CRYSTALLOGRAPHIC COMMUNICATIONS

Received 25 November 2015
Accepted 5 January 2016

Edited by I. D. Brown, McMaster University, Canada

Keywords: powder diffraction; density functional theory; citrate; sodium; potassium; crystal structure

CCDC references: 1445596; 1445595 Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \odot ACCESS

Sodium potassium hydrogen citrate, $\mathrm{NaKHC}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$

Alagappa Rammohan ${ }^{\text {a }}$ and James A. Kaduk ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Atlantic International University, Honolulu HI , USA, and ${ }^{\text {b }}$ Illinois Institute of Technology, 3101 S. Dearborn St., Chicago IL 60616, USA. *Correspondence e-mail: kaduk@polycrystallography.com

The crystal structure of sodium potassium hydrogen citrate has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional theory techniques. The Na^{+}cation is six-coordinate, with a bond-valence sum of 1.17 . The K^{+}cation is also six-coordinate, with a bondvalence sum of 1.08. The distorted $\left[\mathrm{NaO}_{6}\right]$ octahedra share edges, forming chains along the a axis. The likewise distorted $\left[\mathrm{KO}_{6}\right]$ octahedra share edges with the [NaO_{6}] octahedra on either side of the chain, and share corners with other $\left[\mathrm{KO}_{6}\right]$ octahedra, resulting in triple chains along the a axis. The most prominent feature of the structure is the chain along [111] of very short, very strong hydrogen bonds; the $\mathrm{O} \cdots \mathrm{O}$ distances are 2.414 and $2.400 \AA$. The Mulliken overlap populations in these hydrogen bonds are 0.138 and 0.142 e , which correspond to hydrogen-bond energies of 20.3 and $20.6 \mathrm{kcal} \mathrm{mol}^{-1}$.

1. Chemical context

We have carried out a systematic study of the crystal structures of Group 1 (alkali metal) citrate salts to understand the anion's conformational flexibility, ionization, coordination tendencies, and hydrogen bonding. Most of the new structures were solved using powder diffraction data (laboratory and/or synchrotron), but single crystals were used where available. The general trends and conclusions about the 16 new compounds and 12 previously characterized structures are being reported separately (Rammohan \& Kaduk, 2015). The initial study considered salts containing one type of Group 1 cation. The title compound (Fig. 1) represents the beginning of an extension of the study to salts containing more than one alkali metal cation.

2. Structural commentary

The root-mean-square deviation of the non-hydrogen atoms in the refined and optimized structures is only $0.088 \AA$. A comparison of the refined and optimized structures is given in Fig. 2. The excellent agreement between the structures is strong evidence that the experimental structure is correct (van de Streek \& Neumann, 2014). This discussion uses the DFT-

Figure 1
The asymmetric unit, with the atom numbering and 50% probability spheroids.
optimized structure. Most of the bond lengths, and all of the bond angles and torsion angles fall within the normal ranges indicated by a Mercury Mogul Geometry Check (Macrae et al., 2008). Only the C6-O15 [observed $=1.281$ (4), optimized $=$ 1.268, normal $=1.20(2) \AA, \mathrm{Z}$-score $=2.7]$ and $\mathrm{C} 1-\mathrm{O} 11$ [observed $=1.260(4)$, optimized $=1.318$, normal $=$ 1.330 (3) A , Z-score = 3.9] bonds are flagged as unusual. The citrate anion occurs in the trans,trans-conformation (about $\mathrm{C} 2-\mathrm{C} 3$ and $\mathrm{C} 3-\mathrm{C} 4$), which is one of the two low-energy conformations of an isolated citrate. The central carboxylate group and the hydroxyl group occur in the normal planar arrangement. The citrate chelates to Na 19 through the terminal carboxylate oxygen O 11 and the central carboxylate oxygen O 16 . The Na^{+}cation is six-coordinate, with a bondvalence sum of 1.17 . The K^{+}cation is also six-coordinate, with a bond-valence sum of 1.08 . Both cations are thus slightly crowded. The metal-oxygen bonding is ionic, based on the Mulliken overlap populations.

The Bravais-Friedel-Donnay-Harker (Bravais, 1866; Friedel, 1907; Donnay \& Harker, 1937) morphology suggests that we might expect platy morphology for sodium potassium hydrogen citrate, with $\{001\}$ as the principal faces. A 4th-order spherical harmonic preferred orientation model was included in the refinement; the texture index was only 1.013 , indicating that preferred orientation was not significant in this rotated flat-plate specimen. The powder pattern is included in the Powder Diffraction File as entry 00-065-1255.

