

Received 23 October 2015 Accepted 7 December 2015

Edited by M. Gdaniec, Adam Mickiewicz University, Poland

**Keywords**: Fused rings; conformation; intramolecular O—H···O hydrogen bonds; weak interactions; crystal structure

CCDC references: 1440873; 1440872; 1440871 Supporting information: this article has

supporting information at journals.iucr.org/e



**CrossMark** 

### Alan M. Jones,<sup>a,b</sup>\* John M. D. Storey<sup>a</sup> and William T A Harrison<sup>a</sup>\*

<sup>a</sup>Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, and <sup>b</sup>Division of Chemistry and Environmental Science, School of Science and the Environment, Faculty of Science and Engineering, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, England. \*Correspondence e-mail: a.m.jones@mmu.ac.uk, w.harrison@abdn.ac.uk

The crystal structures of three cyclopenta[c]furans with various substituents at the 4-, 5- and 6-positions of the ring system are reported, namely,  $(\pm)$ -(3aR,4S,5S,6aS)-4-methyl-5-phenylhexahydro-1*H*-cyclopenta[c]furan-4,5diol, C<sub>14</sub>H<sub>18</sub>O<sub>3</sub>, (I),  $(\pm)$ -(3aR,4S,5S,6aS)-4-benzyloxy-4-methyl-5-phenylhexahydro-1*H*-cyclopenta[c]furan-5-ol, C<sub>21</sub>H<sub>24</sub>O<sub>3</sub>, (II), and  $(\pm)$ -(1aR,1bS,4aR,-5S,5aR)-5-benzyloxy-5-methyl-5a-phenylhexahydro-2*H*-oxireno[2',3':3,4]cyclopenta[1,2-c]furan, C<sub>21</sub>H<sub>22</sub>O<sub>3</sub>, (III). The dominant interaction in (I) and (II) is an  $O-H \cdots O$  hydrogen bond across the bicyclic 5,5-ring system between the nonfunctionalized hydroxy group and the tetrahydrofuran O atom, which appears to influence the envelope conformations of the fused five-membered rings, whereas in (III), the rings have different conformations. A weak intramolecular  $C-H \cdots O$  interaction appears to influence the degree of tilt of the phenyl ring attached to the 5-position and is different in (I) compared to (II) and (III).

#### 1. Chemical context

Neosurugatoxin,  $C_{30}H_{34}BrN_5O_{15}$ , is the causative agent behind the toxicity of the Japanese ivory shell, *Babylonia Japonica*, a shellfish widely consumed in Japan. Neosurugatoxin, shown in Scheme 1 below, was first isolated and the structure delineated using X-ray crystallographic studies by Kosuge and co-workers (Kosuge *et al.*, 1981, 1982).



Biological studies with Neosurugatoxin have shown it to have a wide range of actions on the central nervous system including: potent nicotinic acetylcholine receptor antagonist (Yamada *et al.*, 1988; Bai & Sattelle, 1993; Tornøe *et al.*, 1995); inhibition of acetylcholine release and blockage of muscle and neuronal nicotinic receptors (Hong *et al.*, 1992); and a central



action upon nicotinic cholinoreceptors (Bisset *et al.*, 1992). Alternative total syntheses of Neosurugatoxin have previously been reported by the Inoue and Okada groups (Inoue *et al.*, 1986, 1994; Okada *et al.*, 1989). Intrigued by the dense functionality and complexity of ring C in Neosurugatoxin (see Scheme 1), we investigated a synthetic route to novel simplified cyclopentanes with diversity vectors to install the required functionality at a later stage.



As part of these studies, we now report the crystal structures of three of these compounds, namely  $(\pm)$ -(3aR,4S,5S,6aS)-4-methyl-5-phenylhexahydro-1*H*-cyclopenta[*c*]furan-4,5-diol, C<sub>14</sub>H<sub>18</sub>O<sub>3</sub>, (I),  $(\pm)$ -(3aR,4S,5S,6aS)-4-benzyloxy-4-methyl-5-phenylhexahydro-1*H*-cyclopenta[*c*]furan-5-ol, C<sub>21</sub>H<sub>24</sub>O<sub>3</sub>, (II), and  $(\pm)$ -(1aR,1bS,4aR,5S,5aR)-5-benzyloxy-5-methyl-5a-phenylhexahydro-2*H*-oxireno[2',3':3,4]cyclopenta[1,2-*c*]furan, C<sub>21</sub>H<sub>22</sub>O<sub>3</sub>, (III), see Scheme 2 above.

#### 2. Structural commentary

Compound (I) crystallizes in the centrosymmetric space group *Pbca* and its molecular structure is illustrated in Fig. 1. In the



#### Figure 1

The molecular structure of (I), showing 50% probability displacement ellipsoids. Intramolecular  $O-H\cdots O$  and  $C-H\cdots O$  interactions are shown as black and pink double-dashed lines, respectively.

Table 1Hydrogen-bond geometry (Å,  $^{\circ}$ ) for (I).

| , , ,                       |          | , , ,                   |              |                             |
|-----------------------------|----------|-------------------------|--------------|-----------------------------|
| $D - H \cdot \cdot \cdot A$ | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdot \cdot \cdot A$ |
| O2−H2 <i>o</i> ···O1        | 0.84 (4) | 1.96 (4)                | 2.776 (4)    | 163 (4)                     |
| $O3-H3o\cdots O1^{i}$       | 0.80(4)  | 2.11 (4)                | 2.844 (4)    | 151 (4)                     |
| O3−H3 <i>o</i> ···O2        | 0.80(4)  | 2.28 (4)                | 2.744 (3)    | 118 (4)                     |
| $C10-H10\cdots O2$          | 0.95     | 2.33                    | 2.667 (5)    | 100                         |

Symmetry code: (i)  $-x + \frac{1}{2}, y - \frac{1}{2}, z$ .

arbitrarily chosen asymmetric molecule, the configurations of the stereogenic atoms C1, C2, C6 and C7 are S, R, R, and R, respectively. As expected, the junction of the fused rings is cis  $(H1-C1-C2-H2 = 5^{\circ})$ . The C1/C2/C3/O1/C4 ring has an envelope conformation, with O1 displaced from the mean plane of the carbon atoms (r.m.s. deviation = 0.018 Å) by 0.566 (5) Å. The C1/C2/C5/C6/C7 ring also has an envelope conformation, with C6 displaced from the other atoms (r.m.s. deviation = 0.026 Å) by 0.573 (6) Å. The dihedral angle between the almost planar parts of the rings is  $58.3 (2)^\circ$ : the overall shape could be described as a butterfly, with the flap atoms (O1 and C6) pointing inwards. Atoms O2 and O3 lie to the same face of the ring although there is a significant twist between them  $[O2-C6-C7-O3 = 46.5 (4)^{\circ}]$ . The O2-C6-C7-C8 torsion angle is 164.9 (3)° and the C8-C7-C6-C9 torsion angle is  $47.6 (4)^{\circ}$ . The dihedral angle between the pendant benzene ring (C9-C14) and C1/C2/C5/C7 is  $64.00 (17)^{\circ}$ . The molecular structure of (I) features two intramolecular O-H···O hydrogen bonds (Table 1). The O3-H3o···O2 bond closes an S(5) ring. The O2-H2o···O1 bond, which bridges across the top of the fused-ring system to



#### Figure 2

The molecular structure of (II), showing 50% probability displacement ellipsoids. Intramolecular  $O-H\cdots O$  and  $C-H\cdots O$  interactions are shown as black and pink double-dashed lines, respectively.

C20

C2

| Table 2       |          |     |    |     |      |
|---------------|----------|-----|----|-----|------|
| Hydrogen-bond | geometry | (Å, | °) | for | (II) |

Cg4 is the centroid of the C16–C21 ring.

| $D - H \cdots A$           | $D-\mathrm{H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|----------------------------|----------------|-------------------------|--------------|------------------|
| O2−H2 <i>o</i> ···O1       | 0.87 (2)       | 1.93 (2)                | 2.7794 (17)  | 162.9 (18)       |
| C10−H10···O3               | 0.95           | 2.56                    | 3.091 (2)    | 116              |
| $C5-H5A\cdots O2^{i}$      | 0.99           | 2.58                    | 3.266 (2)    | 126              |
| C19−H19···O1 <sup>ii</sup> | 0.95           | 2.58                    | 3.344 (2)    | 138              |
| $C12-H12\cdots Cg4^{iii}$  | 0.95           | 2.74                    | 3.6619 (19)  | 165              |

Symmetry codes: (i)  $x, -y + \frac{3}{2}, z - \frac{1}{2}$ ; (ii) -x + 1, -y + 1, -z + 2; (iii) -x, -y + 1, -z + 2.

| Table 3       |                                      |
|---------------|--------------------------------------|
| Hydrogen-bond | geometry (Å, $^{\circ}$ ) for (III). |

Cg6 is the centroid of the C16a-C21a ring.

| $D - \mathbf{H} \cdots A$  | D-H  | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|----------------------------|------|-------------------------|-------------------------|--------------------------------------|
| C10−H10···O3               | 0.95 | 2.57                    | 3.124 (10)              | 117                                  |
| $C8-H8B\cdots O2^{i}$      | 0.98 | 2.58                    | 3.462 (10)              | 150                                  |
| C14−H14···O2 <sup>ii</sup> | 0.95 | 2.57                    | 3.450 (11)              | 155                                  |
| $C4-H4B\cdots Cg6^{iii}$   | 0.99 | 2.65                    | 3.569 (10)              | 154                                  |

Symmetry codes: (i) x + 1, y, z; (ii)  $x + \frac{1}{2}, -y + \frac{3}{2}, -z$ ; (iii)  $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$ .

generate an S(7) ring, may influence the conformations of the five-membered rings. An intramolecular C10-H10···O2 short contact (H···O = 2.33 Å) is also present: although the C-H···O angle of 100° is extremely small to be regarded as a bond (Steiner, 1996) it is interesting to compare this C-H grouping to the situation in (II) and (III) (*vide infra*).

The asymmetric unit of (II), which crystallizes in the centrosymmetric space group  $P2_1/c$ , contains one molecule (Fig. 2): for ease of comparison with (I), the stereogenic centres in this molecule have configurations of *S*, *R*, *R*, and *R*, for C1, C2, C7 and C8, respectively. As with (I), the C1/C2/C3/O1/C4 ring has an envelope conformation, with O1 as the flap, displaced by 0.571 (2) Å from the other atoms. The conformation of the C1/C2/C5/C6/C7 ring in (II) is also an envelope, with C6 as the flap [displacement = 0.618 (2) Å]. The dihedral angle between C1/C2/C3/C4 (r.m.s. deviation = 0.004 Å) and C1/C2/C5/C7 (r.m.s. deviation = 0.016 Å) of 58.28 (7)° is identical to the equivalent value for (I) and the flap atoms (O1 and C6) also point inwards. Key torsion angles in (II) include O2-C6-C7-O3 [42.19 (17)°], O2-C6-C7-C8 [164.41 (13)°] and C8-C7-C6-C9 [46.42 (17)°]: these data



Figure 3

The molecular structure of (III), showing 50% probability displacement ellipsoids. Only one orientation of the disordered C16–C21 benzene ring is shown. The intramolecular C–H···O interaction is shown as a pink double-dashed line.

are similar to the corresponding values for (I). However, the dihedral angle between the C9–C14 benzene ring and C1/C2/C5/C7 in (II) is 34.90 (9)°, which differs by some 30° compared to the equivalent value for (I). The dihedral angle between the aromatic rings (C9–C14 and C16–C21) is 89.74 (5)°. As with (I), the hydroxy (O2–H2*o*) grouping forms an intramolecular hydrogen bond (Table 2) to O1 across the fused-ring system and an *S*(7) ring results. The C10–H10 grouping in (II) points towards O3 rather than O2 (H···O = 2.56 Å), which appears to correlate with the different orientation of the C9–C14 ring.

