

Received 6 November 2015 Accepted 27 November 2015

Edited by T. J. Prior, University of Hull, England

Keywords: crystal structure; copper(II) complex; heptafluorobutanoic acid; o-phenanthroline; hydrogen bonding

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of aquabis(heptafluorobutanoato- κO)(1,10'-phenanthroline- $\kappa^2 N$,N')copper(II)

Ibrahim Kani

Anadolu University, Faculty of Sciences, Department of Chemistry, 26470 Eskişehir, Turkey. *Correspondence e-mail: ibrahimkani@anadolu.edu.tr

The title compound, $[Cu(C_4F_7O_2)_2(C_{12}H_8N_2)(H_2O)]$, is mononuclear and contains a pentacoordinated Cu^{II} ion. The geometry of Cu^{II} ion can be described as distorted square-pyramidal with two O atoms of two butanoate anions and two N atoms of the *o*-phenanthroline ligand occupying the basal plane, and a water O atom located at the axial position. In the crystal, $C-H\cdots(O,F)$ and $O-H\cdots(O,F)$ hydrogen bonds and $\pi-\pi$ interactions [centroid-to-centroid distance 3.533 (2) Å] link the molecules into a three-dimensional supramolecular structure.

1. Chemical context

Over the past decades, vast efforts have been dedicated to the rational design and synthesis of metal-carboxylate coordination polymers due to their potential applications in medicine, electronics, magnetism, catalysis, gas storage, *etc* (Ahmad *et al.*, 2014; Patel *et al.*, 2013). In addition, metal–*o*-phenanthroline complexes and their derivatives have attracted much attention because of their unusual features (Ma *et al.*, 2004; Bi *et al.*, 2004; Wall *et al.*, 1999; Naing *et al.*, 1995). This work reports a new copper coordination complex, $[Cu(C_4F_7O_2)_2(C_{12}H_8N_2)(H_2O)]$, resulting from the reaction of heptafluorobutanoic acid and Cu^{II} ions in the presence of *o*-phenanthroline.

2. Structural commentary

The neutral complex $[Cu(C_4F_7O_2)_2(C_{12}H_8N_2)(H_2O)]$ is composed of a central $Cu^{\rm II}$ ion, coordinated by two oxygen atoms (O1 and O3) of two butanoate anions, an oxygen atom

OPEN access

Table 1			
Selected geome	tric parameters (Å,	°).	
Cu1-O1	1.942 (3)	Cu1-N1	2.019 (3)
Cu1-O3	1.980(3)	Cu1-O5	2.173 (3)
Cu1-N2	2.007 (3)		
O1-Cu1-O3	96.11 (11)	N2-Cu1-N1	81.75 (12)
O1-Cu1-N2	169.16 (12)	O1-Cu1-O5	97.20 (12)
O3-Cu1-N2	90.37 (12)	O3-Cu1-O5	96.84 (12)
O1-Cu1-N1	88.94 (11)	N2-Cu1-O5	90.61 (12)
O3-Cu1-N1	156.71 (11)	N1-Cu1-O5	105.09 (12)

Table 2 Hydrogen-bond geometry (Å, °).

ilydrogen bond geo	fijalogen bond geometry (ri,).						
$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$			
$\begin{array}{c} \hline C3-H3\cdots O4^{i} \\ C6-H6\cdots F4^{i} \\ O5-H5B\cdots F10^{ii} \\ O5-H5B\cdots O3^{ii} \\ O5-H5A\cdots O2^{ii} \\ \hline \end{array}$	0.95 0.95 0.84 (2) 0.84 (2) 0.84 (2)	2.33 2.54 2.45 (6) 2.31 (5) 1.87 (2)	3.196 (5) 3.217 (5) 2.931 (6) 2.881 (4) 2.707 (5)	151 128 117 (5) 125 (4) 175 (6)			
CI-HI···OI	0.95	2.49	2.974 (5)	111			

Symmetry codes: (i) -x, -y, -z; (ii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z$.

(O5) of the water molecule, and two nitrogen atoms (N1 and N2) of the *N*,*N'*-chelating *o*-phenanthroline ligand (Fig. 1). Selected geometric parameters are presented in Table 1. The coordination about the Cu^{II} ion is better described as a square-pyramid. The geometry parameter τ , which is defined as $\tau = (\beta - \alpha)/60$, is applicable to five-coordinate structures within the structural continuum between trigonal-bipyramidal and tetragonal or rectangular pyramidal. For perfect tetragonal symmetry, τ is zero, and for perfect trigonal-bipyramidal geometry, τ becomes 1.0 (Addison *et al.*, 1984). In the title compound, the largest angles within the four atoms N1, N2, O2, O3 are $\beta = 169.16 (12)^{\circ}$ for O1–Cu1–N2, and $\alpha = 156.71 (11)^{\circ}$ for N1–Cu1–O3. Thus, τ is 0.21, indicating a 79% rectangular pyramidal geometry.