Figure 2
Comparison of the refined and optimized structures of sodium potassium hydrogen citrate. The refined structure is in red, and the DFT-optimized structure is in blue.

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}, \mathrm{e}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$	Overlap
O11-H21 . ${ }^{\text {O }} 11^{\text {i }}$	1.207	1.207	2.414	180.0	0.138
O13-H22 . O13 ${ }^{\text {ii }}$	1.200	1.200	2.400	180.0	0.142
O17-H18...O15	0.971	2.179	2.676	110.3	0.033
O17-H18*O11 ${ }^{\text {iii }}$	0.971	2.227	3.060	143.1	0.028

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $2-x, 2-y, 2-z$; (iii) $1+x, y, z$.

3. Supramolecular features

In the crystal structure (Fig. 3), distorted $\left[\mathrm{NaO}_{6}\right]$ octahedra share edges to form chains along the a axis. The likewise distorted $\left[\mathrm{KO}_{6}\right]$ octahedra share edges with the $\left[\mathrm{NaO}_{6}\right]$ octahedra on either side of the chain, and share corners with other $\left[\mathrm{KO}_{6}\right]$ octahedra, resulting in triple chains along the a axis. The most prominent feature of the structure is the chain along [111] of very short, very strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1); the refined $\mathrm{O} \cdots \mathrm{O}$ distances are 2.385 (15) and 2.346 (14) \AA, and the optimized O \cdots O distances are 2.414 and $2.400 \AA$. The Mulliken overlap populations in these hydrogen bonds are 0.138 and 0.142 e , which correspond to hydrogen bond energies of 20.3 and $20.6 \mathrm{kcal} \mathrm{mol}^{-1}$. The distances indicate that these are among the shortest $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds ever reported. H18 forms bifurcated hydrogen bonds; one is intramolecular to O 15 , and the other intermolecular to O11.

4. Database survey

Details of the comprehensive literature search for citrate structures are presented in Rammohan \& Kaduk (2015). A reduced cell search in the Cambridge Structural Database (Groom \& Allen, 2014) (increasing the default tolerance from 1.5 to 2.0%, to account for the differences between ambient and low-temperature lattice parameters) yielded 35 hits, but limiting the chemistry to $\mathrm{C}, \mathrm{H}, \mathrm{O}, \mathrm{Na}$, and K only resulted in no hits. The powder pattern matched no entry in the Powder Diffraction File (ICDD, 2015).

Figure 3
Crystal structure of $\mathrm{NaKHC}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$, viewed approximately down the a axis.

5. Synthesis and crystallization

$2.0832 \mathrm{~g}(10.0 \mathrm{mmol}) \mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}\left(\mathrm{H}_{2} \mathrm{O}\right)$ was dissolved in 10 mL deionized water. $0.5282 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}$ (10.0 mmol Na , SigmaAldrich) and $0.6913 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}$ (10.0 mmol , Sigma-Aldrich) were added to the citric acid solution slowly with stirring. The resulting clear colourless solution was evaporated to dryness in a 393 K oven.

6. Refinement details

The powder pattern (Fig. 4) was indexed using Jade 9.5 (MDI, 2012). Pseudovoigt profile coefficients were as parameterized in Thompson et al. (1987) and the asymmetry correction of Finger et al. (1994) was applied and microstrain broadening by Stephens (1999). The structure was solved with FOX (FavreNicolin \& Černý, 2002) using a citrate, Na, and K as fragments. Two of the 10 solutions yielded much lower cost functions than the others. Centrosymmetric pairs of close $\mathrm{O} \cdots \mathrm{O}$ contacts made it clear that H 21 and H 22 were located on centers of symmetry between these oxygen atoms, forming very strong hydrogen bonds. The hydrogen atoms were included at fixed positions, which were re-calculated during the course of the refinement. Crystal data, data collection and structure refinement details are summarized in Table 2. The $U_{\text {iso }}$ of C 2 , C 3 , and C 4 were constrained to be equal, and those of $\mathrm{H} 7, \mathrm{H} 8$, H 9 , and H 10 were constrained to be $1.3 \times$ that of these carbon atoms. The $U_{\text {iso }}$ of $\mathrm{C} 1, \mathrm{C} 5, \mathrm{C} 6$, and the oxygen atoms were constrained to be equal, and that of H 18 was constrained to be $1.3 \times$ this value. The $U_{\text {iso }}$ of H 21 and H 22 were fixed.

