Cl2—C22—H22A	108.5
С10—С9—Н9	120.3	Cl1—C22—H22B	108.5
С8—С9—Н9	120.3	C12—C22—H22B	108.5
C9—C10—C11	119.59 (19)	H22A—C22—H22B	107.5
С9—С10—Н10	120.2	H1O—O6—H2O	102 (3)
C11—C10—H10	120.2		
C6—C1—C2—C3	-0.2(3)	C8—C9—C10—C11	1.2 (3)
C6—C1—C2—P1	179.37 (14)	C9—C10—C11—C12	-1.4 (3)
C8—P1—C2—C1	-91.04 (15)	C10—C11—C12—C13	0.0 (3)
C15—P1—C2—C1	29.98 (16)	C14—O5—C13—C12	12.9 (3)
C8—P1—C2—C3	88.50 (16)	C14—O5—C13—C8	-167.84 (16)

C1—C2—C3—C4	-0.3 (3)	C11—C12—C13—C8	1.6 (3)
P1—C2—C3—C4	-179.79 (14)	C9—C8—C13—O5	178.92 (16)
C1—C2—C3—S1	-179.67 (13)	P1-C8-C13-O5	-2.3 (2)
P1—C2—C3—S1	0.8 (2)	C9—C8—C13—C12	-1.7 (3)
O2—S1—C3—C4	21.46 (18)	P1-C8-C13-C12	177.04 (14)
O1—S1—C3—C4	-100.67 (16)	C8—P1—C15—C16	4.33 (19)
O3—S1—C3—C4	141.04 (15)	C2-P1-C15-C16	-116.84 (16)
O2—S1—C3—C2	-159.14 (15)	C8—P1—C15—C20	-172.54 (14)
O1—S1—C3—C2	78.73 (16)	C2-P1-C15-C20	66.29 (16)
O3—S1—C3—C2	-39.55 (17)	C20-C15-C16-C17	-0.7 (3)
C2—C3—C4—C5	0.8 (3)	P1-C15-C16-C17	-177.42 (15)
S1—C3—C4—C5	-179.82 (14)	C15—C16—C17—C18	-1.3 (3)
C3—C4—C5—C6	-0.8 (3)	C16—C17—C18—C19	2.3 (3)
C4—C5—C6—C1	0.4 (3)	C17—C18—C19—C20	-1.3 (3)
C4—C5—C6—C7	-178.82 (18)	C21—O4—C20—C19	-14.4 (3)
C2-C1-C6-C5	0.1 (3)	C21—O4—C20—C15	165.79 (17)
C2-C1-C6-C7	179.34 (17)	C18—C19—C20—O4	179.46 (18)
C15—P1—C8—C9	-109.47 (16)	C18—C19—C20—C15	-0.8 (3)
C2—P1—C8—C9	10.75 (19)	C16—C15—C20—O4	-178.46 (16)
C15—P1—C8—C13	71.78 (16)	P1-C15-C20-O4	-1.5 (2)
C2—P1—C8—C13	-168.00 (14)	C16—C15—C20—C19	1.7 (3)
C13—C8—C9—C10	0.3 (3)	P1-C15-C20-C19	178.73 (14)
P1—C8—C9—C10	-178.39 (15)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
06—H1 <i>O</i> …O1	0.91 (3)	1.96 (3)	2.862 (2)	170 (3)
O6—H2 <i>O</i> ···O2 ⁱ	0.92 (3)	1.98 (3)	2.877 (2)	164 (3)
С19—Н19…ОЗ ^{іі}	0.95	2.47	3.180 (2)	132

Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1, y, z.