The Cu–O bonds [1.942 (3) and 1.980 (3) Å] in the quadrilateral plane are shorter than the apical position [2.173 (3) Å]. The mean Cu–N(phen) distance of 2.043 Å and the bite angle N1–Cu1–N2 of 81.75 (12)° are close to the corresponding values observed in related copper– *o*-phenanthroline compounds (Beghidja *et al.*, 2014; Awaleh *et al.*, 2005). The cisoid bond angles are in the range 81.75 (12)– 96.11 (11)°, and transoid ones are 156.71 (11)°, and 169.16 (12)° exhibiting substantial deviations from 90 and 180° for a square. These are consistent with literature values (Jing *et al.*, 2011). An intramolecular C1–H1···O1 hydrogen bond occurs.

Figure 1

The molecular structure of title compound, with displacement ellipsoids shown at the 30% probability level.

A partial view of the packing of the title complex, showing the formation of a hydrogen-bond pattern as well as edge-fused $R_4^4(16)$ rings. [Symmetry code: $-x + \frac{1}{2}, -y + \frac{1}{2}, -z$.]

research communications

Representative O-H···O, C-H···O and C-H···F and π - π stacking interactions viewed along the *c* axis are drawn as dotted lines.

3. Supramolecular features

In the crystal, intermolecular $O-H\cdots O$, $C-H\cdots O$ and $C-H\cdots F$ hydrogen bonds (Table 2) link the molecules into a three-dimensional network (Fig. 2). The oxygen atom (O5) of the water molecule acts as a hydrogen-bond donor, *via* atoms H5A and H5B, to oxygen atom O3 of one coordinating carboxylate group $(-x + \frac{1}{2}, -y + \frac{1}{2}, -z)$ and to the dangling oxygen atom O2 of the other coordinating carboxylate group $(-x + \frac{1}{2}, -y + \frac{1}{2}, -z)$ and to the dangling oxygen atom O2 of the other coordinating carboxylate group $(-x + \frac{1}{2}, -y + \frac{1}{2}, -z)$, thus enclosing centrosymmetric $R_4^4(16)$ ring motifs (Bernstein *et al.*, 1995) running parallel to the *b*-axis direction (Fig. 3). In addition, $C-H\cdots F$ and $O-H\cdots F$ hydrogen bonds are formed, $(C6-H6\cdots F4 \text{ and } O5-H5B\cdots F10;$ Table 2; Fig. 3); the $H\cdots F$ distances are comparable with those reported for $C-H\cdots F$ interactions (2.44–2.90 Å; Dunitz & Taylor *et al.*, 1997, Bianchi *et al.*, 2003; Lee *et al.*, 2000).

In the crystal, the packing appears to be influenced by $\pi - \pi$ stacking interactions between *o*-phenanthroline ring systems of neighboring molecules, with the distance between the centroids of the N1/C1–C4/C12 and C4–C7/C11/C12 rings being 3.533 (2) Å. (Fig. 4). The shortest Cu···Cu distance in the supramolecular structure is 7.845 Å.

4. Database survey

For heptafluorobutanoic acid, see: Sokolov *et al.* (2011); Awaleh *et al.* (2005); King *et al.* (2009). For related structures

Figure 4 $\pi - \pi$ interactions in the title compound.

and *o*-phenanthroline, see: Beghidja *et al.* (2014); Awaleh *et al.* (2005); Huang *et al.* (2010); Liu *et al.* (2010); Jing *et al.* (2011); Ma *et al.* (2004); Ni *et al.* (2011); Meundaeng *et al.* (2013); Sokolov *et al.* (2011); Yin *et al.* (2011).

5. Synthesis and crystallization

Cu(ClO4)· $6H_2O$ in methanol (0.076 mmol, 0.19 g) was added to a solution of *o*-phenanthroline (0.076 mmol, 0.14 g) and heptafluorobutanoic acid (0.0160 mmol, 0.1ml) in methanol (7 ml). Afterwards the obtained transparent blue solution was left to evaporate slowly in the air at ambient temperature and after two weeks, X-ray quality crystals appeared as blue plates. They were filtered off, washed with diethyl ether and dried in the air. Yield: 46 mg, 86%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. C-bound H atoms were placed in calculated positions and refined as riding with C-H = 0.95 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The coordinates of the water H atoms were refined, and $U_{iso}(H)$ was set to be $2U_{eq}(O)$. One of the heptafluorobutanoate groups is disordered over two sets of sites in a 0.705 (9):0.955 (9) ratio. Atoms associated with the disorder were refined with isotropic displacement parameters.