Figure 4
Rietveld plot for the refinement of $\mathrm{NaKHC}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$. The red crosses represent the observed data points, and the green line is the calculated pattern. The magenta curve is the difference pattern, plotted at the same scale as the other patterns. The vertical scale has been multiplied by a factor of 6 for $2 \theta>41.0^{\circ}$, and by a factor of 20 for $2 \theta>63.0^{\circ}$. The row of black tick marks indicates the reflection positions for the phase.

Table 2
Experimental details.

	Powder data
Crystal data	
Chemical formula	$\mathrm{NaK}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{7}\right)$
$M_{\text {r }}$	252.19
Crystal system, space group	Triclinic, $P \overline{1}$
Temperature (K)	300
$a, b, c(\AA)$	$\begin{aligned} & 5.99933(18), 8.2277(2), \\ & 10.1419(3) \end{aligned}$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	$\begin{aligned} & 74.8964 \text { (19), } 76.019(2), \\ & 71.4496(14) \end{aligned}$
$V\left(\AA^{3}\right)$	451.27 (3)
Z	2
Radiation type	$K \alpha_{1}, K \alpha_{2}, \lambda=1.540629,1.544451 \AA$
Specimen shape, size (mm)	Flat sheet, 24×24
Data collection	
Diffractometer	Bruker D2 Phaser
Specimen mounting	Standard holder
Data collection mode	Reflection
Data collection method	Step
θ values (${ }^{\circ}$)	$\begin{aligned} & 2 \theta_{\min }=4.9082 \theta_{\max }=99.914 \\ & 2 \theta_{\text {step }}=0.020 \end{aligned}$
Refinement	
R factors and goodness of fit	$\begin{aligned} & R_{\mathrm{p}}=0.034, R_{\mathrm{wp}}=0.046 \\ & \quad R_{\exp }=0.024, R\left(F^{2}\right)=0.08172, \\ & \chi^{2}=4.040 \end{aligned}$
No. of data points	4452
No. of parameters	98
No. of restraints	29
H -atom treatment	Only H-atom displacement parameters refined

The same symmetry and lattice parameters were used for the DFT calculation. Computer programs: DIFFRAC.Measurement (Bruker, 2009), PowDLL (Kourkoumelis, 2013), FOX (Favre-Nicolin \& Cerný, 2002), GSAS (Larson \& Von Dreele, 2004), EXPGUI (Toby, 2001), DIAMOND (Putz \& Brandenburg, 2015), publCIF (Westrip, 2010).

6.1. Density functional geometry optimization

A density functional geometry optimization (fixed experimental unit cell) was carried out using CRYSTAL09 (Dovesi et al., 2005). The basis sets for the H, C, and O atoms were those of Gatti et al. (1994), the basis sets for Na and K were those of Dovesi et al. (1991). The calculation used 8 k-points and the B3LYP functional, and took about 42 h on a 2.8 GHz PC. The observed $U_{\text {iso }}$ were assigned to the refined values.

References

Bravais, A. (1866). Etudes Cristallographiques. Paris: Gauthier Villars, Paris.
Bruker (2009). DIFFRAC. Bruker AXS Inc., Madison, Wisconsin, USA.
Donnay, J. D. H. \& Harker, D. (1937). Am. Mineral. 22, 446-467.
Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R. \& Zicovich-Wilson, C. M. (2005). Z. Kristallogr. 220, 571-573.
Dovesi, R., Roetti, C., Freyria-Fava, C., Prencipe, M. \& Saunders, V. R. (1991). Chem. Phys. 156, 11-19.

Favre-Nicolin, V. \& Černý, R. (2002). J. Appl. Cryst. 35, 734-743.
Finger, L. W., Cox, D. E. \& Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892-900.
Friedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326-455.
Gatti, C., Saunders, V. R. \& Roetti, C. (1994). J. Chem. Phys. 101, 10686-10696.

Groom, C. R. \& Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662671.

ICDD (2015). PDF-4+ 2015 and PDF-4 Organics 2016 (Databases), edited by Dr. Soorya Kabekkodu. International Centre for Diffraction Data, Newtown Square PA, USA.
Kourkoumelis, N. (2013). Powder Diffr. 28, 137-48.
Larson, A. C. \& Von Dreele, R. B. (2004). GSAS. Report LAUR 86748. Los Alamos National Laboratory, New Mexico, USA.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
MDI. (2012). Jade 9.5. Materials Data Inc., Livermore CA, USA.

