

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 2 November 2015
Accepted 3 December 2015

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; malonate; cobalt; coordination polymer

CCDC reference: 1440440
Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of poly[diaqua(μ-2-carboxy-acetato- $\left.\kappa^{3} O, O^{\prime}: O^{\prime \prime}\right)(2$-carboxyacetato- $\kappa O)$ di- μ -chlorido-dicobalt(II)]

Yasmina Bouaoud, ${ }^{\text {a }}$ Zouaoui Setifi, ${ }^{\text {a,b} *}$ Andrii Buvailo, ${ }^{\mathrm{c}, \mathrm{d} *}$ Vadim A. Potaskalov, ${ }^{\mathrm{e}}$ Hocine Merazig ${ }^{\mathrm{a}}$ and Georges Dénés ${ }^{\mathrm{f}}$

${ }^{\text {a }}$ Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Constantine 1, Constantine 25000, Algeria, ${ }^{\text {b }}$ Laboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, ${ }^{\text {c }}$ National Taras Shevchenko University of Kyiv, Department of Chemistry, Volodymyrska str. 64, 01601 Kiev, Ukraine, ${ }^{\text {d SciMax LLC, } 2 \text { Marshala Yakubovskogo str. 03191, Kyiv, Ukraine, }}$ ${ }^{\mathbf{e}}$ Department of General and Inorganic Chemistry, National Technical University of Ukraine, 'Kyiv Polytechnic Institute', 37 Prospect Peremogy, 03056 Kiev, Ukraine, and 'Laboratory of Solid State Chemistry and Mössbauer Spectroscopy, Laboratories for Inorganic Materials, Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, H3G1M8, Canada. *Correspondence e-mail: setifi_zouaoui@yahoo.fr, futureintentions@gmail.com

The asymmetric unit of the title polymer, $\left[\mathrm{Co}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}_{4}\right)_{2} \mathrm{Cl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, comprises one $\mathrm{Co}^{\mathrm{II}}$ atom, one water molecule, one singly deprotonated malonic acid molecule (HMal^{-}; systematic name 2-carboxyacetate) and one Cl^{-}anion. The $\mathrm{Co}^{\mathrm{II}}$ atom is octahedrally coordinated by the O atom of a water molecule, by one terminally bound carboxylate O atom of an HMal^{-}anion and by two O atoms of a chelating HMal^{-}anion, as well as by two Cl^{-}anions. The Cl^{-}anions bridge two $\mathrm{Co}^{\mathrm{II}}$ atoms, forming a centrosymmetric $\mathrm{Co}_{2} \mathrm{Cl}_{2}$ core. Each malonate ligand is involved in the formation of six-membered chelate rings involving one $\mathrm{Co}^{\mathrm{II}}$ atom of the dinuclear unit and at the same time is coordinating to another $\mathrm{Co}^{\mathrm{II}}$ atom of a neighbouring dinuclear unit in a bridging mode. The combination of chelating and bridging coordination modes leads to the formation of a twodimensional coordination polymer extending parallel to (001). Within a layer, $\mathrm{O}-\mathrm{H}_{\text {water }} \cdots \mathrm{Cl}$ and $\mathrm{O}-\mathrm{H}_{\text {water }} \cdots \mathrm{O}$ hydrogen bonds are present. Adjacent layers are linked through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bonds involving the carboxylic acid OH and carbonyl groups.

1. Chemical context

Complexes with paramagnetic metal ions and extended structures are interesting due to their potential applications in molecular magnetism (Moroz et al., 2012; Pavlishchuk et al., 2010, 2011; Yuste et al., 2009). Malonic acid exhibits both chelating and bridging modes of coordination and is an efficient ligand for achieving two- or three-dimensional polymeric structures (Delgado et al., 2004). In the present communication we report on the structure of a two-dimensional coordination polymer, $\left[\mathrm{Co}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}_{4}\right) \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$, containing both chelating and bridging functions of singly deprotonated malonic acid ligands.

2. Structural commentary

The structure of the title compound is characterized by the presence of a two-dimensional coordination polymer extending parallel to (001). The monomeric fragment can be described as being composed of a centrosymmetric binuclear $\mathrm{Co}_{2} \mathrm{Cl}_{4}$ motif with the $\mathrm{Co}^{\mathrm{II}}$ atoms having an overall distorted octahedral environment. The two octahedra are fused
together via two bridging Cl atoms with $\mathrm{Co}-\mathrm{Cl}$ bond lengths of 2.4312 (12) and 2.4657 (16) \AA.