Compound (III) crystallizes in the chiral space group  $P2_12_12_1$ . The absolute structure was indeterminate in the present experiment and C1, C2, C5, C6 and C7 in the asymmetric molecule were assigned configurations of S. R. S. S and R, respectively (Fig. 3). Based on the synthesis, we assume the bulk sample to be racemic. The conformation of the C1/C2/C3/ O1/C4 ring is different to the equivalent unit in (I) and (II): in (III), this ring is twisted about the C2–C3 bond [Q(2) =0.307 (10) Å,  $\varphi(2) = 232.5 (18)^{\circ}$  such that C2 and C3 are displaced from the O1/C4/C1 plane by -0.22(2) and 0.29 (2) Å, respectively. The C1/C2/C5/C6/C7 conformation in (III) is an envelope, but the flap atom is different to that in (I) and (II): in this case C1 (rather than C6) is displaced by 0.487 (14) Å from the other atoms (r.m.s. deviation = 0.011 Å). The dihedral angle between the five-membered rings (all atoms) of  $69.6 (5)^{\circ}$  in (III) is significantly larger than the corresponding angle for (I) and (II). The epoxide ring (C5/C6/ O2) subtends a dihedral angle of 74.0 (4) $^{\circ}$  with respect to C2/ C5/C6/C7. Important torsion angles in (III) include O2-C6-C7-O3 [76.3 (8)°], O2-C6-C7-C8 [-161.3 (6)°] and C8-C7-C6-C9 [55.4 (9)°]: these data are very different from the corresponding values for (I) and (II), which must in part be due to the steric inflexibility of the epoxide ring containing O2. The dihedral angle between the C9–C14 benzene ring and C2/ C5/C6/C7 in (II) is 49.3 (4) $^{\circ}$ , which is intermediate between the corresponding values for (I) and (II). The dihedral angle between the C9-C14 and C16a-C21a benzene rings is 41.0 (7) $^{\circ}$ . There are obviously no classical intramolecular hydrogen bonds in (III), but, as in (II), a C10-H10···O3 link (Table 3) is seen.

#### 3. Supramolecular features

In the crystal of (I), the molecules are linked into [010] chains by O3-H30···O1<sup>i</sup> [symmetry code: (i)  $\frac{1}{2} - x$ ,  $y - \frac{1}{2}$ , z]



Figure 4

Partial packing diagram for (I), showing the formation of [100] chains linked by  $O-H\cdots O$  hydrogen bonds (double-dashed lines). Symmetry codes as in Table 1. All C-bonded H atoms have been omitted for clarity.

hydrogen bonds (Table 1, Fig. 4): the same OH group also participates in an intramolecular bond, as described above. Adjacent molecules are enantiomers, being related by *b*-glide symmetry and the chain has a C(6) motif. Long and presumably very weak intermolecular  $C-H\cdots O$  and  $C-H\cdots \pi$ interactions (Tables 2 and 3) are observed in the crystals of (II) and (III). Assuming these interactions to be significant, (100) sheets in (II) and [100] chains in (III) arise (Fig. 5). It is notable that the epoxide O atom accepts both  $C-H\cdots O$ interactions in the latter. Aromatic  $\pi-\pi$  stacking is absent in these structures, the shortest centroid–centroid separations being *ca* 4.97 in (I), 5.03 in (II) and 5.24 Å in (III).

#### 4. Database survey

A search of the Cambridge Structural Database (Groom & Allen, 2014) for compounds with a cyclopenta[c]furan skeleton revealed 321 matches; of these, just two had O atoms bonded to the 4- and 5-positions of the fused-ring system, viz.: VALFIX (Dumdei *et al.*, 1989) and YEYBEB (Wang *et al.*, 2012), but otherwise, neither bears a close resemblance to the compounds described here.



#### Figure 5

Partial packing diagram for (III), showing the formation of [100] chains linked by  $C-H\cdots O$  hydrogen bonds (double-dashed lines). Symmetry codes as in Table 3. All H atoms except those involved in the  $C-H\cdots O$  bonds have been omitted for clarity.

#### 5. Synthesis and crystallization

Full synthesis details will be reported in due course, but a summary of the steps followed to prepare (I), (II) and (III) are detailed as follows. A Pauson-Khand [2 + 2 + 1] cycloaddition (Pauson, 1985) was used to prepare the key starting material: a mixture of phenylacetylene, 2,5-dihydrofuran and dicobalt octacarbonyl in toluene under an inert atmosphere was heated to reflux for 1 h to afford  $(\pm)$ -(3aR,6aS)-5-phenyl-1,3,3a,6atetrahydro-4H-cyclopenta[c]furan-4-one, A: after purification by silica gel chromatography, spectroscopic data were in accordance with those previously reported by Brown et al. (2005). Treatment of A with methyl magnesium iodide in anhydrous tetrahydrofuran using the procedure of Coote et al. (2008) afforded  $(\pm)$ -(3aR,4S,6aS)-4-methyl-5-phenyl-3,3a,4,6a-tetrahydro-1*H*-cyclopenta[c]furan-4-ol, *B*. Treatment of B with m-CPBA in anhydrous dichloromethane at 273 K yielded  $(\pm)$ -(1aR, 1bS, 4aR, 5S, 5aR)-5-methyl-5a-phenyl hexahydro-2*H*-oxireno[2',3':3,4]cyclopenta[1,2-c]furan-5-ol, C, with facial selectivity directed by the hydroxy group (Langston et al., 2007). Treatment of C with lithium aluminium hydride in anhydrous tetrahydrofuran (Howe et al., 1987) afforded the epoxide opened product,  $(\pm)$ -(3aR.4S.5S.6aS)-4methyl-5-phenylhexahydro-1*H*-cyclopenta[*c*]furan-4,5-diol, (I). Further treatment of (I) with benzyl chloride under identical conditions to above afforded  $(\pm)$ -(3aR,4S,5S,6aS)-4-(benzyloxy)-4-methyl-5-phenylhexahydro-1*H*-cyclopenta[*c*]furan-5-ol, (II). Benzvlation of C using the procedure of Peng & Woerpel (2003) afforded  $(\pm)$ -(1aR,1bS,4aR,5S,5aR)-5-(benzyloxy)-5-methyl-5a-phenylhexahydro-2H-oxireno-[2',3':3,4]cyclopenta[1,2-c]furan, (III).



#### 6. Refinement

Crystal data, data collection and structure refinement details for (I)–(III) are summarized in Table 4. The O-bound H atoms were located in difference maps and their positions freely refined. The C-bound H atoms were geometrically placed (C–H = 0.95–1.00 Å) and refined as riding atoms. The constraint  $U_{iso}(H) = 1.2U_{eq}(\text{carrier})$  or  $1.5U_{eq}(\text{methyl carrier})$ was applied in all cases. The methyl H atoms were allowed to rotate, but not to tip, to best fit the electron density. The C16–

# research communications

 Table 4

 Experimental details.

|                                                                             | (I)                                                                          | (II)                                                                         | (III)                                    |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------|
| Crystal data                                                                |                                                                              |                                                                              |                                          |
| Chemical formula                                                            | $C_{14}H_{18}O_{3}$                                                          | $C_{21}H_{24}O_3$                                                            | $C_{21}H_{22}O_3$                        |
| $M_r$                                                                       | 234.28                                                                       | 324.40                                                                       | 322.39                                   |
| Crystal system, space group                                                 | Orthorhombic, Pbca                                                           | Monoclinic, $P2_1/c$                                                         | Orthorhombic, $P2_12_12_1$               |
| Temperature (K)                                                             | 120                                                                          | 120                                                                          | 120                                      |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)                                          | 10.997 (2), 7.7489 (9), 27.852 (4)                                           | 12.8872 (3), 19.3544 (6), 6.8046 (1)                                         | 5.6392 (2), 11.0427 (5),<br>26.6311 (13) |
| $\alpha, \beta, \gamma$ (°)                                                 | 90, 90, 90                                                                   | 90, 92.3907 (16), 90                                                         | 90, 90, 90                               |
| $V(\dot{A}^3)$                                                              | 2373.4 (6)                                                                   | 1695.75 (7)                                                                  | 1658.37 (13)                             |
| Z                                                                           | 8                                                                            | 4                                                                            | 4                                        |
| Radiation type                                                              | Μο Κα                                                                        | Μο Κα                                                                        | Μο Κα                                    |
| $\mu \text{ (mm}^{-1})$                                                     | 0.09                                                                         | 0.08                                                                         | 0.09                                     |
| Crystal size (mm)                                                           | $0.18 \times 0.08 \times 0.02$                                               | $0.14 \times 0.10 \times 0.04$                                               | $0.34 \times 0.14 \times 0.04$           |
| Data collection                                                             |                                                                              |                                                                              |                                          |
| Diffractometer                                                              | Nonius KappaCCD                                                              | Nonius KappaCCD                                                              | Nonius KappaCCD                          |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections    | 13446, 2312, 1303                                                            | 28187, 3899, 2834                                                            | 12562, 2221, 1867                        |
| R <sub>int</sub>                                                            | 0.137                                                                        | 0.091                                                                        | 0.073                                    |
| $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$                        | 0.617                                                                        | 0.651                                                                        | 0.650                                    |
| Refinement                                                                  |                                                                              |                                                                              |                                          |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                         | 0.095, 0.148, 1.09                                                           | 0.053, 0.132, 1.06                                                           | 0.123, 0.279, 1.17                       |
| No. of reflections                                                          | 2312                                                                         | 3899                                                                         | 2221                                     |
| No. of parameters                                                           | 161                                                                          | 222                                                                          | 190                                      |
| H-atom treatment                                                            | H atoms treated by a mixture of<br>independent and constrained<br>refinement | H atoms treated by a mixture of<br>independent and constrained<br>refinement | H-atom parameters constrained            |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min}  ({\rm e} \ {\rm \AA}^{-3})$ | 0.25, -0.27                                                                  | 0.30, -0.23                                                                  | 0.40, -0.44                              |

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), and SORTAV (Blessing, 1995), SHELXS97 and SHELXL97 (Sheldrick, 2008) and ORTEP-3 for Windows (Farrugia, 2012).

C21 benzene ring in (III) was modelled as being disordered over two overlapped orientations in a 0.54 (3):0.46 (3) ratio; the rings were constrained to be regular hexagons (C-C = 1.39 Å). The crystal quality for (I) and (III) was poor, which may correlate with the rather high *R*-factors obtained, although the structures are clearly resolved with acceptable geometrical precision. The absolute structure of compound (III) was indeterminate in the present experiment.

#### **Acknowledgements**

We thank the EPSRC National Crystallography Service (University of Southampton) for the data collections.

#### References

- Bai, D. & Sattelle, D. B. (1993). Arch. Insect Biochem. Physiol. 23, 161–167.
- Bisset, G. W., Fairhall, K. M. & Tsuji, K. (1992). Br. J. Pharmacol. 106, 685–692.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Brown, J. A., Irvine, S., Kerr, W. J. & Pearson, C. M. (2005). Org. Biomol. Chem. 3, 2396–2398.
- Coote, S. C., O'Brien, P. & Whitwood, A. C. (2008). Org. Biomol. Chem. 6, 4299–4314.
- Dumdei, E. J., De Silva, E. D., Andersen, R. J., Choudhary, M. I. & Clardy, J. (1989). J. Am. Chem. Soc. 111, 2712–2713.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.