Putz, H. \& Brandenburg, K. (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Rammohan, A. \& Kaduk, J. A. (2015). Acta Cryst. B72. Submitted. Stephens, P. W. (1999). J. Appl. Cryst. 32, 281-289.
Streek, J. van de \& Neumann, M. A. (2014). Acta Cryst. B70, 10201032.

Thompson, P., Cox, D. E. \& Hastings, J. B. (1987). J. Appl. Cryst. 20, 79-83.
Toby, B. H. (2001). J. Appl. Cryst. 34, 210-213.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2016). E72, 170-173 [doi:10.1107/S2056989016000232]
Sodium potassium hydrogen citrate, $\mathrm{NaKHC}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$

Alagappa Rammohan and James A. Kaduk

Computing details

Data collection: DIFFRAC.Measurement (Bruker, 2009) for RAMM093_publ. Data reduction: PowDLL (Kourkoumelis, 2013) for RAMM093_publ. Program(s) used to solve structure: FOX (Favre-Nicolin \& Černý, 2002) for RAMM093_publ. Program(s) used to refine structure: GSAS (Larson \& Von Dreele, 2004), EXPGUI (Toby, 2001) for RAMM093_publ. Molecular graphics: DIAMOND (Putz \& Brandenburg, 2015) for RAMM093 publ. Software used to prepare material for publication: publCIF (Westrip, 2010) for RAMM093_publ.
(RAMM093_publ) sodium potassium hydrogen citrate

Crystal data

$\mathrm{NaK}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{7}\right)$
$M_{r}=252.19$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=5.99933$ (18) Å
$b=8.2277$ (2) \AA
$c=10.1419(3) \AA$
$\alpha=74.8964(19)^{\circ}$
$\beta=76.019(2)^{\circ}$
$\gamma=71.4496(14)^{\circ}$

Data collection

Bruker D2 Phaser
diffractometer
Radiation source: sealed X-ray tube
Ni filter monochromator

Refinement

Least-squares matrix: full
$R_{\mathrm{p}}=0.034$
$R_{\text {wp }}=0.046$
$R_{\text {exp }}=0.024$
$R\left(F^{2}\right)=0.08172$
$\chi^{2}=4.040$

$$
\begin{aligned}
& V=451.27(3) \AA^{3} \\
& Z=2 \\
& D_{\mathrm{x}}=1.864 \mathrm{Mg} \mathrm{~m}^{-3} \\
& K \alpha_{1}, K \alpha_{2} \text { radiation, } \lambda=1.540629,1.544451 \AA \\
& T=300 \mathrm{~K} \\
& \text { white } \\
& \text { flat sheet, } 24 \times 24 \mathrm{~mm} \\
& \text { Specimen preparation: Prepared at } 393 \mathrm{~K} \text { and } \\
& \quad 101 \mathrm{kPa}
\end{aligned}
$$

Specimen mounting: standard holder
Data collection mode: reflection
Scan method: step
$2 \theta_{\text {min }}=4.908^{\circ}, 2 \theta_{\text {max }}=99.914^{\circ}, 2 \theta_{\text {step }}=0.020^{\circ}$

Profile function: CW Profile function number 4 with 27 terms Pseudovoigt profile coefficients as parameterized in Thompson et al. (1987). Asymmetry correction of Finger et al. (1994). Microstrain broadening by Stephens (1999). $\# 1(\mathrm{GU})=2.580 \# 2(\mathrm{GV})=0.000 \# 3(\mathrm{GW})=$ $1.999 \# 4(\mathrm{GP})=0.000 \# 5(\mathrm{LX})=4.774 \# 6($ ptec $)$ $=0.64 \# 7($ trns $)=4.34 \# 8($ shft $)=4.0539$ $\# 9(\mathrm{sfec})=0.00 \# 10(\mathrm{~S} / \mathrm{L})=0.0168 \# 11(\mathrm{H} / \mathrm{L})=$ $0.0200 \# 12(\mathrm{eta})=0.0000$ Peak tails are ignored where the intensity is below 0.0050 times the peak Aniso. broadening axis 0.00 .01 .0
98 parameters
29 restraints
2 constraints

Only H -atom displacement parameters refined Weighting scheme based on measured s.u.'s $(\Delta / \sigma)_{\max }=0.04$