Acknowledgements

The author is grateful to Anadolu University and the Medicinal Plants and Medicine research Centre of Anadolu University, Eskisehir, Turkey, for the use of X-ray diffractometer.

References

- Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.
- Ahmad, N., Chughtai, A. H., Younus, H. A. & Verpoort, F. (2014). Coord. Chem. Rev. 280, 1–27.
- Awaleh, M. O., Badia, A. & Brisse, F. (2005). Cryst. Growth Des. 5, 1897-1906.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bi, W., Cao, R., Sun, D., Yuan, D., Li, X., Wang, Y., Li, X. & Hong, M. (2004). Chem. Commun. pp. 2104-2105.
- Bianchi, R., Forni, A. & Pilati, T. (2003). Chem. Eur. J. 9, 1631-1638.
- Boutebdja, M., Lehleh, A., Beghidja, A., Setifi, Z. & Merazig, H. (2014). Acta Cryst. E70, m185-m186.
- Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dunitz, D. & Taylor, R. (1997). Chem. Eur. J. 3, 89-98.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Huang, W.-X., Liu, B.-B. & Lin, J.-L. (2010). Acta Cryst. E66, m488m489.
- Jing, B., Li, L., Dong, J. & Xu, T. (2011). Acta Cryst. E67, m464.
- King, W. A., Yap, G. P. A., Incarvito, C. D., Rheingold, A. L. & Theopold, K. H. (2009). Inorg. Chim. Acta, 362, 4493-4499.
- Lee, H., Knobler, C. B. & Hawthorne, M. F. (2000). Chem. Commun. pp. 2485-2486.
- Liu, Y., Sun, J. & Niu, X. (2010). Acta Cryst. E66, m34.
- Ma, C., Wang, W., Zhang, X., Chen, C., Liu, Q., Zhu, H., Liao, D. & Li, L. (2004). Eur. J. Inorg. Chem. 2004, 3522–3532.

Table 3
Experimental details.

Crystal data	
Chemical formula	$[Cu(C_4F_7O_2)_2(C_{12}H_8N_2)(H_2O)]$
Mr	687.84
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	110
<i>a</i> , <i>b</i> , <i>c</i> (Å)	18.0213 (5), 19.4619 (6), 13.8664 (4)
β (°)	102.205 (1)
$V(Å^3)$	4753.4 (2)
Ζ	8
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	1.07
Crystal size (mm)	$0.35 \times 0.26 \times 0.20$
Data collection	
Diffractometer	Bruker APEXII CCD area- detector
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2004)
T_{\min}, T_{\max}	0.707, 0.815
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	22348, 5892, 4467
R _{int}	0.030
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.668
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.056, 0.156, 0.95
No. of reflections	5892
No. of parameters	450
No. of restraints	21
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	1.59, -1.08

Computer programs: APEX2 and SAINT (Bruker, 2007), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008) and WinGX (Farrugia, 2012).

- Meundaeng, N., Prior, T. J. & Rujiwatra, A. (2013). Acta Cryst. E69, m568-m569.
- Naing, K., Takahashi, M., Taniguchi, M. & Yamagishi, A. (1995). Inorg. Chem. 34, 350-356.
- Ni, S.-L., Zhou, F. & Qi, J.-L. (2011). Acta Cryst. E67, m779.
- Patel, R. N., Patel, D. K., Shukla, K. K. & Singh, Y. (2013). J. Coord. Chem. 66, 4131-4143.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sokolov, M. N., Mihailov, M. A., Peresypkina, E. V., Brylev, K. A., Kitamura, N. & Fedin, V. P. (2011). Dalton Trans. 40, 6375-6377.
- Wall, M., Linkletter, B., Williams, D., Hynes, R. C. & Chin, J. (1999). J. Am. Chem. Soc. 121, 4710-4711.
- Yin, X. (2011). Acta Cryst. E67, m564-m565.

supporting information

Acta Cryst. (2016). E72, 4-7 [doi:10.1107/S2056989015022720]

Crystal structure of aquabis(heptafluorobutanoato- κO)(1,10'-phenanthroline- $\kappa^2 N, N'$)copper(II)

Ibrahim Kani

Computing details

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

Aquabis(heptafluorobutanoato- κO)(1,10'-phenanthroline- $\kappa^2 N, N'$)copper(II)

Crystal data

$[Cu(C_4F_7O_2)_2(C_{12}H_8N_2)(H_2O)]$
$M_r = 687.84$
Monoclinic, $C2/c$
a = 18.0213 (5) Å
<i>b</i> = 19.4619 (6) Å
c = 13.8664 (4) Å
$\beta = 102.205 \ (1)^{\circ}$
V = 4753.4 (2) Å ³
Z = 8

