

Received 1 September 2015 Accepted 7 October 2015

Edited by G. Smith, Queensland University of Technology, Australia

Keywords: crystal structure; 2,2'-disubstituted 1,1':4',1"-terphenyl; triethylamine solvate; compound synthesis; hydrogen bonding

CCDC reference: 1430018 **Supporting information**: this article has supporting information at journals.iucr.org/e

Crystal structure of 2,2"-bis(2,7-dichloro-9hydroxy-9*H*-fluoren-9-yl)-1,1':4',1"-terphenyl triethylamine trisolvate

Henrik Klien, Wilhelm Seichter and Edwin Weber*

Institut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany. *Correspondence e-mail: edwin.weber@chemie-tu.freiberg.de

In the title solvate, $C_{44}H_{26}Cl_4O_2 \cdot 3C_6H_{15}N$, the asymmetric part of the unit cell comprises two halves of the diol molecules, 2.2"-bis(2.7-dichloro-9-hydroxy-9Hfluoren-9-yl)-1,1':4',1''-terphenyl, and three molecules of triethylamine, *i. e.* the diol molecules are located on crystallographic symmetry centres. Two of the solvent molecules are disordered over two positions [occupancy ratios of 0.567 (3):0.433 (3) and 0.503 (3):0.497 (3)]. In the diol molecules, the outer rings of the 1,1':4',1"-terphenyl elements are twisted with reference to their central arene ring and the mean planes of the fluorenyl moieties are inclined with respect to the terphenyl ring to which they are connected, the latter making dihedral angles of 82.05(8) and $82.28(8)^{\circ}$. The presence of two 9-fluoren-9-ol units attached at positions 2 and 2'' of the terphenyl moiety induces a 'folded' geometry which is stabilized by intramolecular $C-H\cdots O$ hydrogen bonds and π - π stacking interactions, the latter formed between the fluorenyl units and the central ring of the terphenyl unit [centroid-centroid distances = 3.559 (1) and 3.562(1) Å]. The crystal is composed of 1:2 complex units, in which the solvent molecules are associated with the diol molecules via $O-H \cdots N$ hydrogen bonds, while the remaining solvent molecule is linked to the host by a $C-H\cdots N$ hydrogen bond. The given pattern of intermolecular interactions results in formation of chain structures extending along [010].

1. Chemical context

Compounds featuring two bulky 9-hydroxy-9-fluorenyl moieties laterally attached to a linear central unit such as a biphenyl group (Weber et al., 1993; Barbour et al., 1993; Ibragimov et al., 2001; Skobridis et al., 2007) or other linear combinations of phenylene and ethylene components (Weber et al., 2002) are well known for their high ability to form crystalline host-guest inclusions (Weber, 1996). Both exchange of the central biphenyl axis for a 1,1':4',1''-terphenyl moiety [cf. (I)] (Klien et al., 2013, 2014) as well as the addition of substituents to the lateral fluorenyl groups in a representative molecule (Bourne et al., 1994; Caira et al., 1997; Weber et al., 2002) have been performed in order to exercise potential control of the molecular packing in the crystal and thus on the inclusion behavior towards selected guests. Along these lines, aside from conventional hydrogen bonding (Braga & Grepioni, 2004), Cl···Cl supramolecular interactions (Awwadi et al., 2006) have recently been found to support crystal engineering of an intended lattice structure (Metrangolo et al., 2008; Mukherjee et al., 2014). Being associated with this, a corresponding structural modification of the parent molecule (I) by chloro substitution, giving rise to compound (II), presented a promising study. Hence, the synthesis of (II) was undertaken and is reported on here in detail. We were also

research communications

successful in preparing a crystalline inclusion solvate of (II) with triethylamine, the title compound (II*a*), the crystal structure of which is described and discussed and compared to the structures of related compounds.