Background function: GSAS Background function number 1 with 10 terms. Shifted Chebyshev function of 1st kind 1: 1400.27 2: -1034.48 3: 405.201 4: -101.434 5: 48.9076 6: -20.5280 7: -17.7840 8: 47.9002 9: -30.1492 10: 17.3246

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
C1	$0.6011(16)$	$0.4794(8)$	$0.6851(9)$	$0.0215(12)^{*}$
C2	$0.5815(15)$	$0.5669(11)$	$0.8023(8)$	$0.003(3)^{*}$
C3	$0.7804(11)$	$0.6586(7)$	$0.7744(6)$	$0.003(3)^{*}$
C4	$0.7535(15)$	$0.7282(10)$	$0.9061(7)$	$0.003(3)^{*}$
C5	$0.9060(17)$	$0.8477(14)$	$0.8955(7)$	$0.0215(12)^{*}$
C6	$0.7448(13)$	$0.8129(8)$	$0.6491(6)$	$0.0215(12)^{*}$
H7	0.59718	0.46465	0.90250	$0.003(4)^{*}$
H8	0.40047	0.66779	0.81496	$0.003(4)^{*}$
H9	0.80365	0.61352	0.99492	$0.003(4)^{*}$
H10	0.55837	0.80168	0.93544	$0.003(4)^{*}$
O11	$0.5025(16)$	$0.5759(9)$	$0.5848(8)$	$0.0215(12)^{*}$
O12	$0.6312(14)$	$0.3154(9)$	$0.7090(7)$	$0.0215(12)^{*}$
O13	$0.9018(14)$	$0.8943(10)$	$1.0079(7)$	$0.0215(12)^{*}$
O14	$1.0287(14)$	$0.9043(10)$	$0.7803(7)$	$0.0215(12)^{*}$
O15	$0.9008(15)$	$0.8051(10)$	$0.5379(7)$	$0.0215(12)^{*}$
O16	$0.5507(13)$	$0.9325(9)$	$0.6540(6)$	$0.0215(12)^{*}$
O17	$1.0087(13)$	$0.5402(9)$	$0.7419(7)$	$0.0215(12)^{*}$
H18	1.10980	0.60623	0.68105	$0.0279(16)^{*}$
Na19	$0.2588(11)$	$0.8708(7)$	$0.5423(6)$	$0.051(3)^{*}$
K20	$0.1831(8)$	$0.1991(5)$	$0.7186(3)$	$0.0406(16)^{*}$
H21	0.5	0.5	0.5	0.03^{*}
H22	1.0	1.0	1.0	0.03^{*}

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{C} 2$	$1.507(2)$	$\mathrm{O} 14-\mathrm{Na} 19^{\mathrm{ii}}$	$2.510(9)$
$\mathrm{C} 1-\mathrm{O} 11$	$1.260(4)$	$\mathrm{O} 14 — \mathrm{~K} 20^{\mathrm{iv}}$	$2.737(8)$
$\mathrm{C} 1-\mathrm{O} 12$	$1.268(4)$	$\mathrm{O} 15-\mathrm{C} 6$	$1.281(4)$
$\mathrm{C} 2-\mathrm{C} 1$	$1.507(2)$	$\mathrm{O} 15-\mathrm{Na} 19^{\mathrm{ii}}$	$2.388(9)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.540(2)$	$\mathrm{O} 15-\mathrm{Na} 19^{\mathrm{v}}$	$2.512(9)$
$\mathrm{C} 3-\mathrm{C} 2$	$1.540(2)$	$\mathrm{O} 15-\mathrm{K} 20^{\mathrm{i}}$	$2.777(8)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.541(2)$	$\mathrm{O} 16-\mathrm{C} 6$	$1.263(4)$
$\mathrm{C} 3-\mathrm{C} 6$	$1.5460(19)$	$\mathrm{O} 16-\mathrm{Na} 19$	$2.537(10)$
$\mathrm{C} 3-\mathrm{O} 17$	$1.427(4)$	$\mathrm{O} 16-\mathrm{Na} 19^{\mathrm{v}}$	$2.508(8)$
$\mathrm{C} 4-\mathrm{C} 3$	$1.541(2)$	$\mathrm{O} 16-\mathrm{K} 20^{\mathrm{vi}}$	$2.660(7)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.511(2)$	$\mathrm{O} 17-\mathrm{C} 3$	$1.427(4)$
$\mathrm{C} 5-\mathrm{C} 4$	$1.511(2)$	$\mathrm{O} 17-\mathrm{K} 20^{\mathrm{ii}}$	$2.717(8)$
$\mathrm{C} 5-\mathrm{O} 13$	$1.286(4)$	$\mathrm{Na} 19-\mathrm{O} 11$	$2.390(10)$
$\mathrm{C} 5-\mathrm{O} 14$	$1.282(4)$	$\mathrm{Na} 19-\mathrm{O} 12^{\mathrm{i}}$	$3.138(10)$