In the octahedron, the Cl^{-}atoms occupy equatorial positions, the other two equatorial positions being defined by the carboxylate O atom of a bridging hydrogenmalonate anion $\left(\mathrm{HMal}^{-}\right)$and one O atom of a chelating HMal^{-}anion, while

Figure 1
A fragment of the title coordination polymer, showing the atom labelling. All H atoms, except those of hydroxy groups, have been omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level. The intralayer $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds are shown as dashed lines. [Symmetry codes: (a) $\frac{1}{2}+x, \frac{3}{2}-y, 1-z ;$ (b) $1-x, 1-y, 1-z$; (c) $\frac{3}{2}-x$, $-\frac{1}{2}+y, z$; (d) $\frac{3}{2}-x, \frac{1}{2}+y, z$.]

Table 1
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 1 O 2 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	1.94	$2.689(4)$	136
$\mathrm{O}^{\mathrm{ii}}-\mathrm{H} 2 O 2 \cdots \mathrm{Cl}^{\mathrm{ii}}$	0.92	2.32	$3.135(3)$	147
$\mathrm{O}_{4}-\mathrm{H} 1 O 4 \cdots$ O $^{\mathrm{iii}}$	0.97	1.67	$2.629(4)$	169

Symmetry codes: (i) $\quad-x+\frac{3}{2}, y-\frac{1}{2}, z ; \quad$ (ii) $\quad x-\frac{1}{2},-y+\frac{1}{2},-z+1$;
$-x+1, y-\frac{1}{2},-z+\frac{3}{2}$.
one water O atom and the other O atom of the chelating HMal^{-}anion are in axial positions (Fig. 1). The corresponding $\mathrm{Co}-\mathrm{O}_{\text {malonate }}$ bond lengths range from 2.051 (3) to 2.165 (3) A which is similar to other structures containing this ligand in chelating and bridging modes (Delgado et al., 2004). The $\mathrm{Co}-\mathrm{O}_{\text {water }}$ bond has a length of 2.046 (3) \AA. The $\mathrm{C}-\mathrm{O}$ bond lengths in the carboxylic group differ significantly [1.225 (2) and 1.306 (4) \AA] while those in the carboxylate group [1.258 (4) and 1.267 (4) \AA] are more or less the same, which is typical for this functional group (Wörl et al., 2005a,b).

3. Supramolecular features

The distribution of the dinuclear units within a coordination layer follows a chess-like pattern whereby each dinuclear coordination node is interconnected with each other through four bridging HMal^{-}ligands (Fig. 2). The binuclear coordination nodes are additionally connected via intralayer O $\mathrm{H}_{\text {water }} \cdots \mathrm{Cl}$ and $\mathrm{O}-\mathrm{H}_{\text {water }} \cdots \mathrm{O}$ hydrogen bonds (Table 1 and Fig. 3). Adjacent layers are linked along [001] via interlayer $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bonds involving two HMal^{-}ligands (Table 1 and Fig. 3).

Figure 2
A view of the polymeric coordination layer in the crystal of the title compound, extending parallel to (001).

Table 2
Experimental details.

Crystal data	
Chemical formula	$\left[\mathrm{Co}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}_{4}\right)_{2} \mathrm{Cl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{\text {r }}$	430.90
Crystal system, space group	Orthorhombic, Pbca
Temperature (K)	296
$a, b, c(\AA)$	7.568 (5), 8.879 (5), 19.168 (5)
$V\left(\AA^{3}\right)$	1288.0 (12)
Z	4
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	3.04
Crystal size (mm)	$0.20 \times 0.14 \times 0.07$
Data collection	
Diffractometer	Nonius KappaCCD
Absorption correction	Multi-scan (SADABS; Bruker, 2004)
$T_{\text {min }}, T_{\text {max }}$	0.632, 0.820
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	6888, 1875, 1400
$R_{\text {int }}$	0.055
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.704
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.046, 0.116, 1.05
No. of reflections	1875
No. of parameters	91
H -atom treatment	H -atom parameters constrained
$\Delta \rho_{\max }, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	1.05, -1.00

Computer programs: COLLECT (Nonius, 2000), DENZO/SCALEPACK (Otwinowski \& Minor, 1997), SHELXS97 and SHELXL97 (Sheldrick, 2008) and DIAMOND (Brandenburg, 2010).