Data collection

Bruker APEXII CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
$T_{\min} = 0.707, T_{\max} = 0.815$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.156$ S = 0.955892 reflections 450 parameters 21 restraints F(000) = 2712 $D_x = 1.922 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6696 reflections $\theta = 2.3-27.3^{\circ}$ $\mu = 1.07 \text{ mm}^{-1}$ T = 110 KPlate, green $0.35 \times 0.26 \times 0.20 \text{ mm}$

22348 measured reflections 5892 independent reflections 4467 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 28.3^\circ, \theta_{min} = 2.1^\circ$ $h = -22 \rightarrow 24$ $k = -25 \rightarrow 25$ $l = -18 \rightarrow 18$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0714P)^{2} + 30.9575P] \qquad \Delta \rho_{max} = 0$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{min} = 0$ $(\Delta / \sigma)_{max} < 0.001$

 $\Delta \rho_{\rm max} = 1.59 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -1.08 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates a	nd isotropic or	^r equivalent isotro	pic displacemer	<i>it parameters</i>	$(Å^2)$
	1	1	1 1	1	\ /

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.1436 (2)	-0.00631 (18)	-0.0275 (3)	0.0331 (8)	
H1	0.1945	-0.0102	0.0084	0.040*	
C2	0.1051 (3)	-0.06556 (19)	-0.0674 (3)	0.0384 (9)	
H2	0.1301	-0.1088	-0.0597	0.046*	
C3	0.0312 (2)	-0.06099 (19)	-0.1176 (3)	0.0363 (8)	
H3	0.0045	-0.1012	-0.1439	0.044*	
C4	-0.0050(2)	0.00320 (18)	-0.1299 (3)	0.0314 (7)	
C5	-0.0812 (2)	0.0146 (2)	-0.1834 (3)	0.0350 (8)	
Н5	-0.1121	-0.0237	-0.2083	0.042*	
C6	-0.1098 (2)	0.0786 (2)	-0.1991 (3)	0.0358 (8)	
H6	-0.1600	0.0846	-0.2364	0.043*	
C7	-0.0660(2)	0.13790 (19)	-0.1606 (3)	0.0310 (7)	
C8	-0.0907 (2)	0.2063 (2)	-0.1761 (3)	0.0377 (8)	
H8	-0.1395	0.2161	-0.2153	0.045*	
C9	-0.0445 (2)	0.2586 (2)	-0.1347 (3)	0.0417 (9)	
H9	-0.0604	0.3049	-0.1460	0.050*	
C10	0.0269 (2)	0.24334 (19)	-0.0752 (3)	0.0378 (8)	
H10	0.0581	0.2800	-0.0450	0.045*	
C11	0.00687 (19)	0.12756 (17)	-0.1035 (2)	0.0265 (7)	
C12	0.03820 (19)	0.06005 (17)	-0.0895 (2)	0.0261 (7)	
C13	0.3038 (2)	0.1216 (2)	0.1361 (3)	0.0446 (10)	
C14	0.3553 (3)	0.0667 (2)	0.1973 (3)	0.0497 (11)	
C15	0.3264 (3)	0.0430 (3)	0.2862 (3)	0.0532 (12)	
C16	0.3843 (4)	0.0061 (3)	0.3681 (4)	0.0755 (18)	
C17	0.1326 (2)	0.21520 (19)	0.1794 (3)	0.0378 (8)	
Cu1	0.15206 (2)	0.14635 (2)	0.01889 (3)	0.02752 (13)	
F1	0.42548 (17)	0.0915 (2)	0.2295 (3)	0.0965 (13)	
F2	0.3629 (3)	0.0143 (2)	0.1396 (3)	0.122 (2)	
F3	0.3026 (2)	0.0984 (2)	0.3269 (2)	0.1035 (16)	
F4	0.2709 (2)	-0.0012 (3)	0.2555 (4)	0.146 (3)	
F5	0.4354 (2)	0.04972 (17)	0.4146 (2)	0.0900 (13)	
F6	0.3516 (3)	-0.0217 (4)	0.4308 (4)	0.187 (3)	