- Hong, S. J., Tsuji, J. & Chang, C. C. (1992). Neuroscience, 48, 727-735.
- Howe, G. P., Wang, S. & Procter, G. (1987). Tetrahedron Lett. 28, 2629–2632.
- Inoue, S., Okada, K., Tanino, H. & Kakoi, H. (1986). Tetrahedron Lett. 27, 5225–5228.
- Inoues, S., Okada, K., Tanino, H. & Kakoi, H. (1994). *Tetrahedron*, **50**, 2753–2770.
- Kosuge, T., Tsuji, K. & Hirai, K. (1982). Chem. Pharm. Bull. 30, 3255–3259.
- Kosuge, T., Tsuji, K., Hirai, K., Yamaguchi, K., Okamoto, T. & Iitaka, Y. (1981). *Tetrahedron Lett.* 22, 3417–3420.
- Langston, S. P., Olhava, E. J. & Vyskocil, S. (2007). PCT Int. Appl. WO 2007092213.
- Nonius, B. V. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Okada, K., Mizuno, Y., Tanino, H., Kakoi, H. & Inoue, S. (1989). Chem. Lett. pp. 703–706.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Pauson, P. L. (1985). Tetrahedron, 41, 5855-5860.
- Peng, Z.-H. & Woerpel, K. A. (2003). J. Am. Chem. Soc. 125, 6018–6019.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Steiner, T. (1996). Crystallogr. Rev. 6, 1-51.
- Tornøe, C., Bai, D., Holden-Dye, L., Abramson, S. N. & Sattelle, D. B. (1995). *Toxicon*, **33**, 411–424.
- Wang, H., Kohler, P., Overman, L. E. & Houk, K. N. (2012). J. Am. Chem. Soc. 134, 16054–16058.
- Yamada, S., Ushijima, H., Nakayama, K., Hayashi, E., Tsuji, K. & Kosuge, T. (1988). *Eur. J. Pharmacol.* **156**, 279–282.

## Acta Cryst. (2016). E72, 44-48 [doi:10.1107/S2056989015023506]

Investigations into the construction of the pentasubstituted ring *C* of Neosurugatoxin – a crystallographic study

# Alan M. Jones, John M. D. Storey and William T A Harrison

## **Computing details**

For all compounds, data collection: *COLLECT* (Nonius, 1998); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997), and *SORTAV* (Blessing, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

(I)  $(\pm)-(3aR,4S,5S,6aS)-4$ -Methyl-5-phenylhexahydro-1*H*-cyclopenta[c]furan-4,5-diol

#### Crystal data

C<sub>14</sub>H<sub>18</sub>O<sub>3</sub>  $M_r = 234.28$ Orthorhombic, *Pbca*  a = 10.997 (2) Å b = 7.7489 (9) Å c = 27.852 (4) Å V = 2373.4 (6) Å<sup>3</sup> Z = 8F(000) = 1008

### Data collection

Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans 13446 measured reflections 2312 independent reflections

### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.095$  $wR(F^2) = 0.148$ S = 1.092312 reflections 161 parameters 0 restraints  $D_x = 1.311 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4280 reflections  $\theta = 2.9-27.5^{\circ}$  $\mu = 0.09 \text{ mm}^{-1}$ T = 120 KLath, colourless  $0.18 \times 0.08 \times 0.02 \text{ mm}$ 

1303 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.137$   $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 3.3^{\circ}$   $h = -13 \rightarrow 13$   $k = -6 \rightarrow 9$  $l = -34 \rightarrow 34$ 

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0231P)^{2} + 2.9549P] \qquad \Delta \rho_{\max} = 0.25 \text{ e } \text{\AA}^{-3}$ where  $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{\min} = -0.27 \text{ e } \text{\AA}^{-3}$  $(\Delta/\sigma)_{\max} < 0.001$ 

Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \text{sigma}(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

| Fractional atomic coordinates an | d isotropic of | r equivalent i. | sotropic | displacement | parameters | $(Å^2)$ |
|----------------------------------|----------------|-----------------|----------|--------------|------------|---------|
|                                  | 1              | 1               | 1        | 1            | 1          | \ /     |

|     | x          | у          | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|------------|------------|--------------|-----------------------------|--|
| C1  | 0.4979 (4) | 0.7625 (5) | 0.44924 (12) | 0.0240 (10)                 |  |
| H1  | 0.5579     | 0.7736     | 0.4760       | 0.029*                      |  |
| C2  | 0.5209 (4) | 0.9051 (4) | 0.41050 (13) | 0.0251 (10)                 |  |
| H2  | 0.5951     | 0.9739     | 0.4185       | 0.030*                      |  |
| C3  | 0.4068 (4) | 1.0179 (5) | 0.41288 (13) | 0.0285 (10)                 |  |
| H3A | 0.4189     | 1.1156     | 0.4353       | 0.034*                      |  |
| H3B | 0.3863     | 1.0641     | 0.3808       | 0.034*                      |  |
| C4  | 0.3697 (4) | 0.8034 (5) | 0.46709 (13) | 0.0292 (11)                 |  |
| H4A | 0.3237     | 0.6955     | 0.4728       | 0.035*                      |  |
| H4B | 0.3733     | 0.8695     | 0.4975       | 0.035*                      |  |
| C5  | 0.5380 (4) | 0.8075 (4) | 0.36269 (12) | 0.0252 (10)                 |  |
| H5A | 0.4957     | 0.8687     | 0.3363       | 0.030*                      |  |
| H5B | 0.6254     | 0.7990     | 0.3546       | 0.030*                      |  |
| C6  | 0.4840 (4) | 0.6287 (4) | 0.36962 (12) | 0.0221 (9)                  |  |
| C7  | 0.5147 (4) | 0.5877 (4) | 0.42306 (12) | 0.0207 (9)                  |  |
| C8  | 0.6451 (4) | 0.5287 (5) | 0.43001 (12) | 0.0254 (10)                 |  |
| H8A | 0.6578     | 0.4196     | 0.4129       | 0.038*                      |  |
| H8B | 0.6610     | 0.5120     | 0.4643       | 0.038*                      |  |
| H8C | 0.7006     | 0.6164     | 0.4173       | 0.038*                      |  |
| C9  | 0.5241 (4) | 0.4920 (5) | 0.33435 (11) | 0.0235 (10)                 |  |
| C10 | 0.4430 (4) | 0.3631 (5) | 0.31982 (13) | 0.0301 (11)                 |  |
| H10 | 0.3628     | 0.3614     | 0.3325       | 0.036*                      |  |
| C11 | 0.4784 (5) | 0.2378 (5) | 0.28707 (15) | 0.0404 (13)                 |  |
| H11 | 0.4224     | 0.1505     | 0.2779       | 0.048*                      |  |
| C12 | 0.5939 (5) | 0.2384 (6) | 0.26765 (14) | 0.0430 (14)                 |  |
| H12 | 0.6174     | 0.1534     | 0.2449       | 0.052*                      |  |
| C13 | 0.6743 (5) | 0.3641 (5) | 0.28186 (13) | 0.0353 (12)                 |  |
| H13 | 0.7542     | 0.3657     | 0.2689       | 0.042*                      |  |
| C14 | 0.6403 (4) | 0.4878 (5) | 0.31469 (12) | 0.0303 (11)                 |  |
| H14 | 0.6978     | 0.5727     | 0.3242       | 0.036*                      |  |
| 01  | 0.3123 (3) | 0.9043 (3) | 0.43001 (9)  | 0.0297 (7)                  |  |
| O2  | 0.3534 (3) | 0.6375 (3) | 0.36550 (9)  | 0.0270 (7)                  |  |

| H2o | 0.328 (4)  | 0.722 (5)  | 0.3816 (13) | 0.032*     |
|-----|------------|------------|-------------|------------|
| O3  | 0.4425 (3) | 0.4516 (3) | 0.44161 (9) | 0.0280 (8) |
| H3o | 0.375 (4)  | 0.464 (5)  | 0.4309 (14) | 0.034*     |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C1  | 0.016 (3)   | 0.031 (2)   | 0.0249 (19) | 0.0010 (19)  | -0.0017 (19) | -0.0017 (17) |
| C2  | 0.018 (3)   | 0.018 (2)   | 0.039 (2)   | -0.0007 (19) | 0.000 (2)    | -0.0036 (17) |
| C3  | 0.031 (3)   | 0.022 (2)   | 0.033 (2)   | 0.000 (2)    | 0.006 (2)    | 0.0035 (17)  |
| C4  | 0.031 (3)   | 0.028 (2)   | 0.029 (2)   | 0.008 (2)    | 0.007 (2)    | 0.0026 (18)  |
| C5  | 0.023 (3)   | 0.026 (2)   | 0.027 (2)   | 0.0007 (19)  | 0.0027 (19)  | 0.0022 (17)  |
| C6  | 0.018 (3)   | 0.021 (2)   | 0.028 (2)   | -0.0039 (19) | -0.0048 (19) | 0.0027 (17)  |
| C7  | 0.018 (3)   | 0.023 (2)   | 0.0213 (18) | 0.0007 (18)  | 0.0035 (18)  | 0.0011 (16)  |
| C8  | 0.026 (3)   | 0.028 (2)   | 0.023 (2)   | 0.002 (2)    | -0.0040 (19) | -0.0017 (16) |
| C9  | 0.035 (3)   | 0.022 (2)   | 0.0139 (18) | 0.004 (2)    | -0.0063 (19) | 0.0021 (16)  |
| C10 | 0.036 (3)   | 0.028 (2)   | 0.026 (2)   | 0.002 (2)    | -0.008 (2)   | 0.0031 (19)  |
| C11 | 0.058 (4)   | 0.025 (3)   | 0.039 (2)   | 0.004 (3)    | -0.023 (3)   | -0.004 (2)   |
| C12 | 0.067 (4)   | 0.033 (3)   | 0.029 (2)   | 0.028 (3)    | -0.013 (3)   | -0.011 (2)   |
| C13 | 0.051 (4)   | 0.032 (3)   | 0.024 (2)   | 0.017 (2)    | -0.002 (2)   | 0.0019 (19)  |
| C14 | 0.042 (3)   | 0.028 (2)   | 0.0209 (19) | 0.009 (2)    | 0.003 (2)    | 0.0024 (18)  |
| 01  | 0.0226 (19) | 0.0266 (15) | 0.0399 (16) | 0.0066 (13)  | 0.0054 (14)  | 0.0074 (12)  |
| O2  | 0.023 (2)   | 0.0290 (17) | 0.0293 (15) | 0.0018 (14)  | -0.0068 (14) | 0.0002 (12)  |
| 03  | 0.027 (2)   | 0.0289 (16) | 0.0283 (15) | -0.0050 (15) | -0.0050 (14) | 0.0076 (12)  |