2. Structural commentary

The title solvate (II*a*) crystallizes in the space group $P\overline{1}$ with two halves of the diol molecules (centred at $x + \frac{1}{2}$, y, z and x + 1, $y + \frac{1}{2}$, $z + \frac{1}{2}$) and three molecules of triethylamine in the

asymmetric unit, i.e. the diol molecules occupy crystallographic inversion centres (Fig. 1). Two of the solvent molecules are disordered over two positions with occupancy ratios of 0.567 (3):0.433 (3) and 0.503 (3):0.497 (3). A perspective view of the molecular structure including ring specification is depicted in Fig. 1. The fluorenyl moieties of the diol molecules show a slight distortion from strict planarity with the largest distances from the best plane being 0.027 (1) and -0.030 (1) Å for C7 and C10, respectively, and 0.059 (1) and -0.068 (1) Å for C8A and C11A. respectively The molecules adopt a 'folded' geometry which is stabilized by two types of intermolecular interactions. The OH oxygen atoms form relatively strong C-H···O hydrogen bonds $[d(H \cdot \cdot O) 2.22, 2.23 \text{ Å}]$ (Desiraju & Steiner, 1999) which enforce a nearly orthogonal orientation of the fluorenyl moieties with respect to the terphenyl ring, to which they are attached: the dihedral angles between the five-membered ring of the fluorenyl unit defined by C1-C13 (or C1A-C13A) and the six-membered rings of the terphenyl unit defined by C14-C19 (or C14A-C19A) are 82.05 (8) or 82.28 (8)°, respectively. Moreover, the location of the central ring of the terphenyl unit between the fluorenyl units [ring centroid distances = 3.559(1) and 3.562(1)Å] indicate the presence of π - π stacking interactions (James, 2004; Martinez & Iverson, 2012) between these molecular parts. These cooperative intramolecular interactions enforce a nearly orthogonal arrangement of the outer ring (B or B') with respect to the inner ring (A or A') (Fig. 2) of the terphenyl unit [inter-ring dihedral angles = 76.3(1) and $79.3(1)^{\circ}$, respectively].

Figure 1

A perspective view of the title solvate (II*a*) including the atom numbering and ring specification. Anisotropic displacement parameters for non-hydrogen atoms are drawn at the 50% probability level. Dashed lines represent hydrogen-bonding interactions. The molecules occupy the symmetry centers $x + \frac{1}{2}$, y, z and x + 1, $y + \frac{1}{2}$, $z + \frac{1}{2}$)

3. Supramolecular features

According to the distinct acceptor character of the solvent species, the crystal structure is constructed of 1:2 complex units with the nitrogen atom of the solvent hydrogen-bonded to the OH hydrogen atom of the diol host $[d(H \cdot \cdot \cdot N) 1.91 -$ 1.95 Å] (Table 1). The remaining solvent molecule is connected to the host via C-H···O hydrogen bonding $[d(H \cdot \cdot \cdot N) 2.54; 2.60 \text{ Å}]$, giving an overall chain structure extending along [010] (Fig. 2). Interactions involving the chlorine atoms are not perceptible. A comparative consideration regarding the geometric features of the diol molecule in the present structure and the solvent-free structure of the corresponding unsubstituted compound (I) and its derivatives bearing alkyl groups in the 2- and 7-positions of the fluorenyl moieties as well as a variety of their inclusion structures (Klien et al. 2013, 2014), reveals restricted conformational flexibility. This means that neither the presence of substituents nor the nature of the included solvent species markedly affect the conformation of the diol molecule. Obviously, the molecular geometries in the solid-state structures follow close-packing requirements and, to a lesser extent, association effects.

4. Database survey

A search of the Cambridge Structural Database (Groom & Allen, 2014) for the 2,2"-disubstituted *p*-terphenyls yielded eleven hits, namely 4,4""-bis(4-methoxybenzoyl)-

Table 1	
Hydrogen-bond geometry (Å, °).	