F7	0.4236 (3)	-0.03979 (16)	0.3298 (3)	0.1140 (18)	
N1	0.11117 (17)	0.05511 (14)	-0.0382 (2)	0.0272 (6)	
N2	0.05191 (16)	0.17936 (15)	-0.0599 (2)	0.0296 (6)	
O1	0.23861 (16)	0.09849 (14)	0.09756 (19)	0.0376 (6)	
O2	0.33070 (19)	0.1784 (2)	0.1330 (4)	0.0850 (15)	
O3	0.15945 (15)	0.22857 (13)	0.1045 (2)	0.0358 (6)	
O4	0.1086 (2)	0.16038 (16)	0.2021 (3)	0.0548 (9)	
O5	0.21033 (16)	0.18964 (17)	-0.0891 (2)	0.0435 (7)	
C19A	0.1413 (3)	0.2694 (3)	0.3503 (4)	0.0340 (14)	0.705 (9)
C18A	0.1341 (3)	0.2831 (3)	0.2401 (4)	0.0308 (14)	0.705 (9)
F10	0.1905 (3)	0.3264 (2)	0.2301 (4)	0.0468 (12)	0.705 (9)
F10A	0.0794 (3)	0.2369 (3)	0.3662 (4)	0.0391 (11)	0.705 (9)
F11A	0.2022 (3)	0.2288 (2)	0.3824 (4)	0.0542 (13)	0.705 (9)
F13A	0.1512 (3)	0.3159 (3)	0.5086 (4)	0.0653 (15)	0.705 (9)
F14A	0.2185 (6)	0.3659 (6)	0.4174 (5)	0.067 (2)	0.705 (9)
C18B	0.1086 (7)	0.2638 (6)	0.2581 (8)	0.031 (3)	0.295 (9)
C19B	0.1812 (6)	0.2937 (6)	0.3221 (8)	0.033 (3)	0.295 (9)
F9B	0.0682 (7)	0.2367 (6)	0.3213 (9)	0.034 (2)	0.295 (9)
F10B	0.2100 (7)	0.3414 (6)	0.2688 (9)	0.040 (2)	0.295 (9)
F11B	0.2321 (6)	0.2427 (5)	0.3454 (9)	0.046 (3)	0.295 (9)
F13B	0.1619 (7)	0.2812 (7)	0.4850 (8)	0.055 (3)	0.295 (9)
F14B	0.2290 (11)	0.3614 (15)	0.4558 (11)	0.063 (5)	0.295 (9)
F8	0.06788 (13)	0.31602 (11)	0.20682 (16)	0.0373 (5)	
F12	0.10008 (19)	0.37634 (14)	0.3905 (2)	0.0641 (8)	
C20	0.1565 (3)	0.3330 (2)	0.4172 (3)	0.0571 (13)	
H5A	0.200 (3)	0.2313 (13)	-0.100 (5)	0.086*	
H5B	0.2577 (13)	0.185 (3)	-0.081 (5)	0.086*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.043 (2)	0.0282 (17)	0.0332 (18)	0.0037 (15)	0.0187 (16)	0.0015 (14)
C2	0.060 (3)	0.0249 (17)	0.0364 (19)	0.0036 (16)	0.0247 (18)	-0.0016 (14)
C3	0.054 (2)	0.0292 (17)	0.0328 (18)	-0.0083 (16)	0.0249 (17)	-0.0060 (14)
C4	0.0391 (19)	0.0321 (17)	0.0289 (16)	-0.0094 (15)	0.0207 (15)	-0.0066 (14)
C5	0.039 (2)	0.042 (2)	0.0291 (17)	-0.0145 (16)	0.0179 (15)	-0.0131 (15)
C6	0.0314 (19)	0.049 (2)	0.0299 (17)	-0.0093 (16)	0.0124 (15)	-0.0076 (16)
C7	0.0293 (17)	0.0372 (19)	0.0297 (16)	-0.0024 (14)	0.0130 (14)	-0.0025 (14)
C8	0.0292 (18)	0.044 (2)	0.040 (2)	0.0023 (16)	0.0086 (15)	0.0013 (17)
C9	0.033 (2)	0.0312 (19)	0.059 (3)	0.0060 (15)	0.0050 (18)	0.0054 (18)
C10	0.0318 (19)	0.0266 (17)	0.054 (2)	-0.0013 (14)	0.0066 (17)	0.0010 (16)
C11	0.0274 (16)	0.0270 (15)	0.0287 (16)	-0.0049 (13)	0.0144 (13)	-0.0016 (13)
C12	0.0294 (17)	0.0266 (15)	0.0269 (15)	-0.0031 (13)	0.0165 (13)	-0.0029 (12)
C13	0.033 (2)	0.056 (3)	0.045 (2)	0.0097 (19)	0.0077 (17)	0.0139 (19)
C14	0.053 (3)	0.047 (2)	0.044 (2)	0.015 (2)	-0.0026 (19)	-0.0041 (19)
C15	0.049 (3)	0.052 (3)	0.049 (2)	-0.009(2)	-0.012 (2)	0.015 (2)
C16	0.100 (5)	0.056 (3)	0.053 (3)	0.005 (3)	-0.025 (3)	0.008 (3)
C17	0.037 (2)	0.0278 (18)	0.048 (2)	-0.0001 (15)	0.0085 (17)	-0.0129 (16)