Geometric parameters (Å, °)

| C1—C4    | 1.528 (5) | С7—ОЗ    | 1.417 (4) |  |
|----------|-----------|----------|-----------|--|
| C1—C7    | 1.550 (5) | C7—C8    | 1.517 (5) |  |
| C1—C2    | 1.565 (5) | C8—H8A   | 0.9800    |  |
| C1—H1    | 1.0000    | C8—H8B   | 0.9800    |  |
| C2—C3    | 1.530 (5) | C8—H8C   | 0.9800    |  |
| C2—C5    | 1.543 (5) | C9—C14   | 1.390 (5) |  |
| С2—Н2    | 1.0000    | C9—C10   | 1.399 (5) |  |
| C3—O1    | 1.444 (4) | C10C11   | 1.388 (5) |  |
| С3—НЗА   | 0.9900    | C10—H10  | 0.9500    |  |
| С3—Н3В   | 0.9900    | C11—C12  | 1.381 (6) |  |
| C4—O1    | 1.441 (4) | C11—H11  | 0.9500    |  |
| C4—H4A   | 0.9900    | C12—C13  | 1.373 (6) |  |
| C4—H4B   | 0.9900    | C12—H12  | 0.9500    |  |
| C5—C6    | 1.519 (5) | C13—C14  | 1.377 (5) |  |
| С5—Н5А   | 0.9900    | C13—H13  | 0.9500    |  |
| С5—Н5В   | 0.9900    | C14—H14  | 0.9500    |  |
| C6—O2    | 1.442 (5) | O2—H2o   | 0.84 (4)  |  |
| С6—С9    | 1.511 (5) | O3—H3o   | 0.80 (4)  |  |
| C6—C7    | 1.559 (5) |          |           |  |
| C4—C1—C7 | 116.4 (3) | C5—C6—C7 | 102.9 (3) |  |
|          |           |          |           |  |

| C4—C1—C2                                                                                                             | 103.1 (3)  | O3—C7—C8                            | 105.0 (3)             |
|----------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------|-----------------------|
| C7—C1—C2                                                                                                             | 105.9 (3)  | O3—C7—C1                            | 114.3 (3)             |
| C4—C1—H1                                                                                                             | 110.4      | C8—C7—C1                            | 108.4 (3)             |
| C7—C1—H1                                                                                                             | 110.4      | O3—C7—C6                            | 112.2 (3)             |
| C2—C1—H1                                                                                                             | 110.4      | C8—C7—C6                            | 112.8 (3)             |
| $C_{3}-C_{2}-C_{5}$                                                                                                  | 114.7 (3)  | C1—C7—C6                            | 104.2(3)              |
| $C_{3}-C_{2}-C_{1}$                                                                                                  | 103.9 (3)  | C7—C8—H8A                           | 109.5                 |
| $C_{2} - C_{2} - C_{1}$                                                                                              | 105.6 (3)  | C7—C8—H8B                           | 109.5                 |
| C3—C2—H2                                                                                                             | 110.8      | H8A—C8—H8B                          | 109.5                 |
| $C_{5} - C_{2} - H_{2}$                                                                                              | 110.8      | C7 - C8 - H8C                       | 109.5                 |
| C1 - C2 - H2                                                                                                         | 110.8      | H8A - C8 - H8C                      | 109.5                 |
| 01 - C3 - C2                                                                                                         | 104.9(3)   | H8B-C8-H8C                          | 109.5                 |
| 01 - C3 - H3A                                                                                                        | 10 1.9 (5) | C14 - C9 - C10                      | 109.3<br>117 1 (4)    |
| $C_2 = C_3 = H_3 A$                                                                                                  | 110.8      | C14 - C9 - C6                       | 117.1(4)<br>122 7 (4) |
| O1 - C3 - H3B                                                                                                        | 110.8      | $C_{14} = C_{2} = C_{0}$            | 122.7(4)<br>120.2(4)  |
| $C_2 = C_3 = H_3B$                                                                                                   | 110.8      | $C_{10} - C_{10} - C_{0}$           | 120.2(4)<br>120.7(4)  |
| $H_{3A} = C_3 = H_{3B}$                                                                                              | 108.8      | $C_{11} = C_{10} = H_{10}$          | 120.7 (4)             |
| 113A - C3 - 113D                                                                                                     | 106.5 (3)  | $C_{11} = C_{10} = H_{10}$          | 119.0                 |
| $O_1 = C_4 = C_1$                                                                                                    | 100.5 (5)  | $C_{3} = C_{10} = 110$              | 119.0                 |
| $C_1 = C_4 = H_4 \Lambda$                                                                                            | 110.4      | $C_{12} = C_{11} = C_{10}$          | 120.8 (4)             |
| C1 - C4 - H4R                                                                                                        | 110.4      | C12— $C11$ — $H11$                  | 119.0                 |
| $C_1 = C_4 = H_4 B$                                                                                                  | 110.4      | $C_{10}$ $C_{11}$ $C_{11}$ $C_{11}$ | 119.0                 |
| $C_1 - C_4 - n_4 B$                                                                                                  | 110.4      | C13 - C12 - C11<br>C13 - C12 - H12  | 110.0 (4)             |
| $\begin{array}{c} \mathbf{H4A} \longrightarrow \mathbf{H4B} \\ \mathbf{C6}  \mathbf{C5}  \mathbf{C2} \\ \end{array}$ | 106.0      | C13 - C12 - H12                     | 120.0                 |
| $C_{0}$                                                                                                              | 100.8 (3)  | C12 - C12 - C14                     | 120.0                 |
| $C_{0}$ $C_{5}$ $H_{5}$ $A$                                                                                          | 110.4      | C12 - C13 - C14                     | 120.7(3)              |
| $C_2 = C_3 = H_5 R$                                                                                                  | 110.4      | C12 - C13 - H13                     | 119.7                 |
| $C_0 = C_5 = H_5 B$                                                                                                  | 110.4      | C14 - C13 - H13                     | 119.7                 |
|                                                                                                                      | 110.4      | C13 - C14 - C9                      | 121.8 (4)             |
| H5A—C5—H5B                                                                                                           | 108.6      | C13 - C14 - H14                     | 119.1                 |
| 02                                                                                                                   | 105.8 (3)  | C9-C14-H14                          | 119.1                 |
| 02-06-05                                                                                                             | 109.6 (3)  | C4 - 01 - C3                        | 104.6 (3)             |
| $C_{9}$                                                                                                              | 116.3 (3)  | C6—O2—H20                           | 109 (3)               |
| 02-06-07                                                                                                             | 107.5 (3)  | C/                                  | 107 (3)               |
| C9—C6—C7                                                                                                             | 114.5 (3)  |                                     |                       |
|                                                                                                                      | 2.5.(4)    |                                     | 1(10(2))              |
| C4-C1-C2-C3                                                                                                          | 3.5 (4)    | 02-06-07-08                         | 164.9 (3)             |
| $C_{1} = C_{1} = C_{2} = C_{3}$                                                                                      | 126.2 (3)  | $C_{9} = C_{6} = C_{7} = C_{8}$     | 47.6 (4)              |
| C4 - C1 - C2 - C5                                                                                                    | -11/.5(3)  | $C_{5} = C_{6} = C_{7} = C_{8}$     | -/9.4 (4)             |
| C/=CI=C2=CS                                                                                                          | 5.2 (4)    | 02-06-07-01                         | -//./(3)              |
| $C_{3} = C_{2} = C_{3} = 01$                                                                                         | 87.8 (4)   | $C_{9} = C_{6} = C_{7} = C_{1}$     | 165.0(3)              |
| C1 - C2 - C3 - 01                                                                                                    | -26.9(4)   | $C_5 - C_6 - C_7 - C_1$             | 38.0 (4)              |
| C/-CI-C4-OI                                                                                                          | -94.2 (3)  | O2 - C6 - C9 - C14                  | 155.7 (3)             |
| C2-C1-C4-O1                                                                                                          | 21.2 (4)   | C5—C6—C9—C14                        | 33.8 (5)              |
| $C_3 - C_2 - C_5 - C_6$                                                                                              | -94.9 (4)  | C/C6C9C14                           | -86.1 (4)             |
| C1 - C2 - C5 - C6                                                                                                    | 18.9 (4)   | O2—C6—C9—C10                        | -23.8 (4)             |
| C2—C5—C6—O2                                                                                                          | 78.9 (4)   | C5—C6—C9—C10                        | -145.7 (3)            |
| C2—C5—C6—C9                                                                                                          | -161.2 (3) | C7—C6—C9—C10                        | 94.4 (4)              |
| C2—C5—C6—C7                                                                                                          | -35.2 (4)  | C14—C9—C10—C11                      | -0.2(5)               |

| C4—C1—C7—O3 | -35.5 (4)  | C6-C9-C10-C11   | 179.4 (3)  |
|-------------|------------|-----------------|------------|
| C2-C1-C7-O3 | -149.4 (3) | C9-C10-C11-C12  | -0.7 (6)   |
| C4—C1—C7—C8 | -152.3 (3) | C10-C11-C12-C13 | 1.0 (6)    |
| C2—C1—C7—C8 | 93.9 (3)   | C11—C12—C13—C14 | -0.3 (6)   |
| C4—C1—C7—C6 | 87.3 (4)   | C12—C13—C14—C9  | -0.6 (6)   |
| C2—C1—C7—C6 | -26.5 (4)  | C10-C9-C14-C13  | 0.8 (5)    |
| O2—C6—C7—O3 | 46.5 (4)   | C6—C9—C14—C13   | -178.7 (3) |
| C9—C6—C7—O3 | -70.7 (4)  | C1—C4—O1—C3     | -39.4 (4)  |
| C5—C6—C7—O3 | 162.2 (3)  | C2—C3—O1—C4     | 41.3 (3)   |
|             |            |                 |            |

Hydrogen-bond geometry (Å, °)

| D—H···A                  | D—H      | H···A    | D····A    | D—H···A |  |
|--------------------------|----------|----------|-----------|---------|--|
| O2—H2 <i>o</i> …O1       | 0.84 (4) | 1.96 (4) | 2.776 (4) | 163 (4) |  |
| O3—H3o···O1 <sup>i</sup> | 0.80 (4) | 2.11 (4) | 2.844 (4) | 151 (4) |  |
| O3—H3 <i>o</i> ···O2     | 0.80 (4) | 2.28 (4) | 2.744 (3) | 118 (4) |  |
| С10—Н10…О2               | 0.95     | 2.33     | 2.667 (5) | 100     |  |

Symmetry code: (i) -*x*+1/2, *y*-1/2, *z*.

(II) (±)-(3aR,4S,5S,6aS)-4-Benzyloxy-4-methyl-5-phenylhexahydro-1H-cyclopenta[c]furan-5-ol

Crystal data

C<sub>21</sub>H<sub>24</sub>O<sub>3</sub>  $M_r = 324.40$ Monoclinic,  $P2_1/c$  a = 12.8872 (3) Å b = 19.3544 (6) Å c = 6.8046 (1) Å  $\beta = 92.3907$  (16)° V = 1695.75 (7) Å<sup>3</sup> Z = 4

#### Data collection

Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans 28187 measured reflections 3899 independent reflections

#### Refinement

Refinement on  $F^2$ Secondary atom site location: difference Fourier Least-squares matrix: full map  $R[F^2 > 2\sigma(F^2)] = 0.053$ Hydrogen site location: inferred from  $wR(F^2) = 0.132$ neighbouring sites S = 1.06H atoms treated by a mixture of independent 3899 reflections and constrained refinement 222 parameters  $w = 1/[\sigma^2(F_0^2) + (0.0522P)^2 + 0.6264P]$ 0 restraints where  $P = (F_o^2 + 2F_c^2)/3$ Primary atom site location: structure-invariant  $(\Delta/\sigma)_{\rm max} < 0.001$  $\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods

F(000) = 696  $D_x = 1.271 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3991 reflections  $\theta = 2.9-27.5^{\circ}$   $\mu = 0.08 \text{ mm}^{-1}$  T = 120 KBlock, colourless  $0.14 \times 0.10 \times 0.04 \text{ mm}$ 

2834 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.091$   $\theta_{max} = 27.6^{\circ}, \ \theta_{min} = 3.2^{\circ}$   $h = -16 \rightarrow 16$   $k = -25 \rightarrow 22$  $l = -8 \rightarrow 8$   $\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$ 

Extinction correction: SHELXL97 (Sheldrick, 2008),  $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.015 (2)