$\overline{D - \mathbf{H} \cdot \cdot \cdot A}$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O1-H1\cdots N1D^{i}$	0.84	1.95	2.781 (2)	171
$O1-H1\cdots N1DA^{i}$	0.84	1.91	2.731 (2)	164
$O1A - H1A \cdots N1B^{ii}$	0.84	1.94	2.766 (2)	167
$C4-H4\cdots O1A^{iii}$	0.95	2.54	3.489 (2)	175
$C4A - H4A \cdots O1^{iv}$	0.95	2.47	3.403 (2)	168
$C9-H9\cdots N1C^{v}$	0.95	2.54	3.459 (2)	163
$C9-H9\cdots N1CA^{v}$	0.95	2.60	3.519 (2)	162

Symmetry codes: (i) x, y, z - 1; (ii) -x + 1, -y + 2, -z + 1; (iii) -x + 1, -y + 1, -z + 1; (iv) -x + 2, -y + 1, -z; (v) -x + 1, -y + 1, -z.

1,1':2',1":4",1"':2"'',1"''-quinquephenyl (Debroy *et al.*, 2009), 2,2"-bis(bromomethyl)-*p*-terphenyl (Jones & Kuś, 2005), 2,2"dimethyl-*p*-terphenyl (Lunazzi *et al.*, 2005), 2',4",2"''-quinquephenyl (Toussaint, 1966), 9,9'-(1,1':4',1"-terphenyl-2,2"diyl)bis(9*H*-fluorene-9-ol) bis(diethylamine) clathrate (Klien *et al.*, 2013), 9,9'-(1,1':4',1"-terphenyl-2,2"-diyl)bis(9*H*-fluorene-9-ol) bis(propan-1-ol) clathrate (Klien *et al.*, 2013), 9,9'-(1,1':4',1"-terphenyl-2,2"-diyl)bis(9*H*-fluorene-9-ol) bis(butan-1-ol) clathrate (Klien *et al.*, 2013), 9,9'-(1,1':4',1"-terphenyl-2,2"-diyl)bis(9*H*-fluorene-9-ol) bis(ethanol) clathrate (Klien *et al.*, 2013), 9,9'-(1,1':4',1"-terphenyl-2,2"-diyl)bis(2,7-di-*t*-butyl-9*H*-fluorene-9-ol) bis(propan-1-ol) clathrate (Klien *et al.*, 2013), 9,9'-(1,1':4',1"-terphenyl-2,2"-diyl)bis(2,7-di-*t*-butyl-9*H*fluorene-9-ol) bis(diethylamine) clathrate (Klien *et al.*, 2013), 9,9'-(1,1':4',1"-terphenyl-2,2"-diyl)bis(2,7-di-*t*-butyl-9*H*fluorene-9-ol) bis(diethylamine) clathrate (Klien *et al.*, 2013), 9,9'-(1,1':4',1"-terphenyl-2,2"-diyl)bis(2,7-di-*t*-butyl-9*H*fluorene-9-ol) bis(diethylamine) clathrate (Klien *et al.*, 2013), 9,9'-(1,1':4',1"-terphenyl-2,2"-diyl)bis(2,7-di-*t*-butyl-9*H*-fluorene-9-ol) bis(diethylamine) clathrate (Klien *et al.*, 2013),

Figure 2

The packing of the title compound (IIa) in the unit cell. Hydrogen bonds are shown as dashed lines.

research communications

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{44}H_{26}Cl_4O_2 \cdot 3C_6H_{15}N$
M _r	1032.01
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	14.5995 (2), 14.8094 (2),
	15.7705 (3)
α, β, γ (°)	68.373 (1), 66.837 (1), 67.558 (1)
$V(Å^3)$	2800.13 (8)
Z	2
Radiation type	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.26
Crystal size (mm)	$0.42 \times 0.40 \times 0.23$
Data collection	
Diffractometer	Bruker CCD area detector
Absorption correction	Multi-scan (SADABS; Bruker,
	2008)
T_{\min}, T_{\max}	0.900, 0.943
No. of measured, independent and	53831, 14031, 11477
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.025
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.669
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.040, 0.113, 1.01
No. of reflections	14031
No. of parameters	773
No. of restraints	24
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.59, -0.59