4. Database survey

A search of the Cambridge Structural Database (Groom \& Allen, 2014) revealed a number of coordination polymeric structures containing cobalt(II) malonate moieties in different coordination modes. While the most typical coordination mode of malonate ligands in polymeric structures appears to be a μ_{3}-bridging mode of the fully deprotonated acid involving all four oxygen atoms (usually two of them forming a chelating ring with one $\mathrm{Co}^{\mathrm{II}}$ atom) (Delgado et al., 2004; Xue et al., 2003; Lightfoot \& Snedden, 1999; Walter-Levy et al., 1973; Zheng \& Xie, 2004; Montney et al., 2008; Fu et al., 2006; Djeghri et al., 2006), there are also cases of less-common coordination modes in polymeric structures such as a μ_{2}-bridging mode of the fully deprotonated ligand connecting two metal atoms (Gil de Muro et al., 1999; Pérez-Yáñez et al., 2009; Jin \& Chen, 2007). Much less common in coordination polymers is a monodeprotonated state of malonic acid (Adarsh et al., 2010), while there are also few examples of non-polymeric coordination compounds (Walter-Levy et al., 1973; Clarkson et al., 2001; Wang et al., 2005).

5. Synthesis and crystallization

The title compound was synthesized by heating together $0.104 \mathrm{~g}(1 \mathrm{mmol})$ malonic acid dissolved in 15 ml of propanol and $0.238 \mathrm{~g}(1 \mathrm{mmol})$ of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ dissolved in 5 ml of water. Violet crystals suitable for X-ray analysis were isolated

Figure 3
A view along [010] of the crystal packing of the title compound showing the inter- and intralayer hydrogen-bonding system (dashed lines).
after two weeks by slow evaporation of the solvent from the resulting mixture. Crystals were washed with small amounts of propanol and dried in air yielding $0.071 \mathrm{~g}(36 \%)$ of the title compound.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms bound to O atoms were located from a difference-Fourier map and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. All C-bound H atoms were positioned geometrically and were also constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.97 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Acknowledgements

The authors acknowledge the Algerian MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique), the DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) and URCHEMS for financial support.

References

Adarsh, N. N., Sahoo, P. \& Dastidar, P. (2010). Cryst. Growth Des. 10, 4976-4986.
Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Clarkson, A. J., Blackman, A. G. \& Clark, C. R. (2001). J. Chem. Soc. Dalton Trans. pp. 758-765.
Delgado, F. S., Hernandez-Molina, M., Sanchiz, J., Ruiz-Perez, C., Rodriguez-Martin, Y., Lopez, T., Lloret, F. \& Julve, M. (2004). CrystEngComm, 6, 106-111.

Djeghri, A., Balegroune, F., Guehria Laidoudi, A. \& Toupet, L. (2006). Acta Cryst. C62, m126-m128.

Fu, X.-C., Nie, L., Zhang, Q., Li, M.-T. \& Wang, X.-Y. (2006). Chin. J. Struct. Chem. (Jiegou Ниaxue), 25, 1449-1452.
Gil de Muro, I., Insausti, M., Lezama, L., Pizarro, J. L., Arriortua, M. I. \& Rojo, T. (1999). Eur. J. Inorg. Chem. pp. 935-943.

Groom, C. R. \& Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662671.

Jin, S.-W. \& Chen, W.-Z. (2007). Polyhedron, 26, 3074-3084.
Lightfoot, P. \& Snedden, A. (1999). J. Chem. Soc. Dalton Trans. pp. 3549-3551.
Montney, M. R., Supkowski, R. M. \& LaDuca, R. L. (2008). Polyhedron, 27, 2997-3003.
Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. \& Fritsky, I. O. (2012). Inorg. Chem. 51, 7445-7447.
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.

Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. \& Hunter, A. D. (2011). Eur. J. Inorg. Chem. pp. 4826-4836.
Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. \& Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851-4858.
Pérez-Yáñez, S., Castillo, O., Cepeda, J., García-Terán, J. P., Luque, A. \& Román, P. (2009). Eur. J. Inorg. Chem. pp. 3889-3899.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Walter-Levy, L., Perrotey, J. \& Visser, J. W. (1973). C. R. Acad. Sci. Ser. C, 277, 1351-1354.
Wang, Z.-L., Wei, L.-H. \& Niu, J.-Y. (2005). Acta Cryst. E61, m1907m1908.
Wörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. \& Krämer, R. (2005b). Eur. J. Inorg. Chem. pp. 759-765.
Wörl, S., Pritzkow, H., Fritsky, I. O. \& Krämer, R. (2005a). Dalton Trans. pp. 27-29.
Xue, Y.-H., Lin, D.-D. \& Xu, D.-J. (2003). Acta Cryst. E59, m750m752.
Yuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. \& Julve, M. (2009). Polyhedron, 28, 1287-1294.
Zheng, Y.-Q. \& Xie, H.-Z. (2004). J. Coord. Chem. 57, 1537-

supporting information

Acta Cryst. (2016). E72, 21-24 [doi:10.1107/S2056989015023269]