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F<sup>2</sup>, conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F<sup>2</sup> are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

| Fractional atomic coordinates and isotropic or equ | uivalent isotropic displacement parameters (À | $l^2$ |
|----------------------------------------------------|-----------------------------------------------|-------|
|----------------------------------------------------|-----------------------------------------------|-------|

|      | x             | у            | Z          | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|---------------|--------------|------------|-----------------------------|--|
| C1   | 0.30147 (13)  | 0.58494 (9)  | 0.3553 (2) | 0.0281 (4)                  |  |
| H1   | 0.2965        | 0.5555       | 0.2345     | 0.034*                      |  |
| C2   | 0.29204 (13)  | 0.66286 (9)  | 0.2994 (2) | 0.0287 (4)                  |  |
| H2   | 0.2808        | 0.6687       | 0.1541     | 0.034*                      |  |
| C3   | 0.39707 (14)  | 0.69274 (10) | 0.3697 (3) | 0.0363 (4)                  |  |
| H3A  | 0.4456        | 0.6937       | 0.2608     | 0.044*                      |  |
| H3B  | 0.3887        | 0.7404       | 0.4198     | 0.044*                      |  |
| C4   | 0.40989 (14)  | 0.57980 (10) | 0.4536 (3) | 0.0350 (4)                  |  |
| H4A  | 0.4103        | 0.5463       | 0.5636     | 0.042*                      |  |
| H4B  | 0.4607        | 0.5644       | 0.3576     | 0.042*                      |  |
| C5   | 0.19910 (13)  | 0.69099 (9)  | 0.4091 (2) | 0.0269 (4)                  |  |
| H5A  | 0.2134        | 0.7385       | 0.4569     | 0.032*                      |  |
| H5B  | 0.1360        | 0.6919       | 0.3212     | 0.032*                      |  |
| C6   | 0.18412 (12)  | 0.64195 (8)  | 0.5828 (2) | 0.0225 (4)                  |  |
| C7   | 0.20787 (13)  | 0.57048 (9)  | 0.4881 (2) | 0.0242 (4)                  |  |
| C8   | 0.11588 (14)  | 0.54513 (9)  | 0.3603 (2) | 0.0300 (4)                  |  |
| H8A  | 0.1346        | 0.5021       | 0.2948     | 0.045*                      |  |
| H8B  | 0.0972        | 0.5802       | 0.2611     | 0.045*                      |  |
| H8C  | 0.0566        | 0.5368       | 0.4428     | 0.045*                      |  |
| C9   | 0.07863 (12)  | 0.64665 (9)  | 0.6741 (2) | 0.0237 (4)                  |  |
| C10  | 0.05847 (13)  | 0.60608 (9)  | 0.8379 (2) | 0.0284 (4)                  |  |
| H10  | 0.1113        | 0.5767       | 0.8921     | 0.034*                      |  |
| C11  | -0.03727 (14) | 0.60800 (10) | 0.9227 (2) | 0.0317 (4)                  |  |
| H11  | -0.0498       | 0.5796       | 1.0332     | 0.038*                      |  |
| C12  | -0.11497 (14) | 0.65112 (10) | 0.8471 (2) | 0.0322 (4)                  |  |
| H12  | -0.1810       | 0.6521       | 0.9042     | 0.039*                      |  |
| C13  | -0.09541 (14) | 0.69271 (10) | 0.6879 (3) | 0.0321 (4)                  |  |
| H13  | -0.1479       | 0.7231       | 0.6370     | 0.039*                      |  |
| C14  | 0.00014 (13)  | 0.69059 (9)  | 0.6015 (2) | 0.0280 (4)                  |  |
| H14  | 0.0123        | 0.7194       | 0.4917     | 0.034*                      |  |
| C15  | 0.24848 (15)  | 0.45363 (9)  | 0.5913 (2) | 0.0311 (4)                  |  |
| H15A | 0.2899        | 0.4514       | 0.4721     | 0.037*                      |  |

| H15B | 0.1807       | 0.4310       | 0.5618       | 0.037*     |  |
|------|--------------|--------------|--------------|------------|--|
| C16  | 0.30523 (13) | 0.41712 (9)  | 0.7601 (2)   | 0.0261 (4) |  |
| C17  | 0.31224 (14) | 0.34524 (9)  | 0.7586 (3)   | 0.0295 (4) |  |
| H17  | 0.2798       | 0.3199       | 0.6534       | 0.035*     |  |
| C18  | 0.36607 (14) | 0.31032 (10) | 0.9088 (3)   | 0.0324 (4) |  |
| H18  | 0.3709       | 0.2614       | 0.9053       | 0.039*     |  |
| C19  | 0.41288 (14) | 0.34674 (10) | 1.0645 (3)   | 0.0329 (4) |  |
| H19  | 0.4494       | 0.3230       | 1.1680       | 0.039*     |  |
| C20  | 0.40569 (14) | 0.41784 (10) | 1.0669 (3)   | 0.0335 (4) |  |
| H20  | 0.4376       | 0.4430       | 1.1731       | 0.040*     |  |
| C21  | 0.35245 (14) | 0.45329 (9)  | 0.9163 (2)   | 0.0297 (4) |  |
| H22  | 0.3483       | 0.5023       | 0.9200       | 0.036*     |  |
| 01   | 0.43553 (9)  | 0.64763 (7)  | 0.52482 (18) | 0.0359 (3) |  |
| 02   | 0.25800 (9)  | 0.65642 (6)  | 0.74180 (16) | 0.0258 (3) |  |
| H2o  | 0.3204 (16)  | 0.6532 (10)  | 0.697 (3)    | 0.031*     |  |
| 03   | 0.23287 (9)  | 0.52361 (6)  | 0.64562 (15) | 0.0276 (3) |  |
|      |              |              |              |            |  |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|
| C1  | 0.0325 (9)  | 0.0287 (10) | 0.0232 (8)  | 0.0023 (7)  | 0.0020 (7)  | -0.0027 (7) |
| C2  | 0.0291 (9)  | 0.0303 (10) | 0.0269 (8)  | 0.0007 (7)  | 0.0043 (7)  | 0.0043 (7)  |
| C3  | 0.0324 (10) | 0.0370 (11) | 0.0402 (10) | -0.0025 (8) | 0.0085 (8)  | 0.0044 (8)  |
| C4  | 0.0307 (9)  | 0.0360 (11) | 0.0383 (10) | 0.0055 (8)  | 0.0045 (8)  | 0.0030 (8)  |
| C5  | 0.0284 (9)  | 0.0246 (9)  | 0.0278 (8)  | -0.0002 (7) | 0.0016 (7)  | 0.0056 (7)  |
| C6  | 0.0243 (8)  | 0.0220 (8)  | 0.0210 (7)  | 0.0003 (6)  | -0.0027 (6) | 0.0007 (6)  |
| C7  | 0.0309 (9)  | 0.0220 (8)  | 0.0194 (7)  | 0.0006 (7)  | -0.0006 (6) | 0.0015 (6)  |
| C8  | 0.0362 (10) | 0.0307 (10) | 0.0229 (8)  | -0.0052 (8) | -0.0004 (7) | -0.0015 (7) |
| C9  | 0.0264 (8)  | 0.0221 (8)  | 0.0225 (7)  | -0.0017 (6) | -0.0006 (6) | -0.0036 (6) |
| C10 | 0.0305 (9)  | 0.0300 (10) | 0.0247 (8)  | 0.0007 (7)  | -0.0008(7)  | 0.0006 (7)  |
| C11 | 0.0319 (9)  | 0.0396 (11) | 0.0238 (8)  | -0.0052 (8) | 0.0025 (7)  | -0.0006 (7) |
| C12 | 0.0249 (9)  | 0.0420 (11) | 0.0298 (9)  | -0.0039 (8) | 0.0042 (7)  | -0.0099 (8) |
| C13 | 0.0275 (9)  | 0.0357 (10) | 0.0326 (9)  | 0.0038 (8)  | -0.0032 (7) | -0.0038 (8) |
| C14 | 0.0288 (9)  | 0.0292 (9)  | 0.0260 (8)  | 0.0016 (7)  | -0.0010 (7) | 0.0001 (7)  |
| C15 | 0.0464 (11) | 0.0221 (9)  | 0.0245 (8)  | 0.0020 (8)  | -0.0005 (8) | -0.0023 (7) |
| C16 | 0.0291 (9)  | 0.0247 (9)  | 0.0250 (8)  | 0.0002 (7)  | 0.0060 (7)  | -0.0003 (7) |
| C17 | 0.0331 (9)  | 0.0262 (9)  | 0.0297 (9)  | 0.0005 (7)  | 0.0073 (7)  | -0.0011 (7) |
| C18 | 0.0356 (10) | 0.0242 (9)  | 0.0382 (10) | 0.0051 (7)  | 0.0128 (8)  | 0.0035 (8)  |
| C19 | 0.0298 (9)  | 0.0370 (11) | 0.0322 (9)  | 0.0075 (8)  | 0.0046 (7)  | 0.0082 (8)  |
| C20 | 0.0345 (10) | 0.0360 (11) | 0.0297 (9)  | 0.0018 (8)  | -0.0007 (7) | -0.0020 (8) |
| C21 | 0.0384 (10) | 0.0241 (9)  | 0.0266 (8)  | 0.0011 (7)  | 0.0007 (7)  | -0.0015 (7) |
| O1  | 0.0288 (7)  | 0.0435 (8)  | 0.0354 (7)  | -0.0024 (6) | 0.0003 (5)  | -0.0020 (6) |
| O2  | 0.0240 (6)  | 0.0287 (7)  | 0.0245 (6)  | 0.0000 (5)  | -0.0012 (5) | -0.0052 (5) |
| O3  | 0.0421 (7)  | 0.0206 (6)  | 0.0199 (5)  | 0.0046 (5)  | -0.0009(5)  | 0.0002 (4)  |

Geometric parameters (Å, °)

| C1—C4      | 1.527 (2)   | C10—C11     | 1.384 (2)   |
|------------|-------------|-------------|-------------|
| C1—C2      | 1.559 (2)   | C10—H10     | 0.9500      |
| C1—C7      | 1.562 (2)   | C11—C12     | 1.386 (3)   |
| C1—H1      | 1.0000      | C11—H11     | 0.9500      |
| C2—C3      | 1.530 (3)   | C12—C13     | 1.381 (3)   |
| C2—C5      | 1.537 (2)   | C12—H12     | 0.9500      |
| С2—Н2      | 1.0000      | C13—C14     | 1.387 (2)   |
| C3—O1      | 1.441 (2)   | С13—Н13     | 0.9500      |
| С3—НЗА     | 0.9900      | C14—H14     | 0.9500      |
| С3—Н3В     | 0.9900      | C15—O3      | 1.421 (2)   |
| C4—O1      | 1.433 (2)   | C15—C16     | 1.511 (2)   |
| C4—H4A     | 0.9900      | C15—H15A    | 0.9900      |
| C4—H4B     | 0.9900      | C15—H15B    | 0.9900      |
| C5—C6      | 1.534 (2)   | C16—C21     | 1.391 (2)   |
| С5—Н5А     | 0.9900      | C16—C17     | 1.394 (2)   |
| С5—Н5В     | 0.9900      | C17—C18     | 1.387 (3)   |
| C6—O2      | 1.4387 (19) | C17—H17     | 0.9500      |
| С6—С9      | 1.521 (2)   | C18—C19     | 1.389 (3)   |
| C6—C7      | 1.562 (2)   | C18—H18     | 0.9500      |
| С7—ОЗ      | 1.4305 (19) | C19—C20     | 1.379 (3)   |
| С7—С8      | 1.522 (2)   | C19—H19     | 0.9500      |
| C8—H8A     | 0.9800      | C20—C21     | 1.391 (2)   |
| C8—H8B     | 0.9800      | С20—Н20     | 0.9500      |
| C8—H8C     | 0.9800      | C21—H22     | 0.9500      |
| C9—C14     | 1.396 (2)   | O2—H2o      | 0.87 (2)    |
| C9—C10     | 1.397 (2)   |             |             |
| C4—C1—C2   | 103.32 (14) | H8B—C8—H8C  | 109.5       |
| C4—C1—C7   | 116.71 (14) | C14—C9—C10  | 117.94 (15) |
| C2—C1—C7   | 105.08 (13) | C14—C9—C6   | 122.61 (15) |
| C4—C1—H1   | 110.4       | C10—C9—C6   | 119.45 (14) |
| C2—C1—H1   | 110.4       | C11—C10—C9  | 121.08 (16) |
| С7—С1—Н1   | 110.4       | C11-C10-H10 | 119.5       |
| C3—C2—C5   | 114.28 (15) | С9—С10—Н10  | 119.5       |
| C3—C2—C1   | 103.32 (14) | C10-C11-C12 | 120.28 (17) |
| C5—C2—C1   | 106.17 (13) | C10-C11-H11 | 119.9       |
| С3—С2—Н2   | 110.9       | C12—C11—H11 | 119.9       |
| С5—С2—Н2   | 110.9       | C13—C12—C11 | 119.30 (16) |
| C1—C2—H2   | 110.9       | C13—C12—H12 | 120.3       |
| O1—C3—C2   | 105.82 (14) | C11—C12—H12 | 120.3       |
| O1—C3—H3A  | 110.6       | C12-C13-C14 | 120.61 (17) |
| С2—С3—НЗА  | 110.6       | С12—С13—Н13 | 119.7       |
| O1—C3—H3B  | 110.6       | C14—C13—H13 | 119.7       |
| С2—С3—Н3В  | 110.6       | C13—C14—C9  | 120.75 (16) |
| НЗА—СЗ—НЗВ | 108.7       | C13—C14—H14 | 119.6       |
| O1—C4—C1   | 106.40 (14) | C9—C14—H14  | 119.6       |