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS97 and SHELXTL (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015) and ORTEP-3 for Windows (Farrugia, 2012).

ene-9-ol) bis(butan-1-ol) clathrate (Klien *et al.*, 2013). In all cases, the terphenyl framework adopts a twisted conformation, which in the case of the bisfluorenyl-substituted derivatives is stabilized by intramolecular π - π arene stacking and C-H···O hydrogen bonds. The crystal structures of the clathrates, which involve protic guest species in general, are constructed of 1:2 host-guest complexes with the complex components associated with other *via* O-H···O and O-H···N hydrogen bonds. Both of these features, regarding molecular conformation and supramolecular interactions, reappear in the title compound.

5. Synthesis and crystallization

The unsolvated compound (II) was prepared by addition of a solution of *n*-butyllithium (1.6 *M* in hexane, 1.5 ml, 2.3 mmol) to a cold solution (195 K) of 2,2''-diiodo-1,1':4',1''-terphenyl (0.5 g, 1.0 mmol) in 20 ml of dry THF. After 45 min of stirring, 4,4'-dichlorobenzophenone (0.52 g, 2.1 mmol), dissolved in 4 ml benzene and 15 ml THF, was added. The colourless reaction mixture was warmed to room temperature and stirred for 4 h. The solution was extracted twice with diethyl ether. The combined organic extracts were washed with water, dried over anhydrous sodium sulfate and concentrated under reduced pressure. Colourless crystals were isolated by recrystallization from hexane (yield: 7.0%). M.p. 543–546 K;

ESI-MS $[M + H]^{-}m/z$ 731.3. IR (KBr) ν (cm⁻¹) 3547, 3056, 3025, 1913, 1641, 1591, 1575, 1489, 1331, 1182, 1157, 1097, 1014, 919, 903, 840, 761. ¹H NMR (500.1 MHz; CDCl₃): δ = 2.84 (2H, *s*, OH, 6.67 (4H, *s*, ArH), 6.75 (2H, *d*, ³J_{HH} = 7.80 Hz, ArH), 7.09 (8H, *d*, ³J_{HH} = 8.50 Hz, ArH), 7.11 (2H, *d*, ³J_{HH} = 8.00 Hz, ArH), 7.22 (2H, *t*, ³J_{HH} = 7.50 Hz, ArH), 7.26 (8H, *d*, ³J_{HH} = 9.00 Hz, ArH), 7.32 (2H, *t*, ³J_{HH} = 7.25 Hz, ArH). ¹³C NMR (125.7 MHz, CDCl₃): δ = 82.68 (C-OH), 126.89, 127.43, 128.10, 129.11, 129.33, 129.83, 133.40, 140.24, 141.01, 144.06, 145.58 (Ar-C). EA calculated for C₄₄H₃₀O₂Cl₄: C 72.1, H 4.1%; found: C 72.2, H 4.4%. Crystals of (II*a*) suitable for X-ray diffraction were obtained from a solution of (II) in triethylamine upon slow evaporation of the solvent at room temperature.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were placed geometrically in idealized positions and allowed to ride on their parent atoms, with C-H = 0.95 and 0.98 Å and $U_{iso}(H) =$ $1.2U_{eq}(C)$ for aromatic and methylene, with C-H = 0.98 and O-H = 0.84 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl and hydroxy groups, respectively. Two molecules of triethylamine are each disordered over two positions with occupancy ratios of 0.567 (3):0.433 (3) and 0.503 (3):0.497 (3). They were modelled with restrained bond lengths based on average values of 1.47 (1) Å for N-C and 1.53 (1) Å for C-C bonds.