Crystal structure of poly[diaqua(μ-2-carboxyacetato- $\left.\kappa^{3} O, O^{\prime}: O^{\prime \prime}\right)(2$-carboxy-acetato- κ O)di- μ-chlorido-dicobalt(II)]

Yasmina Bouaoud, Zouaoui Setifi, Andrii Buvailo, Vadim A. Potaskalov, Hocine Merazig and Georges Dénés

Computing details

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO/SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski \& Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Poly[diaqua(μ-2-carboxyacetato- $\left.\kappa^{3} O, O^{\prime}: O^{\prime \prime}\right)(2$-carboxyacetato- $\kappa O)$ di- μ-chlorido-cobalt(II)]

Crystal data

$\left[\mathrm{Co}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}_{4}\right)_{2} \mathrm{Cl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=430.90$
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
$a=7.568$ (5) \AA
$b=8.879$ (5) \AA
$c=19.168$ (5) \AA
$V=1288.0(12) \AA^{3}$
$Z=4$

Data collection

Nonius KappaCCD diffractometer
Radiation source: fine-focus sealed tube
Horizontally mounted graphite crystal monochromator
Detector resolution: 9 pixels mm^{-1} φ scans and ω scans with κ offset
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
$F(000)=856$
$D_{\mathrm{x}}=2.222 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1003 reflections
$\theta=3.4-27.6^{\circ}$
$\mu=3.04 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, violet
$0.20 \times 0.14 \times 0.07 \mathrm{~mm}$
$T_{\text {min }}=0.632, T_{\text {max }}=0.820$
6888 measured reflections
1875 independent reflections
1400 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.055$
$\theta_{\text {max }}=30.0^{\circ}, \theta_{\text {min }}=3.4^{\circ}$
$h=-10 \rightarrow 10$
$k=-12 \rightarrow 12$
$l=-24 \rightarrow 26$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.116$
$S=1.05$
1875 reflections
91 parameters
0 restraints

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0552 P)^{2}+0.9469 P\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \rho_{\max }=1.05 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.00 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Experimental. The O-H hydrogens were located from the difference Fourier map but constrained to ride it's parent atom, with $\mathrm{U}_{\text {iso }}=1.5 \mathrm{U}_{\mathrm{eq}}$ (parent atom). Other hydrogens were positioned geometrically and were also constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.97 \AA$, and $\mathrm{U}_{\text {iso }}=1.2 \mathrm{U}_{\text {eq }}$ (parent atom).
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\mathrm{eq}}$
Co1	$0.57087(6)$	$0.47694(6)$	$0.58530(2)$	$0.01449(15)$
C11	$0.71412(10)$	$0.46924(11)$	$0.47183(5)$	$0.0223(2)$
C1	$0.4104(4)$	$0.6347(4)$	$0.70892(19)$	$0.0177(7)$
C2	$0.4303(4)$	$0.7853(4)$	$0.6731(2)$	$0.0176(7)$
H2A	0.3323	0.7991	0.6411	0.021^{*}
H2B	0.4237	0.8644	0.7079	0.021^{*}
C3	$0.6012(4)$	$0.8016(4)$	$0.63323(18)$	$0.0133(7)$
O1	$0.6877(3)$	$0.9227(3)$	$0.64044(14)$	$0.0179(5)$
O2	$0.5004(3)$	$0.2544(3)$	$0.58516(16)$	$0.0276(6)$
H1O2	0.5966	0.1929	0.5746	0.041^{*}
H2O2	0.3970	0.2004	0.5857	0.041^{*}
O3	$0.4575(3)$	$0.5133(3)$	$0.68488(14)$	$0.0202(6)$
O4	$0.3363(4)$	$0.6465(3)$	$0.77023(15)$	$0.0321(7)$
H1O4	0.3361	0.5574	0.7994	0.048^{*}
O5	$0.6515(3)$	$0.6967(3)$	$0.59383(13)$	$0.0175(5)$