| O1—C4—H4A   | 110.4        | O3—C15—C16                 | 108.51 (13)         |
|-------------|--------------|----------------------------|---------------------|
| C1—C4—H4A   | 110.4        | O3—C15—H15A                | 110.0               |
| O1—C4—H4B   | 110.4        | С16—С15—Н15А               | 110.0               |
| C1—C4—H4B   | 110.4        | O3—C15—H15B                | 110.0               |
| H4A—C4—H4B  | 108.6        | C16—C15—H15B               | 110.0               |
| C6—C5—C2    | 106.29 (13)  | H15A—C15—H15B              | 108.4               |
| С6—С5—Н5А   | 110.5        | C21—C16—C17                | 118.78 (16)         |
| С2—С5—Н5А   | 110.5        | C21—C16—C15                | 121.85 (15)         |
| С6—С5—Н5В   | 110.5        | C17—C16—C15                | 119.36 (15)         |
| C2—C5—H5B   | 110.5        | C18—C17—C16                | 120.74 (17)         |
| H5A—C5—H5B  | 108.7        | С18—С17—Н17                | 119.6               |
| 02          | 104.83 (12)  | С16—С17—Н17                | 119.6               |
| O2—C6—C5    | 111.00 (13)  | C17—C18—C19                | 120.17 (17)         |
| C9—C6—C5    | 114.90 (13)  | C17—C18—H18                | 119.9               |
| 02          | 110.35 (12)  | C19—C18—H18                | 119.9               |
| C9—C6—C7    | 114.54 (13)  | C20-C19-C18                | 119.24 (16)         |
| C5—C6—C7    | 101.38 (12)  | C20-C19-H19                | 120.4               |
| 03-07-08    | 111 68 (13)  | C18 - C19 - H19            | 120.4               |
| 03-07-06    | 107 13 (12)  | C19 - C20 - C21            | 120.1<br>120.97(17) |
| C8-C7-C6    | 111 09 (14)  | C19 - C20 - H20            | 119.5               |
| 03-C7-C1    | 113.06 (13)  | $C_{21}$ $C_{20}$ $H_{20}$ | 119.5               |
| C8-C7-C1    | 109.21 (13)  | $C_{20}$ $C_{21}$ $C_{16}$ | 120.10 (16)         |
| C6-C7-C1    | 104.43 (13)  | C20—C21—H22                | 120.0               |
| C7—C8—H8A   | 109 5        | $C_{16}$ $C_{21}$ $H_{22}$ | 120.0               |
| C7—C8—H8B   | 109.5        | C4-01-C3                   | 103.87(13)          |
| H8A—C8—H8B  | 109.5        | C6-O2-H2o                  | 108.4(12)           |
| C7—C8—H8C   | 109.5        | C15 - C7                   | 116.08(12)          |
| H8A—C8—H8C  | 109.5        |                            | (12)                |
|             |              |                            |                     |
| C4—C1—C2—C3 | 0.84 (16)    | C5—C6—C9—C14               | 2.0 (2)             |
| C7—C1—C2—C3 | 123.68 (14)  | C7—C6—C9—C14               | -114.80 (17)        |
| C4—C1—C2—C5 | -119.73 (14) | O2-C6-C9-C10               | -55.45 (18)         |
| C7—C1—C2—C5 | 3.10 (17)    | C5-C6-C9-C10               | -177.55 (15)        |
| C5-C2-C3-O1 | 89.86 (17)   | C7—C6—C9—C10               | 65.64 (19)          |
| C1—C2—C3—O1 | -25.02 (17)  | C14—C9—C10—C11             | 1.7 (2)             |
| C2-C1-C4-O1 | 23.80 (16)   | C6-C9-C10-C11              | -178.76 (15)        |
| C7—C1—C4—O1 | -90.94 (17)  | C9—C10—C11—C12             | -0.7 (3)            |
| C3—C2—C5—C6 | -91.02 (17)  | C10-C11-C12-C13            | -0.8(3)             |
| C1—C2—C5—C6 | 22.18 (17)   | C11—C12—C13—C14            | 1.3 (3)             |
| C2—C5—C6—O2 | 79.01 (16)   | C12—C13—C14—C9             | -0.3 (3)            |
| C2—C5—C6—C9 | -162.29 (13) | C10-C9-C14-C13             | -1.2(2)             |
| C2—C5—C6—C7 | -38.20 (16)  | C6—C9—C14—C13              | 179.27 (15)         |
| O2—C6—C7—O3 | 42.19 (17)   | O3—C15—C16—C21             | -13.3 (2)           |
| C9—C6—C7—O3 | -75.80 (16)  | O3—C15—C16—C17             | 167.77 (15)         |
| C5—C6—C7—O3 | 159.87 (12)  | C21—C16—C17—C18            | -0.6 (2)            |
| O2—C6—C7—C8 | 164.41 (13)  | C15—C16—C17—C18            | 178.35 (16)         |
| C9—C6—C7—C8 | 46.42 (17)   | C16—C17—C18—C19            | 0.7 (3)             |
| C5—C6—C7—C8 | -77.91 (15)  | C17—C18—C19—C20            | -0.4 (3)            |
|             | · /          |                            |                     |

| O2—C6—C7—C1  | -77.98 (15)  | C18—C19—C20—C21 | 0.0 (3)      |
|--------------|--------------|-----------------|--------------|
| C9—C6—C7—C1  | 164.03 (13)  | C19—C20—C21—C16 | 0.1 (3)      |
| C5—C6—C7—C1  | 39.70 (15)   | C17—C16—C21—C20 | 0.2 (2)      |
| C4—C1—C7—O3  | -29.0 (2)    | C15—C16—C21—C20 | -178.73 (16) |
| C2—C1—C7—O3  | -142.74 (13) | C1—C4—O1—C3     | -40.50 (17)  |
| C4—C1—C7—C8  | -153.99 (15) | C2-C3-O1-C4     | 40.92 (17)   |
| C2—C1—C7—C8  | 92.26 (16)   | C16—C15—O3—C7   | 162.70 (13)  |
| C4—C1—C7—C6  | 87.11 (17)   | C8—C7—O3—C15    | 52.94 (19)   |
| C2-C1-C7-C6  | -26.63 (16)  | C6—C7—O3—C15    | 174.79 (14)  |
| O2—C6—C9—C14 | 124.12 (16)  | C1—C7—O3—C15    | -70.71 (18)  |
|              |              |                 |              |

#### Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C16–C21 ring.

| D—H···A                       | <i>D</i> —Н | Н…А      | $D \cdots A$ | D—H···A    |
|-------------------------------|-------------|----------|--------------|------------|
| 02—H2 <i>o</i> …O1            | 0.87 (2)    | 1.93 (2) | 2.7794 (17)  | 162.9 (18) |
| С10—Н10…ОЗ                    | 0.95        | 2.56     | 3.091 (2)    | 116        |
| C5—H5A····O2 <sup>i</sup>     | 0.99        | 2.58     | 3.266 (2)    | 126        |
| C19—H19…O1 <sup>ii</sup>      | 0.95        | 2.58     | 3.344 (2)    | 138        |
| C12—H12····Cg4 <sup>iii</sup> | 0.95        | 2.74     | 3.6619 (19)  | 165        |

Symmetry codes: (i) x, -y+3/2, z-1/2; (ii) -x+1, -y+1, -z+2; (iii) -x, -y+1, -z+2.

(III) (±)-(1a*R*,1b*S*,4a*R*,5*S*,5a*R*)-5-Benzyloxy-5-methyl-5a-phenylhexahydro-2*H*-oxireno[2',3':3,4]cyclopenta[1,2-c]furan

#### Crystal data

| $C_{21}H_{22}O_3$                                           |
|-------------------------------------------------------------|
| $M_r = 322.39$                                              |
| Orthorhombic, P2 <sub>1</sub> 2 <sub>1</sub> 2 <sub>1</sub> |
| <i>a</i> = 5.6392 (2) Å                                     |
| <i>b</i> = 11.0427 (5) Å                                    |
| c = 26.6311 (13)  Å                                         |
| $V = 1658.37 (13) \text{ Å}^3$                              |
| Z = 4                                                       |
| F(000) = 688                                                |

#### Data collection

Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator  $\omega$  scans 12562 measured reflections 2221 independent reflections

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.123$  $wR(F^2) = 0.279$ S = 1.17  $D_x = 1.291 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2191 reflections  $\theta = 2.9-27.5^{\circ}$  $\mu = 0.09 \text{ mm}^{-1}$ T = 120 KBlock, colourless  $0.34 \times 0.14 \times 0.04 \text{ mm}$ 

1867 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.073$   $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.9^{\circ}$   $h = -7 \rightarrow 7$   $k = -14 \rightarrow 10$  $l = -33 \rightarrow 34$ 

2221 reflections190 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

| Secondary atom site location: difference Fourier | $(\Delta/\sigma)_{\rm max} = 0.001$                            |
|--------------------------------------------------|----------------------------------------------------------------|
| map                                              | $\Delta \rho_{\rm max} = 0.40 \text{ e } \text{\AA}^{-3}$      |
| Hydrogen site location: inferred from            | $\Delta \rho_{\rm min} = -0.44 \text{ e } \text{\AA}^{-3}$     |
| neighbouring sites                               | Extinction correction: SHELXL97 (Sheldrick,                    |
| H-atom parameters constrained                    | 2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ |
| $w = 1/[\sigma^2(F_o^2) + (0.P)^2 + 10.5966P]$   | Extinction coefficient: 0.027 (5)                              |
| where $P = (F_o^2 + 2F_c^2)/3$                   |                                                                |
|                                                  |                                                                |

### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F<sup>2</sup>, conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2sigma(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F<sup>2</sup> are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

|     | X           | У          | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|-----|-------------|------------|-------------|-----------------------------|-----------|
| C1  | 0.6868 (17) | 0.6626 (7) | 0.1385 (3)  | 0.032 (2)                   |           |
| H1  | 0.8255      | 0.6533     | 0.1615      | 0.038*                      |           |
| C2  | 0.7362 (19) | 0.7660 (7) | 0.1007 (3)  | 0.035 (2)                   |           |
| H2  | 0.9101      | 0.7763     | 0.0947      | 0.042*                      |           |
| C3  | 0.631 (2)   | 0.8762 (7) | 0.1259 (4)  | 0.045 (3)                   |           |
| H3A | 0.7478      | 0.9148     | 0.1484      | 0.054*                      |           |
| H3B | 0.5793      | 0.9363     | 0.1005      | 0.054*                      |           |
| C4  | 0.471 (2)   | 0.7092 (8) | 0.1684 (3)  | 0.041 (2)                   |           |
| H4A | 0.3289      | 0.6596     | 0.1608      | 0.049*                      |           |
| H4B | 0.5024      | 0.7042     | 0.2049      | 0.049*                      |           |
| C5  | 0.6092 (14) | 0.7235 (7) | 0.0536 (3)  | 0.0232 (16)                 |           |
| Н5  | 0.6490      | 0.7608     | 0.0204      | 0.028*                      |           |
| C6  | 0.5563 (14) | 0.5938 (7) | 0.0566 (3)  | 0.0247 (17)                 |           |
| C7  | 0.6606 (15) | 0.5476 (7) | 0.1061 (3)  | 0.0230 (16)                 |           |
| C8  | 0.9005 (16) | 0.4920 (7) | 0.0942 (3)  | 0.0301 (18)                 |           |
| H8A | 0.9849      | 0.4746     | 0.1255      | 0.045*                      |           |
| H8B | 0.9937      | 0.5490     | 0.0740      | 0.045*                      |           |
| H8C | 0.8778      | 0.4167     | 0.0753      | 0.045*                      |           |
| C9  | 0.5260 (13) | 0.5131 (7) | 0.0124 (3)  | 0.0210 (15)                 |           |
| C10 | 0.3788 (15) | 0.4124 (7) | 0.0148 (3)  | 0.0298 (18)                 |           |
| H10 | 0.2965      | 0.3951     | 0.0451      | 0.036*                      |           |
| C11 | 0.3498 (17) | 0.3360 (8) | -0.0267 (3) | 0.036 (2)                   |           |
| H11 | 0.2495      | 0.2671     | -0.0245     | 0.043*                      |           |
| C12 | 0.4673 (19) | 0.3614 (8) | -0.0704 (3) | 0.038 (2)                   |           |
| H12 | 0.4526      | 0.3088     | -0.0985     | 0.046*                      |           |
| C13 | 0.606 (2)   | 0.4624 (9) | -0.0735 (3) | 0.060 (4)                   |           |
| H13 | 0.6799      | 0.4824     | -0.1044     | 0.072*                      |           |
| C14 | 0.639 (2)   | 0.5365 (9) | -0.0319 (3) | 0.046 (3)                   |           |
| H14 | 0.7420      | 0.6043     | -0.0343     | 0.055*                      |           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| C15  | 0.5820 (19) | 0.4029 (9)  | 0.1723 (3)   | 0.042 (2)   |          |
|------|-------------|-------------|--------------|-------------|----------|
| H15A | 0.7256      | 0.3557      | 0.1638       | 0.050*      |          |
| H15B | 0.6280      | 0.4654      | 0.1972       | 0.050*      |          |
| C17A | 0.232 (3)   | 0.3698 (9)  | 0.2235 (6)   | 0.030 (6)*  | 0.54 (3) |
| H17A | 0.2215      | 0.4538      | 0.2309       | 0.035*      | 0.54 (3) |
| C18A | 0.062 (2)   | 0.2904 (12) | 0.2423 (5)   | 0.038 (5)*  | 0.54 (3) |
| H18A | -0.0637     | 0.3201      | 0.2625       | 0.045*      | 0.54 (3) |
| C19A | 0.077 (3)   | 0.1675 (12) | 0.2315 (5)   | 0.034 (4)*  | 0.54 (3) |
| H19A | -0.0389     | 0.1132      | 0.2443       | 0.041*      | 0.54 (3) |
| C20A | 0.261 (3)   | 0.1240 (9)  | 0.2019 (4)   | 0.032 (5)*  | 0.54 (3) |
| H20A | 0.2711      | 0.0399      | 0.1945       | 0.038*      | 0.54 (3) |
| C21A | 0.431 (3)   | 0.2033 (11) | 0.1831 (4)   | 0.037 (5)*  | 0.54 (3) |
| H21A | 0.5564      | 0.1736      | 0.1628       | 0.045*      | 0.54 (3) |
| C16A | 0.416 (2)   | 0.3262 (10) | 0.1939 (6)   | 0.026 (5)*  | 0.54 (3) |
| C17B | 0.226 (3)   | 0.3804 (10) | 0.2286 (7)   | 0.035 (8)*  | 0.46 (3) |
| H17B | 0.2537      | 0.4629      | 0.2369       | 0.043*      | 0.46 (3) |
| C18B | 0.040 (3)   | 0.3181 (13) | 0.2510 (6)   | 0.035 (5)*  | 0.46 (3) |
| H18B | -0.0600     | 0.3581      | 0.2746       | 0.042*      | 0.46 (3) |
| C19B | -0.001 (3)  | 0.1974 (14) | 0.2390 (5)   | 0.030 (5)*  | 0.46 (3) |
| H19B | -0.1285     | 0.1549      | 0.2543       | 0.036*      | 0.46 (3) |
| C20B | 0.145 (4)   | 0.1390 (10) | 0.2046 (5)   | 0.034 (5)*  | 0.46 (3) |
| H20B | 0.1167      | 0.0565      | 0.1963       | 0.041*      | 0.46 (3) |
| C21B | 0.331 (4)   | 0.2012 (13) | 0.1822 (5)   | 0.029 (5)*  | 0.46 (3) |
| H21B | 0.4304      | 0.1612      | 0.1586       | 0.035*      | 0.46 (3) |
| C16B | 0.372 (3)   | 0.3219 (13) | 0.1942 (7)   | 0.032 (6)*  | 0.46 (3) |
| 01   | 0.4314 (16) | 0.8325 (6)  | 0.1539 (2)   | 0.057 (2)   |          |
| O2   | 0.3649 (10) | 0.6835 (5)  | 0.0638 (2)   | 0.0279 (13) |          |
| O3   | 0.4946 (11) | 0.4616 (5)  | 0.12770 (19) | 0.0301 (13) |          |
|      |             |             |              |             |          |

| Atomic | displ | lacement | parameters | $(Å^2)$ |
|--------|-------|----------|------------|---------|
|--------|-------|----------|------------|---------|

|     | $U^{11}$   | $U^{22}$  | $U^{33}$  | $U^{12}$   | $U^{13}$   | $U^{23}$   |
|-----|------------|-----------|-----------|------------|------------|------------|
| C1  | 0.043 (5)  | 0.025 (4) | 0.027 (4) | 0.011 (4)  | -0.011 (4) | -0.004 (3) |
| C2  | 0.046 (6)  | 0.025 (4) | 0.033 (4) | 0.014 (4)  | -0.003 (4) | -0.006 (3) |
| C3  | 0.072 (8)  | 0.020 (4) | 0.043 (5) | 0.010 (5)  | -0.014 (6) | -0.003 (4) |
| C4  | 0.060 (6)  | 0.037 (5) | 0.026 (4) | 0.023 (5)  | -0.007 (4) | -0.001 (4) |
| C5  | 0.018 (4)  | 0.027 (4) | 0.025 (4) | 0.002 (3)  | 0.003 (3)  | 0.003 (3)  |
| C6  | 0.021 (4)  | 0.031 (4) | 0.023 (3) | 0.013 (3)  | 0.000 (3)  | 0.006 (3)  |
| C7  | 0.025 (4)  | 0.019 (3) | 0.025 (3) | 0.004 (3)  | -0.005 (3) | 0.000 (3)  |
| C8  | 0.028 (4)  | 0.024 (4) | 0.038 (4) | 0.005 (4)  | -0.005 (4) | -0.005 (3) |
| C9  | 0.017 (3)  | 0.024 (4) | 0.022 (3) | -0.003 (3) | -0.004 (3) | 0.004 (3)  |
| C10 | 0.017 (4)  | 0.026 (4) | 0.046 (4) | 0.000 (3)  | 0.012 (4)  | 0.000 (4)  |
| C11 | 0.033 (5)  | 0.025 (4) | 0.049 (5) | -0.003 (4) | 0.004 (4)  | -0.006 (4) |
| C12 | 0.058 (6)  | 0.028 (4) | 0.028 (4) | -0.015 (5) | -0.003 (4) | -0.007 (3) |
| C13 | 0.094 (10) | 0.052 (6) | 0.034 (5) | -0.041 (7) | 0.024 (6)  | -0.014 (4) |
| C14 | 0.059 (7)  | 0.054 (6) | 0.025 (4) | -0.041 (6) | 0.013 (4)  | -0.007 (4) |
| C15 | 0.042 (6)  | 0.051 (5) | 0.032 (4) | 0.005 (5)  | 0.001 (4)  | 0.020 (4)  |
| 01  | 0.084 (6)  | 0.044 (4) | 0.042 (4) | 0.033 (4)  | 0.013 (4)  | 0.003 (3)  |
|     |            |           |           |            |            |            |

| 02 | 0.021 (3) | 0.035 (3) | 0.028 (3) | 0.007 (3) | 0.006 (2) | 0.004 (2) |
|----|-----------|-----------|-----------|-----------|-----------|-----------|
| 03 | 0.033 (3) | 0.031 (3) | 0.026 (3) | 0.009 (3) | 0.001 (3) | 0.007 (2) |

Geometric parameters (Å, °)

| C1—C7    | 1.542 (10) | C12—H12       | 0.9500     |
|----------|------------|---------------|------------|
| C1—C4    | 1.545 (13) | C13—C14       | 1.390 (11) |
| C1—C2    | 1.547 (11) | C13—H13       | 0.9500     |
| C1—H1    | 1.0000     | C14—H14       | 0.9500     |
| C2—C3    | 1.512 (11) | C15—C16A      | 1.387 (13) |
| C2—C5    | 1.519 (11) | C15—O3        | 1.441 (9)  |
| C2—H2    | 1.0000     | C15—C16B      | 1.596 (15) |
| C3—O1    | 1.432 (14) | C15—H15A      | 0.9900     |
| С3—НЗА   | 0.9900     | C15—H15B      | 0.9900     |
| С3—Н3В   | 0.9900     | C17A—C18A     | 1.3900     |
| C4—O1    | 1.433 (10) | C17A—C16A     | 1.3900     |
| C4—H4A   | 0.9900     | C17A—H17A     | 0.9500     |
| C4—H4B   | 0.9900     | C18A—C19A     | 1.3900     |
| C5—C6    | 1.465 (11) | C18A—H18A     | 0.9500     |
| C5—O2    | 1.472 (9)  | C19A—C20A     | 1.3900     |
| С5—Н5    | 1.0000     | C19A—H19A     | 0.9500     |
| C6—O2    | 1.477 (9)  | C20A—C21A     | 1.3900     |
| С6—С9    | 1.487 (10) | C20A—H20A     | 0.9500     |
| C6—C7    | 1.532 (10) | C21A—C16A     | 1.3900     |
| С7—ОЗ    | 1.452 (10) | C21A—H21A     | 0.9500     |
| C7—C8    | 1.519 (11) | C17B—C18B     | 1.3900     |
| C8—H8A   | 0.9800     | C17B—C16B     | 1.3900     |
| C8—H8B   | 0.9800     | C17B—H17B     | 0.9500     |
| C8—H8C   | 0.9800     | C18B—C19B     | 1.3900     |
| C9—C14   | 1.364 (10) | C18B—H18B     | 0.9500     |
| C9—C10   | 1.389 (10) | C19B—C20B     | 1.3900     |
| C10-C11  | 1.399 (11) | C19B—H19B     | 0.9500     |
| C10—H10  | 0.9500     | C20B—C21B     | 1.3900     |
| C11—C12  | 1.370 (12) | C20B—H20B     | 0.9500     |
| C11—H11  | 0.9500     | C21B—C16B     | 1.3900     |
| C12—C13  | 1.364 (13) | C21B—H21B     | 0.9500     |
|          |            |               |            |
| C7—C1—C4 | 119.2 (8)  | C13—C12—H12   | 120.2      |
| C7—C1—C2 | 105.2 (6)  | C11—C12—H12   | 120.2      |
| C4—C1—C2 | 103.4 (7)  | C12—C13—C14   | 120.8 (9)  |
| C7—C1—H1 | 109.5      | C12—C13—H13   | 119.6      |
| C4—C1—H1 | 109.5      | C14—C13—H13   | 119.6      |
| C2—C1—H1 | 109.5      | C9—C14—C13    | 120.9 (8)  |
| C3—C2—C5 | 115.4 (8)  | C9—C14—H14    | 119.5      |
| C3—C2—C1 | 103.6 (7)  | C13—C14—H14   | 119.5      |
| C5—C2—C1 | 102.9 (7)  | C16A—C15—O3   | 112.6 (10) |
| С3—С2—Н2 | 111.4      | C16A—C15—C16B | 5.6 (12)   |
| С5—С2—Н2 | 111.4      | O3—C15—C16B   | 107.4 (10) |