References

- Awwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). *Chem. Eur. J.* 12, 8952–8960.
- Barbour, L. J., Bourne, S. A., Caira, M. R., Nassimbeni, L. R., Weber, E., Skobridis, K. & Wierig, A. (1993). Supramol. Chem. 1, 331–336.
- Bourne, S. A., Nassimbeni, L. R., Niven, M. L., Weber, E. & Wierig, A. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 1215–1222.
- Braga, D. & Grepioni, F. (2004). In *Encyclopedia of Supramolecular Chemistry* edited by J. L. Atwood & J. W. Steed, pp. 357–363. Boca Raton: CRC Press.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Caira, M. R., Coetzee, A., Nassimbeni, L. R., Weber, E. & Wierig, A. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 237–242.
- Debroy, P., Lindeman, S. V. & Rathore, R. (2009). J. Org. Chem. 74, 2080–2087.
- Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, IUCR Monographs on Crystallography, Vol. 9. New York: Oxford University Press.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662– 671.
- Ibragimov, B. T., Beketov, K. M., Weber, E., Seidel, J., Sumarna, O., Makhkamov, K. K. & Köhnke, K. (2001). J. Phys. Org. Chem. 14, 697–703.
- James, S. L. (2004). In Encyclopedia of Supramolecular Chemistry edited by J. L. Atwood & J. W. Steed, pp. 1093–1099. Boca Raton: CRC Press.

Klien, H., Seichter, W. & Weber, E. (2013). CrystEngComm, 15, 586–596.

Jones, P. G. & Kuś, P. (2005). Acta Cryst. E61, o2947-o2948.

- Klien, H., Seichter, W. & Weber, E. (2014). Cryst. Growth Des. 14, 4371–4382.
- Lunazzi, L., Mazzanti, A., Minzoni, M. & Anderson, J. E. (2005). Org. Lett. 7, 1291–1294.
- Martinez, C. R. & Iverson, B. L. (2012). Chem. Sci. 3, 2191-2201.
- Metrangolo, P., Resnati, G., Pilati, T. & Biella, S. (2008). In *Halogen Bonding, Structure and Bonding*, Vol. 126, edited by P. Metrangolo & G. Resnati, pp. 105–136. Berlin-Heidelberg: Springer.
- Mukherjee, A., Tothadi, S. & Desiraju, G. R. (2014). Acc. Chem. Res. 47, 2514–2524.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Skobridis, K., Theodorou, V., Alivertis, D., Seichter, W., Weber, E. & Csöregh, I. (2007). Supramol. Chem. 19, 373–382.
- Toussaint, C. J. (1966). Acta Cryst. 21, 1002-1003.
- Weber, E. (1996). In *Comprehensive Supramolecular Chemistry*, Vol. 6, edited by D. D. MacNicol, F. Toda & R. Bishop, pp. 535–592. Oxford: Elsevier.
- Weber, E., Nitsche, S. K., Wierig, A. & Csöregh, I. (2002). Eur. J. Org. Chem., pp. 856–872.
- Weber, E., Skobridis, K., Wierig, A., Stathi, S., Nassimbeni, L. R. & Niven, M. L. (1993). Angew. Chem. Int. Ed. Engl. 32, 606–608.

Acta Cryst. (2015). E71, 1439-1443 [https://doi.org/10.1107/S2056989015018824]

Crystal structure of 2,2"-bis(2,7-dichloro-9-hydroxy-9*H*-fluoren-9-yl)-1,1':4',1"terphenyl triethylamine trisolvate

Henrik Klien, Wilhelm Seichter and Edwin Weber

Computing details

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Sheldrick, 2008); data reduction: *SAINT* (Bruker, 2008); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

2,2"-Bis(2,7-dichloro-9-hydroxy-9H-fluoren-9-yl)-1,1':4',1"-terphenyl triethylamine trisolvate

Crystal data

 $C_{44}H_{26}Cl_4O_2 \cdot 3C_6H_{15}N$ $M_r = 1032.01$ Triclinic, *P*1 *a* = 14.5995 (2) Å *b* = 14.8094 (2) Å *c* = 15.7705 (3) Å *a* = 68.373 (1)° *β* = 66.837 (1)° *y* = 67.558 (1)° *V* = 2800.13 (8) Å³