C6-C3	1.5460 (19)
C6-O15	1.281 (4)
C6-O16	1.263 (4)
O11-C1	1.260 (4)
O11-Na19	2.390 (10)
O11-K20 ${ }^{\text {i }}$	3.591 (9)
O12-C1	1.268 (4)
$\mathrm{O} 12-\mathrm{Na} 19{ }^{\text {i }}$	3.138 (10)
O12-K20	3.100 (8)
O12-K20 ${ }^{\text {ii }}$	3.159 (9)
O13-C5	1.286 (4)
O13-K20 ${ }^{\text {iii }}$	2.646 (8)
O14-C5	1.282 (4)
C2-C1-O11	115.5 (7)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 12$	119.5 (6)
$\mathrm{O} 11-\mathrm{C} 1-\mathrm{O} 12$	119.9 (5)
C1-C2-C3	111.3 (4)
C2-C3-C4	106.1 (4)
C2-C3-C6	109.6 (4)
C2-C3-O17	110.5 (4)
C4-C3-C6	109.8 (4)
C4-C3-O17	112.8 (4)
C6-C3-O17	108.0 (4)
C3-C4-C5	115.8 (5)
C4-C5-O13	116.5 (4)
C4-C5-O14	122.2 (6)
O13-C5-O14	121.2 (6)
C3-C6-O15	118.8 (4)
C3-C6-O16	118.9 (4)
O15-C6-O16	121.9 (5)
$\mathrm{C} 1-\mathrm{O} 11-\mathrm{Na} 19$	134.1 (7)
C1-O12-K20	115.3 (5)
$\mathrm{C} 1-\mathrm{O} 12-\mathrm{K} 20{ }^{\text {ii }}$	97.7 (5)
$\mathrm{K} 20-\mathrm{O} 12-\mathrm{K} 20^{\text {ii }}$	146.9 (3)
C5-O13-K20 ${ }^{\text {iii }}$	142.9 (5)
C5-O14-Na19 ${ }^{\text {ii }}$	151.2 (7)
C5-O14-K20 ${ }^{\text {iv }}$	125.9 (6)
$\mathrm{Na} 19{ }^{\text {iii }} \mathrm{O} 14-\mathrm{K} 20{ }^{\text {iv }}$	82.7 (2)
C6-O15-Na19 ${ }^{\text {ii }}$	115.3 (8)
C6-O15-Na19 ${ }^{\text {v }}$	89.5 (4)
C6-O15-K20 ${ }^{\text {i }}$	125.5 (7)
$\mathrm{Na} 19{ }^{\text {iii }}-\mathrm{O} 15-\mathrm{Na} 19{ }^{\text {v }}$	85.3 (3)
$\mathrm{Na19}{ }^{\text {iii }}$-O15-K20 ${ }^{\text {i }}$	117.4 (3)
$\mathrm{Na} 19 \mathrm{v}-\mathrm{O} 15-\mathrm{K} 20^{\text {i }}$	81.9 (3)
C6-O16-Na19	110.5 (7)
C6-O16-Na19 ${ }^{\text {v }}$	90.1 (4)
C6-O16-K20 ${ }^{\text {vi }}$	164.8 (7)