supporting information

Cu1 F1	0.0256 (2) 0.0325 (15)	0.0237 (2) 0.120 (3)	0.0338 (2) 0.128 (3)	-0.00175 (16) 0.0171 (17)	0.00763 (16) -0.0034 (17)	0.00126 (16) 0.051 (3)
F2	0.175 (4)	0.108 (3)	0.061 (2)	0.099 (3)	-0.027 (2)	-0.033 (2)
F3	0.115 (3)	0.151 (4)	0.0462 (17)	0.081 (3)	0.0195 (18)	0.009 (2)
F4	0.094 (3)	0.141 (4)	0.162 (4)	-0.081 (3)	-0.066(3)	0.109 (3)
F5	0.110 (3)	0.065 (2)	0.0649 (19)	0.0228 (19)	-0.0494 (19)	-0.0231 (16)
F6	0.147 (5)	0.268 (8)	0.127 (4)	-0.009 (5)	-0.010 (4)	0.148 (5)
F7	0.171 (4)	0.0399 (17)	0.090 (3)	0.039 (2)	-0.064 (3)	-0.0144 (17)
N1	0.0322 (15)	0.0250 (13)	0.0279 (13)	-0.0003 (11)	0.0146 (12)	-0.0006 (11)
N2	0.0248 (14)	0.0259 (14)	0.0395 (16)	-0.0015 (11)	0.0097 (12)	0.0022 (12)
01	0.0396 (15)	0.0344 (14)	0.0362 (13)	0.0061 (11)	0.0022 (11)	-0.0013 (11)
O2	0.0348 (18)	0.077 (3)	0.131 (4)	-0.0168 (17)	-0.010 (2)	0.060 (3)
03	0.0354 (14)	0.0245 (12)	0.0457 (15)	-0.0064 (10)	0.0045 (12)	-0.0028 (11)
04	0.064 (2)	0.0404 (16)	0.071 (2)	-0.0094 (15)	0.0411 (18)	-0.0060 (15)
05	0.0326 (14)	0.0626 (19)	0.0336 (14)	-0.0162 (13)	0.0033 (12)	0.0108 (13)
C19A	0.036 (3)	0.022 (2)	0.043 (3)	-0.003 (2)	0.009 (2)	0.001 (2)
C18A	0.034 (3)	0.017 (2)	0.046 (3)	-0.007 (2)	0.017 (2)	-0.006 (2)
F10	0.060 (3)	0.031 (2)	0.060 (3)	-0.0265 (18)	0.036 (3)	-0.019 (2)
F10A	0.049 (3)	0.0278 (17)	0.046 (3)	-0.0078 (16)	0.022 (2)	0.004 (2)
F11A	0.046 (3)	0.044 (2)	0.068 (3)	0.0102 (19)	0.001 (2)	0.006 (2)
F13A	0.099 (4)	0.059 (3)	0.035 (2)	-0.008 (3)	0.007 (2)	-0.003 (2)
F14A	0.080 (4)	0.063 (4)	0.062 (5)	-0.034 (3)	0.020 (4)	-0.017 (5)
C18B	0.030 (7)	0.025 (7)	0.038 (7)	-0.002 (5)	0.007 (6)	0.005 (5)
C19B	0.039 (7)	0.032 (6)	0.027 (6)	-0.004 (5)	0.006 (5)	0.002 (5)
F9B	0.034 (5)	0.031 (4)	0.040 (6)	-0.006 (3)	0.015 (5)	0.002 (5)
F10B	0.052 (6)	0.031 (5)	0.045 (6)	-0.017 (4)	0.024 (5)	-0.007 (4)
F11B	0.032 (5)	0.045 (5)	0.055 (6)	0.006 (4)	-0.004 (4)	-0.006 (4)
F13B	0.065 (7)	0.072 (8)	0.028 (5)	-0.028 (6)	0.007 (4)	0.003 (5)
F14B	0.087 (12)	0.063 (8)	0.054 (10)	-0.021 (8)	0.046 (9)	-0.013 (10)
F8	0.0431 (13)	0.0271 (10)	0.0419 (12)	0.0077 (9)	0.0096 (10)	0.0026 (9)
F12	0.092 (2)	0.0404 (14)	0.0661 (18)	-0.0051 (15)	0.0298 (17)	-0.0202 (13)
C20	0.091 (4)	0.046 (2)	0.033 (2)	-0.024 (3)	0.010 (2)	-0.0066 (18)