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	$0.0156(2)$	$0.0112(2)$	$0.0167(3)$	$-0.00042(16)$	$-0.00079(17)$	$-0.00210(19)$
C11	$0.0181(4)$	$0.0284(5)$	$0.0204(4)$	$0.0089(3)$	$0.0002(3)$	$-0.0038(4)$
C1	$0.0123(13)$	$0.0175(19)$	$0.0233(19)$	$-0.0019(12)$	$0.0039(13)$	$0.0013(15)$
C2	$0.0146(13)$	$0.0125(17)$	$0.0257(19)$	$0.0004(12)$	$0.0054(13)$	$0.0009(15)$
C3	$0.0148(13)$	$0.0099(16)$	$0.0152(17)$	$0.0007(11)$	$0.0005(11)$	$0.0014(13)$
O1	$0.0206(11)$	$0.0110(12)$	$0.0220(13)$	$-0.0028(9)$	$0.0063(10)$	$-0.0034(11)$
O2	$0.0171(11)$	$0.0177(15)$	$0.0481(19)$	$-0.0021(10)$	$-0.0059(12)$	$-0.0016(13)$
O3	$0.0274(13)$	$0.0133(13)$	$0.0198(14)$	$-0.0018(10)$	$0.0038(10)$	$-0.0005(11)$
O4	$0.0514(17)$	$0.0192(15)$	$0.0257(15)$	$0.0046(13)$	$0.0211(14)$	$0.0029(12)$
O5	$0.0213(11)$	$0.0116(12)$	$0.0196(13)$	$-0.0021(9)$	$0.0052(10)$	$-0.0047(10)$

Geometric parameters ($\AA,{ }^{\circ}$)