Na19-O14 ${ }^{\text {vii }}$	2.510 (9)
Na19-O15 ${ }^{\text {vii }}$	2.388 (9)
Na19-O15 ${ }^{\text {- }}$	2.512 (9)
Na19-O16	2.537 (10)
Na19-O16 ${ }^{\text {v }}$	2.508 (8)
$\mathrm{K} 20-\mathrm{O} 11^{\text {i }}$	3.591 (9)
$\mathrm{K} 20-\mathrm{O} 12^{\text {vii }}$	3.159 (9)
K20-O12	3.100 (8)
$\mathrm{K} 20-\mathrm{O} 13^{\text {iii }}$	2.646 (8)
K20-O14 ${ }^{\text {viii }}$	2.737 (8)
K20-O15 ${ }^{\text {i }}$	2.777 (8)
K20-O16 ${ }^{\text {ix }}$	2.660 (7)
K20-O17 ${ }^{\text {vii }}$	2.717 (8)
C3-O17-K20 ${ }^{\text {ii }}$	137.1 (5)
O11-Na19-O14 ${ }^{\text {vii }}$	101.9 (3)
O11-Na19-O15 vii	97.2 (3)
O11-Na19-O15	165.6 (4)
$\mathrm{O} 11-\mathrm{Na} 19-\mathrm{O} 16$	84.1 (3)
O11-Na19-O16 ${ }^{\text {V }}$	113.5 (4)
O14 ${ }^{\text {vii }}$ - $\mathrm{Na} 19-\mathrm{O} 15^{\text {vii }}$	78.7 (3)
O14 ${ }^{\text {vii - }} \mathrm{Na} 19-\mathrm{O} 15^{\text {v }}$	88.4 (3)
O14 ${ }^{\text {vii- }} \mathrm{Na} 19-\mathrm{O} 16$	77.0 (3)
O14 ${ }^{\text {vii - }} \mathrm{Na} 19-\mathrm{O} 16^{\text {v }}$	133.6 (3)
O15 ${ }^{\text {vii }-\mathrm{Na} 19-O 15}$	94.7 (3)
O15 vii- $\mathrm{Na} 19-\mathrm{O} 16$	155.4 (4)
O15 vii- $\mathrm{Na} 19-\mathrm{O} 16^{\text {v }}$	123.0 (4)
O15 - $\mathrm{Na} 19-\mathrm{O} 16$	88.5 (3)
$\mathrm{O} 15^{v}-\mathrm{Na} 19-\mathrm{O} 16^{\text {v }}$	52.60 (18)
O16-Na19-O16 ${ }^{\text {V }}$	77.9 (3)
$\mathrm{O} 12{ }^{\text {vii }}-\mathrm{K} 20-\mathrm{O} 12$	146.9 (3)
O12 ${ }^{\text {vii }}$-K20-O13 ${ }^{\text {iii }}$	91.1 (2)
O12 ${ }^{\text {vii }}$-K20-O14 ${ }^{\text {viii }}$	71.8 (2)
$\mathrm{O} 12{ }^{\text {vii }}$-K20-O15	68.5 (2)
	135.5 (3)
	71.9 (2)
$\mathrm{O} 12-\mathrm{K} 20-\mathrm{O} 13{ }^{\text {iii }}$	94.6 (2)
O12-K20-O14 ${ }^{\text {viii }}$	140.9 (3)
O12-K20-O15 ${ }^{\text {i }}$	115.0 (3)
$\mathrm{O} 12-\mathrm{K} 20-\mathrm{O} 16^{\text {ix }}$	75.2 (2)
O12-K20-O17 vii	75.6 (2)
O13 ${ }^{\text {iii }}$-K20-O14 ${ }^{\text {viii }}$	73.0 (2)
O13 ${ }^{\text {iii--K20- }}$ - $15^{\text {i }}$	149.4 (2)
O13 ${ }^{\text {iii }}$-K20-O16 ${ }^{\text {ix }}$	100.9 (3)
O13 ${ }^{\text {iii }}$-K20-O17 ${ }^{\text {vii }}$	89.3 (2)
O14 ${ }^{\text {viii }}$-K20-O15 ${ }^{\text {i }}$	78.9 (2)
O14 ${ }^{\text {viii }}$-K20-O16 ${ }^{\text {ix }}$	71.2 (3)
O14 ${ }^{\text {viii }}$-K20-O17 ${ }^{\text {vii }}$	139.0 (3)

supporting information

$\mathrm{Na} 19-\mathrm{O} 16-\mathrm{Na} 19^{\mathrm{v}}$	$102.2(3)$	$\mathrm{O} 15^{\mathrm{i}}-\mathrm{K} 20-\mathrm{O} 16^{\text {ix }}$	$80.8(2)$
$\mathrm{Na} 19-\mathrm{O} 16-\mathrm{K} 20^{\text {vi }}$	$83.8(3)$	$\mathrm{O} 15^{\mathrm{i}}-\mathrm{K} 20-\mathrm{O} 17^{\text {vii }}$	$104.6(3)$
$\mathrm{Na} 19-\mathrm{O} 16-\mathrm{K} 20^{\text {vi }}$	$92.0(3)$	$\mathrm{O} 16^{\mathrm{ix}}-\mathrm{K} 20-\mathrm{O} 17^{\text {vii }}$	$149.7(3)$
$\mathrm{C} 3-\mathrm{O} 17-\mathrm{H} 18$	$108.0(4)$		