Geometric parameters (Å, °)

C1—N1	1.325 (4)	C15—C16	1.546 (7)
C1—C2	1.398 (5)	C16—F6	1.271 (8)
C1—H1	0.9500	C16—F5	1.316 (7)
C2—C3	1.369 (6)	C16—F7	1.319 (8)
С2—Н2	0.9500	C17—O4	1.218 (5)
C3—C4	1.403 (5)	C17—O3	1.261 (5)
С3—Н3	0.9500	C17—C18A	1.564 (6)
C4—C12	1.400 (5)	C17—C18B	1.572 (11)
C4—C5	1.433 (6)	Cu1—O1	1.942 (3)
C5—C6	1.348 (6)	Cu1—O3	1.980 (3)
С5—Н5	0.9500	Cu1—N2	2.007 (3)
C6—C7	1.437 (5)	Cu1—N1	2.019 (3)
С6—Н6	0.9500	Cu1—O5	2.173 (3)

C7—C11	1.397 (5)	O5—H5A	0.840 (19)
С7—С8	1.406 (5)	O5—H5B	0.843 (19)
C8—C9	1.362 (6)	C19A—F10A	1.341 (7)
С8—Н8	0.9500	C19A—F11A	1.349 (6)
C9—C10	1.405 (5)	C19A—C18A	1.530(7)
C9—H9	0.9500	C19A - C20	1 536 (7)
C10 N2	1 326 (5)	C18A - F8	1.348(6)
C_{10} H_{10}	0.0500	C18A = F10	1.340(0)
C_{10} C_{11} N_{2}	0.9500	$E_{10}A = F_{10}$	1.349(6) 1.322(6)
CII—N2	1.554 (4)	F13A—C20	1.332 (0)
	1.427 (5)	F14A-C20	1.288 (9)
C12—NI	1.360 (4)	C18B—F9B	1.359 (15)
C13—O2	1.211 (6)	C18B—F8	1.363 (11)
C13—O1	1.265 (5)	C18B—C19B	1.532 (12)
C13—C14	1.546 (6)	C19B—F11B	1.344 (12)
C14—F2	1.321 (5)	C19B—F10B	1.357 (13)
C14—F1	1.339 (6)	C19B—C20	1.665 (13)
C14—C15	1.508 (7)	F13B-C20	1.366 (11)
C15—F4	1.321 (6)	F14B—C20	1.417 (16)
C15—F3	1.329 (6)	F12—C20	1.313 (6)
	(0)		11010 (0)
N1-C1-C2	122 0 (4)	03—Cu1—N2	90.37(12)
N1 C1 H1	110.0	O1 Cu1 N1	90.97 (12) 88 94 (11)
11 - 1 - 11	119.0	$O_1 = Cu_1 = N_1$ $O_2 = Cu_1 = N_1$	156.71(11)
	119.0	N2 C 1 N1	130.71(11)
	119.7 (4)	N2—Cul—NI	81.75 (12)
C3—C2—H2	120.1	Ol—Cul—O5	97.20 (12)
C1—C2—H2	120.1	O3—Cu1—O5	96.84 (12)
C2—C3—C4	119.8 (3)	N2—Cu1—O5	90.61 (12)
С2—С3—Н3	120.1	N1—Cu1—O5	105.09 (12)
С4—С3—Н3	120.1	C1—N1—C12	118.5 (3)
C12—C4—C3	116.7 (3)	C1—N1—Cu1	129.3 (3)
C12—C4—C5	118.4 (3)	C12—N1—Cu1	112.0 (2)
C3—C4—C5	124.8 (3)	C10—N2—C11	118.4 (3)
C6—C5—C4	121.2 (3)	C10—N2—Cu1	128.6 (3)
С6—С5—Н5	119.4	C11—N2—Cu1	113.0(2)
C4—C5—H5	119.4	$C_{13} = 0_{1} = C_{11}$	1291(3)
C_{5} C_{6} C_{7}	121 4 (4)	$C_{17} = 03 = C_{11}$	129.1(3) 109.7(2)
$C_{5} = C_{6} = C_{7}$	110.3	$C_{11} = 05 - C_{01}$	109.7(2)
$C_{2} = C_{0} = H_{0}$	119.5	$C_{\rm H}$ O_5 H_5 D_5	112(4)
C/-CO-HO	119.5		120(4)
C11 - C7 - C8	116.9 (3)	H5A—O5—H5B	108 (3)
C11C/C6	118.2 (3)	F10A—C19A—F11A	108.4 (5)
C8—C7—C6	124.9 (4)	F10A—C19A—C18A	110.4 (5)
C9—C8—C7	119.8 (4)	F11A—C19A—C18A	108.8 (5)
С9—С8—Н8	120.1	F10A—C19A—C20	109.2 (5)
С7—С8—Н8	120.1	F11A-C19A-C20	104.1 (4)
C8—C9—C10	119.5 (4)	C18A—C19A—C20	115.5 (4)
С8—С9—Н9	120.2	F8—C18A—F10	107.4 (5)
С10—С9—Н9	120.2	F8-C18A-C19A	107.8 (4)
N2—C10—C9	122.0 (4)	F10-C18A-C19A	107.7 (5)