Col-O2	2.046 (3)	C2-C3	1.509 (4)
Co1-O5	2.051 (3)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700
Co1-O3	2.118 (3)	C2-H2B	0.9700
Col-O1 ${ }^{\text {i }}$	2.165 (3)	C3-O5	1.258 (4)
Col-Cl1	2.4312 (12)	C3-O1	1.267 (4)
$\mathrm{Co} 1-\mathrm{Cl1}^{\text {ii }}$	2.4657 (16)	$\mathrm{O} 1-\mathrm{Col}^{\text {iii }}$	2.165 (3)
$\mathrm{Cl} 1-\mathrm{Co1}{ }^{\text {ii }}$	2.4657 (16)	$\mathrm{O} 2-\mathrm{H1O} 2$	0.9325
$\mathrm{C} 1-\mathrm{O} 3$	1.225 (5)	$\mathrm{O} 2-\mathrm{H} 2 \mathrm{O} 2$	0.9180
C1-O4	1.306 (4)	O4- H 1 O 4	0.9698
$\mathrm{C} 1-\mathrm{C} 2$	1.511 (5)		
O2-Co1-O5	174.98 (11)	$\mathrm{O} 4-\mathrm{C} 1-\mathrm{C} 2$	112.4 (3)
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{O} 3$	92.46 (11)	C3-C2-C1	113.6 (3)
O5-Co1-O3	84.46 (10)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.8
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{Ol}^{\text {i }}$	90.35 (10)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.8
$\mathrm{O} 5-\mathrm{Col-O1}{ }^{\text {i }}$	85.50 (10)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.8
$\mathrm{O} 3-\mathrm{Col}-\mathrm{Ol}^{\text {i }}$	86.33 (10)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.8
$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{Cl} 1$	95.04 (9)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.7
$\mathrm{O} 5-\mathrm{Col}-\mathrm{Cl} 1$	88.02 (7)	$\mathrm{O} 5-\mathrm{C} 3-\mathrm{O} 1$	122.5 (3)
$\mathrm{O} 3-\mathrm{Col}-\mathrm{Cl} 1$	172.49 (8)	O5-C3-C2	119.5 (3)
$\mathrm{O} 1-\mathrm{Col-Cl1}$	93.10 (8)	O1-C3-C2	118.0 (3)
$\mathrm{O} 2-\mathrm{Col}-\mathrm{Cl1}^{\text {ii }}$	87.62 (8)	$\mathrm{C} 3-\mathrm{O} 1-\mathrm{Col}^{\text {iii }}$	124.9 (2)
O5-Col- $\mathrm{Cl1}^{\text {ii }}$	96.38 (8)	$\mathrm{Col-O2-H1O2}$	111.3
$\mathrm{O} 3-\mathrm{Col}-\mathrm{Cl1}^{\text {ii }}$	90.93 (8)	$\mathrm{Co1-O} 2-\mathrm{H} 2 \mathrm{O} 2$	136.6
$\mathrm{O} 1-\mathrm{Col}-\mathrm{Cl1}^{\text {ii }}$	176.52 (8)	$\mathrm{H} 1 \mathrm{O} 2-\mathrm{O} 2-\mathrm{H} 2 \mathrm{O} 2$	111.2
$\mathrm{Cl1}-\mathrm{Col}-\mathrm{Cl1}^{\text {ii }}$	89.89 (4)	$\mathrm{C} 1-\mathrm{O} 3-\mathrm{Co} 1$	126.2 (3)
$\mathrm{Co} 1-\mathrm{Cl1}-\mathrm{Col}^{\text {ii }}$	90.11 (4)	$\mathrm{C} 1-\mathrm{O} 4-\mathrm{H} 1 \mathrm{O} 4$	117.0
O3-C1-O4	122.3 (4)	C3-O5-Col	131.5 (2)
$\mathrm{O} 3-\mathrm{C} 1-\mathrm{C} 2$	125.3 (3)		
$\mathrm{O} 2-\mathrm{Co1-Cl1-Col}^{1 i}$ ii	87.60 (8)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 3-\mathrm{Co} 1$	-2.5 (5)
$\mathrm{O} 5-\mathrm{Co} 1-\mathrm{Cl} 1-\mathrm{Col}^{1 i}$	-96.39 (8)	$\mathrm{O} 2-\mathrm{Co} 1-\mathrm{O} 3-\mathrm{C} 1$	-158.3 (3)
$\mathrm{O} 1-\mathrm{Col}-\mathrm{Cl1}-\mathrm{Col}^{\text {ii }}$	178.22 (8)	$\mathrm{O} 5-\mathrm{Co} 1-\mathrm{O} 3-\mathrm{C} 1$	25.7 (3)
C11- $\mathrm{Col}-\mathrm{Cl1}-\mathrm{Col}^{\text {ii }}$	0.0	$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 3-\mathrm{C} 1$	111.5 (3)
$\mathrm{O} 3-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-38.3 (5)	$\mathrm{Cl1} 1{ }^{\text {ii- }} \mathrm{Co} 1-\mathrm{O} 3-\mathrm{C} 1$	-70.6 (3)
O4-C1-C2-C3	141.5 (3)	$\mathrm{O} 1-\mathrm{C} 3-\mathrm{O} 5-\mathrm{Co} 1$	166.5 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 5$	46.5 (5)	C2-C3-O5-Co1	-14.4 (5)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 1$	-134.3 (4)	$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{O} 5-\mathrm{C} 3$	-17.1 (3)
$\mathrm{O} 5-\mathrm{C} 3-\mathrm{O} 1-\mathrm{Co}^{1 i \mathrm{ii}}$	2.2 (5)	O 1 - $\mathrm{Co} 1-\mathrm{O} 5-\mathrm{C} 3$	-103.9 (3)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 1-\mathrm{Col}^{1 i \mathrm{ii}}$	-176.9 (2)	$\mathrm{Cl1}-\mathrm{Co} 1-\mathrm{O} 5-\mathrm{C} 3$	162.9 (3)
$\mathrm{O} 4-\mathrm{C} 1-\mathrm{O} 3-\mathrm{Co} 1$	177.8 (2)	C11i- $\mathrm{Co} 1-\mathrm{O} 5-\mathrm{C} 3$	73.2 (3)

[^0]
supporting information

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 1 O 2 \cdots 5^{\mathrm{i}}$	0.93	1.94	$2.689(4)$	136
$\mathrm{O}^{\mathrm{i}} \mathrm{H} 2 O 2 \cdots \mathrm{Cl1} 1^{\mathrm{iv}}$	0.92	2.32	$3.135(3)$	147
$\mathrm{O}^{\mathrm{H}} \mathrm{H} 1 O 4 \cdots \mathrm{O}^{\mathrm{v}}$	0.97	1.67	$2.629(4)$	169

Symmetry codes: (i) $-x+3 / 2, y-1 / 2, z$; (iv) $x-1 / 2,-y+1 / 2,-z+1$; (v) $-x+1, y-1 / 2,-z+3 / 2$.

[^0]: Symmetry codes: (i) $-x+3 / 2, y-1 / 2, z$; (ii) $-x+1,-y+1,-z+1$; (iii) $-x+3 / 2, y+1 / 2, z$.