| С1—С2—Н2    | 111.4     | C16A—C15—H15A  | 109.1      |
|-------------|-----------|----------------|------------|
| O1—C3—C2    | 105.6 (7) | O3—C15—H15A    | 109.1      |
| O1—C3—H3A   | 110.6     | C16B—C15—H15A  | 113.4      |
| С2—С3—НЗА   | 110.6     | C16A—C15—H15B  | 109.1      |
| O1—C3—H3B   | 110.6     | O3—C15—H15B    | 109.1      |
| С2—С3—Н3В   | 110.6     | C16B—C15—H15B  | 110.0      |
| НЗА—СЗ—НЗВ  | 108.8     | H15A—C15—H15B  | 107.8      |
| O1—C4—C1    | 107.4 (8) | C18A—C17A—C16A | 120.0      |
| O1—C4—H4A   | 110.2     | C18A—C17A—H17A | 120.0      |
| C1—C4—H4A   | 110.2     | C16A—C17A—H17A | 120.0      |
| O1—C4—H4B   | 110.2     | C19A—C18A—C17A | 120.0      |
| C1—C4—H4B   | 110.2     | C19A—C18A—H18A | 120.0      |
| H4A—C4—H4B  | 108.5     | C17A—C18A—H18A | 120.0      |
| C6—C5—O2    | 60.4 (5)  | C18A—C19A—C20A | 120.0      |
| C6—C5—C2    | 110.7 (7) | C18A—C19A—H19A | 120.0      |
| O2—C5—C2    | 112.4 (7) | C20A—C19A—H19A | 120.0      |
| С6—С5—Н5    | 119.8     | C21A—C20A—C19A | 120.0      |
| O2—C5—H5    | 119.8     | C21A—C20A—H20A | 120.0      |
| С2—С5—Н5    | 119.8     | C19A—C20A—H20A | 120.0      |
| C5—C6—O2    | 60.1 (5)  | C20A—C21A—C16A | 120.0      |
| C5—C6—C9    | 124.5 (7) | C20A—C21A—H21A | 120.0      |
| O2—C6—C9    | 114.9 (6) | C16A—C21A—H21A | 120.0      |
| C5—C6—C7    | 107.1 (7) | C15—C16A—C21A  | 118.0 (9)  |
| O2—C6—C7    | 113.1 (6) | C15—C16A—C17A  | 121.9 (9)  |
| C9—C6—C7    | 121.7 (6) | C21A—C16A—C17A | 120.0      |
| O3—C7—C8    | 113.2 (6) | C18B—C17B—C16B | 120.0      |
| O3—C7—C6    | 108.2 (6) | C18B—C17B—H17B | 120.0      |
| C8—C7—C6    | 107.3 (6) | C16B—C17B—H17B | 120.0      |
| O3—C7—C1    | 112.3 (6) | C19B—C18B—C17B | 120.0      |
| C8—C7—C1    | 111.3 (7) | C19B—C18B—H18B | 120.0      |
| C6—C7—C1    | 104.1 (6) | C17B—C18B—H18B | 120.0      |
| С7—С8—Н8А   | 109.5     | C18B—C19B—C20B | 120.0      |
| С7—С8—Н8В   | 109.5     | C18B—C19B—H19B | 120.0      |
| H8A—C8—H8B  | 109.5     | C20B—C19B—H19B | 120.0      |
| С7—С8—Н8С   | 109.5     | C21B—C20B—C19B | 120.0      |
| H8A—C8—H8C  | 109.5     | C21B—C20B—H20B | 120.0      |
| H8B—C8—H8C  | 109.5     | C19B—C20B—H20B | 120.0      |
| C14—C9—C10  | 118.0 (7) | C20B—C21B—C16B | 120.0      |
| C14—C9—C6   | 121.1 (7) | C20B—C21B—H21B | 120.0      |
| C10—C9—C6   | 120.8 (7) | C16B—C21B—H21B | 120.0      |
| C9—C10—C11  | 121.1 (8) | C21B—C16B—C17B | 120.0      |
| С9—С10—Н10  | 119.5     | C21B—C16B—C15  | 125.2 (10) |
| C11—C10—H10 | 119.5     | C17B—C16B—C15  | 114.8 (10) |
| C12—C11—C10 | 119.4 (8) | C3—O1—C4       | 109.9 (8)  |
| C12—C11—H11 | 120.3     | C5—O2—C6       | 59.5 (5)   |
| C10—C11—H11 | 120.3     | C15—O3—C7      | 113.6 (7)  |
| C13—C12—C11 | 119.6 (8) |                |            |

| C7—C1—C2—C3    | 149.9 (8)   | C9-C10-C11-C12      | -0.4 (14)   |
|----------------|-------------|---------------------|-------------|
| C4—C1—C2—C3    | 24.2 (10)   | C10-C11-C12-C13     | -1.8 (15)   |
| C7—C1—C2—C5    | 29.3 (9)    | C11—C12—C13—C14     | 3.5 (18)    |
| C4—C1—C2—C5    | -96.4 (8)   | C10-C9-C14-C13      | 0.7 (16)    |
| C5-C2-C3-O1    | 79.5 (9)    | C6—C9—C14—C13       | -178.4 (10) |
| C1-C2-C3-01    | -32.2 (10)  | C12—C13—C14—C9      | -3.0 (19)   |
| C7—C1—C4—O1    | -124.4 (8)  | C16A—C17A—C18A—C19A | 0.0         |
| C2-C1-C4-01    | -8.2 (9)    | C17A—C18A—C19A—C20A | 0.0         |
| C3—C2—C5—C6    | -128.9 (8)  | C18A—C19A—C20A—C21A | 0.0         |
| C1—C2—C5—C6    | -16.8 (9)   | C19A—C20A—C21A—C16A | 0.0         |
| C3—C2—C5—O2    | -63.5 (10)  | O3—C15—C16A—C21A    | 97.6 (11)   |
| C1—C2—C5—O2    | 48.6 (8)    | C16B—C15—C16A—C21A  | 118 (11)    |
| C2—C5—C6—O2    | 104.7 (7)   | O3—C15—C16A—C17A    | -79.3 (11)  |
| O2—C5—C6—C9    | 101.2 (8)   | C16B—C15—C16A—C17A  | -59 (11)    |
| C2—C5—C6—C9    | -154.1 (8)  | C20A—C21A—C16A—C15  | -176.9 (13) |
| O2—C5—C6—C7    | -107.2 (6)  | C20A—C21A—C16A—C17A | 0.0         |
| C2—C5—C6—C7    | -2.5 (9)    | C18A—C17A—C16A—C15  | 176.8 (13)  |
| C5—C6—C7—O3    | 140.5 (6)   | C18A—C17A—C16A—C21A | 0.0         |
| O2—C6—C7—O3    | 76.3 (8)    | C16B—C17B—C18B—C19B | 0.0         |
| C9—C6—C7—O3    | -67.0 (9)   | C17B—C18B—C19B—C20B | 0.0         |
| C5—C6—C7—C8    | -97.2 (7)   | C18B—C19B—C20B—C21B | 0.0         |
| O2—C6—C7—C8    | -161.3 (6)  | C19B—C20B—C21B—C16B | 0.0         |
| C9—C6—C7—C8    | 55.4 (9)    | C20B—C21B—C16B—C17B | 0.0         |
| C5—C6—C7—C1    | 20.9 (8)    | C20B—C21B—C16B—C15  | 178.5 (15)  |
| O2—C6—C7—C1    | -43.2 (9)   | C18B—C17B—C16B—C21B | 0.0         |
| C9—C6—C7—C1    | 173.5 (7)   | C18B—C17B—C16B—C15  | -178.6 (14) |
| C4—C1—C7—O3    | -32.7 (9)   | C16A—C15—C16B—C21B  | -69 (11)    |
| C2-C1-C7-O3    | -148.0 (7)  | O3—C15—C16B—C21B    | 90.9 (13)   |
| C4—C1—C7—C8    | -160.7 (7)  | C16A—C15—C16B—C17B  | 109 (11)    |
| C2-C1-C7-C8    | 84.0 (8)    | O3—C15—C16B—C17B    | -90.5 (10)  |
| C4—C1—C7—C6    | 84.0 (8)    | C2-C3-O1-C4         | 28.3 (10)   |
| C2-C1-C7-C6    | -31.2 (9)   | C1—C4—O1—C3         | -12.3 (10)  |
| C5-C6-C9-C14   | 28.5 (13)   | C2C5C6              | -101.8 (7)  |
| O2—C6—C9—C14   | 98.1 (10)   | C9—C6—O2—C5         | -116.9 (8)  |
| C7—C6—C9—C14   | -119.2 (10) | C7—C6—O2—C5         | 97.1 (7)    |
| C5—C6—C9—C10   | -150.6 (8)  | C16A—C15—O3—C7      | 176.7 (9)   |
| O2—C6—C9—C10   | -81.0 (9)   | C16B—C15—O3—C7      | 174.6 (8)   |
| C7—C6—C9—C10   | 61.7 (11)   | C8—C7—O3—C15        | 56.0 (8)    |
| C14—C9—C10—C11 | 0.9 (13)    | C6—C7—O3—C15        | 174.7 (6)   |
| C6-C9-C10-C11  | -179.9 (8)  | C1—C7—O3—C15        | -71.1 (8)   |

## Hydrogen-bond geometry (Å, °)

Cg6 is the centroid of the C16a–C21a ring.

| D—H···A                           | D—H  | Н…А  | D····A     | <i>D</i> —H··· <i>A</i> |
|-----------------------------------|------|------|------------|-------------------------|
| С10—Н10…О3                        | 0.95 | 2.57 | 3.124 (10) | 117                     |
| C8—H8 <i>B</i> ···O2 <sup>i</sup> | 0.98 | 2.58 | 3.462 (10) | 150                     |

|                                               |      |      | supporting information |     |  |
|-----------------------------------------------|------|------|------------------------|-----|--|
| C14—H14…O2 <sup>ii</sup>                      | 0.95 | 2.57 | 3.450 (11)             | 155 |  |
| C4—H4 <i>B</i> ··· <i>Cg</i> 6 <sup>iii</sup> | 0.99 | 2.65 | 3.569 (10)             | 154 |  |

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*+1/2, -*y*+3/2, -*z*; (iii) -*x*+1, *y*+1/2, -*z*+1/2.