Data collection

Bruker CCD area detector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{\min} = 0.900, T_{\max} = 0.943$ 53831 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.113$ S = 1.0114031 reflections 773 parameters 24 restraints Z = 2 F(000) = 1096 $D_x = 1.224 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9853 reflections $\theta = 2.4-31.3^{\circ}$ $\mu = 0.26 \text{ mm}^{-1}$ T = 100 KPlate, colourless $0.42 \times 0.40 \times 0.23 \text{ mm}$

14031 independent reflections 11477 reflections with $I > 2\sigma(I)$ $R_{int} = 0.025$ $\theta_{max} = 28.4^\circ, \ \theta_{min} = 1.5^\circ$ $h = -19 \rightarrow 19$ $k = -19 \rightarrow 19$ $l = -21 \rightarrow 21$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0538P)^2 + 1.6165P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.59$ e Å⁻³ $\Delta\rho_{min} = -0.59$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cl1	0.60638 (3)	0.02641 (3)	0.36155 (3)	0.02782 (9)	
Cl2	0.59812 (3)	0.31311 (3)	-0.33671 (3)	0.02962 (9)	
01	0.78230(7)	0.18376 (8)	-0.03539 (7)	0.0199 (2)	
H1	0.7514	0.2398	-0.0220	0.030*	
C1	0.63440 (10)	0.12716 (10)	0.08381 (9)	0.0163 (2)	
C2	0.65868 (10)	0.07862 (10)	0.16874 (10)	0.0188 (3)	
H2	0.7279	0.0419	0.1697	0.023*	
C3	0.57796 (11)	0.08549 (11)	0.25318 (10)	0.0199 (3)	
C4	0.47565 (10)	0.13766 (11)	0.25341 (10)	0.0207 (3)	
H4	0.4220	0.1398	0.3120	0.025*	
C5	0.45285 (10)	0.18656 (11)	0.16705 (10)	0.0198 (3)	
Н5	0.3835	0.2226	0.1661	0.024*	
C6	0.53259 (10)	0.18211 (10)	0.08225 (10)	0.0171 (3)	
C7	0.53127 (10)	0.22501 (10)	-0.01767 (10)	0.0177 (3)	
C8	0.45058 (11)	0.28265 (11)	-0.05765 (11)	0.0225 (3)	
H8	0.3818	0.3026	-0.0180	0.027*	
C9	0.47169 (12)	0.31085 (11)	-0.15657 (11)	0.0250 (3)	
H9	0.4175	0.3500	-0.1851	0.030*	
C10	0.57288 (12)	0.28102 (11)	-0.21279 (10)	0.0221 (3)	
C11	0.65509 (11)	0.22404 (10)	-0.17454 (10)	0.0196 (3)	
H11	0.7240	0.2051	-0.2144	0.024*	
C12	0.63267 (10)	0.19620 (10)	-0.07658 (10)	0.0172 (3)	
C13	0.70829 (10)	0.13336 (10)	-0.01747 (9)	0.0163 (2)	
C14	0.76933 (10)	0.03037 (10)	-0.04016 (9)	0.0180 (3)	
C15	0.87711 (11)	0.00223 (11)	-0.06259 (10)	0.0220 (3)	
H15	0.9098	0.0451	-0.0596	0.026*	
C16	0.93772 (12)	-0.08693 (12)	-0.08910 (11)	0.0288 (3)	
H16	1.0111	-0.1043	-0.1046	0.035*	
C17	0.89114 (13)	-0.15025 (13)	-0.09285 (13)	0.0339 (4)	
H17	0.9321	-0.2113	-0.1111	0.041*	
C18	0.78417 (13)	-0.12403 (12)	-0.06975 (12)	0.0297 (3)	
H18	0.7526	-0.1680	-0.0724	0.036*	
C19	0.72127 (11)	-0.03479 (11)	-0.04260 (10)	0.0211 (3)	
C20	0.60696 (11)	-0.01430 (10)	-0.02017 (10)	0.0201 (3)	
C21	0.54278 (11)	-0.03021 (11)	0.07381 (10)	0.0212 (3)	
H21	0.5716	-0.0514	0.1249	0.025*	
C22	0.43748 (11)	-0.01550 (11)	0.09362 (10)	0.0216 (3)	
H22	0.3950	-0.0258	0.1580	0.026*	
Cl1A	0.92106 (3)	0.86051 (4)	0.13781 (3)	0.03593 (11)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