N2-C10-H10	119.0	F8—C18A—C17	107.7 (4)
С9—С10—Н10	119.0	F10-C18A-C17	113.6 (4)
N2—C11—C7	123.3 (3)	C19A—C18A—C17	112.3 (4)
N2—C11—C12	116.2 (3)	F9B—C18B—F8	108.9 (9)
C7—C11—C12	120.5 (3)	F9B—C18B—C19B	106.3 (10)
N1—C12—C4	123.3 (3)	F8—C18B—C19B	108.5 (9)
N1-C12-C11	116.6 (3)	F9B—C18B—C17	118.6 (9)
C4—C12—C11	120.1 (3)	F8—C18B—C17	106.5 (7)
O2—C13—O1	130.7 (4)	C19B—C18B—C17	107.7 (9)
O2—C13—C14	116.8 (4)	F11B-C19B-F10B	108.4 (11)
O1—C13—C14	112.5 (4)	F11B-C19B-C18B	108.3 (9)
F2	105.6 (5)	F10B-C19B-C18B	108.8 (11)
F2—C14—C15	110.9 (5)	F11B-C19B-C20	115.6 (9)
F1—C14—C15	107.6 (4)	F10B—C19B—C20	108.4 (9)
F2-C14-C13	109.1 (4)	C18B—C19B—C20	107.2 (8)
F1—C14—C13	110.4 (4)	C18A—F8—C18B	29.1 (5)
C15—C14—C13	112.9 (4)	F14A—C20—F12	107.5 (7)
F4—C15—F3	112.0 (5)	F14A—C20—F13A	111.0 (5)
F4—C15—C14	107.7 (4)	F12-C20-F13A	102.8 (5)
F3—C15—C14	107.3 (4)	F14A—C20—F13B	115.4 (8)
F4—C15—C16	106.4 (4)	F12—C20—F13B	127.3 (7)
F3—C15—C16	107.1 (4)	F13A—C20—F13B	34.1 (5)
C14—C15—C16	116.5 (5)	F14A—C20—F14B	22.1 (8)
F6—C16—F5	108.4 (6)	F12-C20-F14B	116.9 (13)
F6—C16—F7	110.6 (6)	F13A—C20—F14B	89.1 (8)
F5—C16—F7	104.8 (6)	F13B-C20-F14B	95.9 (11)
F6—C16—C15	111.3 (6)	F14A-C20-C19A	116.4 (6)
F5—C16—C15	110.7 (4)	F12-C20-C19A	108.6 (4)
F7—C16—C15	110.8 (5)	F13A-C20-C19A	109.6 (4)
O4—C17—O3	127.8 (3)	F13B-C20-C19A	78.5 (7)
O4—C17—C18A	124.6 (4)	F14B-C20-C19A	125.1 (12)
O3—C17—C18A	107.6 (4)	F14A—C20—C19B	81.5 (6)
O4—C17—C18B	100.5 (5)	F12-C20-C19B	113.1 (5)
O3—C17—C18B	131.1 (5)	F13A—C20—C19B	136.4 (6)
C18A—C17—C18B	25.1 (4)	F13B-C20-C19B	102.4 (8)
O1—Cu1—O3	96.11 (11)	F14B-C20-C19B	95.6 (10)
O1—Cu1—N2	169.16 (12)	C19A—C20—C19B	36.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H…A
C3—H3…O4 ⁱ	0.95	2.33	3.196 (5)	151
C6—H6…F4 ⁱ	0.95	2.54	3.217 (5)	128
O5—H5 <i>B</i> ···F10 ⁱⁱ	0.84 (2)	2.45 (6)	2.931 (6)	117 (5)
O5—H5 <i>B</i> ···O3 ⁱⁱ	0.84 (2)	2.31 (5)	2.881 (4)	125 (4)

			supportin	supporting information		
O5—H5 <i>A</i> ···O2 ⁱⁱ	0.84 (2)	1.87 (2)	2.707 (5)	175 (6)		
C1—H1…O1	0.95	2.49	2.974 (5)	111		

Symmetry codes: (i) -*x*, -*y*, -*z*; (ii) -*x*+1/2, -*y*+1/2, -*z*.