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x+1, y, z$; (iii) $-x+1,-y+1,-z+2$; (iv) $x+1, y+1, z$; (v) $-x+1,-y+2,-z+1$; (vi) $x, y+1, z$; (vii) $x-1, y, z$; (viii) $x-1, y-1, z$; (ix) $x, y-1, z$.
(ramm093_DFT)

Crystal data

$\mathrm{NaKHC}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$

$$
M_{r}=252.1 \underline{7}
$$

$$
\begin{aligned}
& c=10.1419 \AA \\
& \alpha=74.8964^{\circ} \\
& \beta=76.0187^{\circ} \\
& \gamma=71.4496^{\circ} \\
& V=451.27 \AA^{3} \\
& Z=2
\end{aligned}
$$

Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=5.9993 \AA$
$b=8.2277 \AA$
Data collection
Density functional calculation
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\mathrm{eq}}$
C1	0.58473	0.47461	0.69008	0.02150^{*}
C2	0.58840	0.56265	0.80315	0.00260^{*}
C3	0.77491	0.66691	0.77024	0.00260^{*}
C4	0.74288	0.74284	0.89935	0.00260^{*}
C5	0.90458	0.85546	0.89044	0.02150^{*}
C6	0.74020	0.81902	0.64154	0.02150^{*}
H7	0.62719	0.46044	0.89439	0.00340^{*}
H8	0.41202	0.65122	0.82730	0.00340^{*}
H9	0.77282	0.63557	0.98912	0.00340^{*}
H10	0.55890	0.82308	0.92211	0.00340^{*}
O11	0.49077	0.58291	0.58433	0.02150^{*}
O12	0.65591	0.31455	0.69939	0.02150^{*}
O13	0.88392	0.90257	1.00623	0.02150^{*}
O14	1.04072	0.89738	0.78176	0.02150^{*}
O15	0.90892	0.81600	0.53821	0.02150^{*}
O16	0.54704	0.93850	0.64884	0.02150^{*}
O17	1.00409	0.54419	0.74830	0.02150^{*}
H18	1.10980	0.60623	0.68105	0.02790^{*}
Na19	0.26024	0.87640	0.55043	0.05110^{*}
K20	0.17511	0.20585	0.71480	0.04060^{*}
H21	0.50000	0.50000	0.50000	0.03000^{*}
H22	1.00000	1.00000	1.00000	0.03000^{*}

Bond lengths (A)

$\mathrm{C} 1-\mathrm{C} 2$	1.515	$\mathrm{C} 4-\mathrm{H} 10$	1.095
$\mathrm{C} 1-\mathrm{O} 11$	1.318	$\mathrm{C} 5-\mathrm{O} 13$	1.297

$\mathrm{C} 1-\mathrm{O} 12$	1.234	$\mathrm{C} 5-\mathrm{O} 14$	1.244
$\mathrm{C} 2-\mathrm{C} 3$	1.543	$\mathrm{C} 6-\mathrm{O} 15$	1.268
$\mathrm{C} 2-\mathrm{H} 7$	1.092	$\mathrm{C} 6-\mathrm{O} 16$	1.259
$\mathrm{C} 2-\mathrm{H} 8$	1.090	$\mathrm{O} 11-\mathrm{H} 21$	1.207
$\mathrm{C} 3-\mathrm{C} 4$	1.540	$\mathrm{O} 13-\mathrm{H} 22$	1.200
$\mathrm{C} 3-\mathrm{C} 6$	1.558	$\mathrm{O} 17-\mathrm{H} 18$	0.971
$\mathrm{C} 3-\mathrm{O} 17$	1.430	$\mathrm{H} 21-\mathrm{O} 11^{\mathrm{i}}$	1.207
$\mathrm{C} 4-\mathrm{C} 5$	1.515	$\mathrm{H} 22-\mathrm{O} 13^{\mathrm{ii}}$	1.200
$\mathrm{C} 4-\mathrm{H} 9$	1.095		

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x+2,-y+2,-z+2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 13 — \mathrm{H} 22 \cdots \mathrm{O} 13$	1.200	1.200	2.400	180.0
O11—H21 \cdots O11	1.207	1.207	2.414	180.0
O17—H18 \cdots O15	0.971	2.179	2.676	110.3
O17—H18 $\cdots \mathrm{O} 11$	0.971	2.227	3.060	143.1