Cl2A	0.87208 (4)	0.64484 (3)	0.84734 (3)	0.04199 (12)
O1A	0.71671 (7)	0.87036 (7)	0.52729 (7)	0.01877 (19)
H1A	0.7474	0.9119	0.5195	0.028*
C1A	0.87109 (10)	0.78873 (10)	0.41745 (10)	0.0163 (2)
C2A	0.85448 (10)	0.81792 (10)	0.32984 (10)	0.0186 (3)
H2A	0.7870	0.8343	0.3246	0.022*
C3A	0.94014 (11)	0.82247 (11)	0.24930 (10)	0.0219 (3)
C4A	1.04014 (11)	0.79780 (11)	0.25515 (11)	0.0237 (3)
H4A	1.0974	0.7998	0.1989	0.028*
C5A	1.05506 (10)	0.77022 (11)	0.34418 (11)	0.0213 (3)
H5A	1.1225	0.7541	0.3494	0.026*
C6A	0.97026 (10)	0.76652 (10)	0.42527 (10)	0.0178 (3)
C7A	0.96262 (11)	0.73781 (10)	0.52698 (10)	0.0192 (3)
C8A	1.03705 (12)	0.71089 (11)	0.57298 (12)	0.0265 (3)
H8A	1.1068	0.7106	0.5373	0.032*
C9A	1.00714 (13)	0.68452 (12)	0.67219 (12)	0.0308 (4)
H9A	1.0565	0.6669	0.7049	0.037*
C10A	0.90563 (13)	0.68397 (12)	0.72328 (11)	0.0284(3)
C11A	0.82964 (12)	0.71172 (11)	0.67874 (11)	0.0239(3)
H11A	0.7600	0.7116	0.7147	0.029*
C12A	0.85985 (11)	0.73933 (10)	0.58041 (10)	0.0184(3)
C13A	0.79079 (10)	0.77627 (10)	0.51543 (9)	0.0162 (2)
C14A	0.73042 (10)	0.70199 (10)	0.53606 (9)	0.0166(2)
C15A	0.62299 (10)	0.73819 (11)	0.55279 (10)	0.0199(3)
H15A	0.5905	0.8085	0.5461	0.024*
C16A	0.56284 (11)	0.67338 (12)	0.57902 (11)	0.0245(3)
H16A	0.4899	0.6995	0.5902	0.029*
C17A	0.60905 (11)	0.57107 (12)	0.58886 (11)	0.0269 (3)
H17A	0.5681	0.5262	0.6082	0.032*
C18A	0.71616(11)	0.53410(11)	0.57025 (11)	0.0238 (3)
H18A	0.7478	0.4637	0.5765	0.029*
C19A	0.77833 (10)	0.59803 (10)	0.54256 (9)	0.0175(3)
C20A	0.89299 (10)	0.55012 (10)	0.52056(10)	0.0167(2)
C21A	0.95553(10)	0.55419 (10)	0.42644(10)	0.0186(3)
H21A	0.9256	0.5909	0.3756	0.022*
C22A	1.06098 (10)	0.50521 (10)	0.40625(10)	0.0186(3)
H22A	1.1023	0.5094	0.3417	0.022*
N1B	0.21028 (9)	0.98034 (9)	0.47727(9)	0.0206(2)
C1B	0.11268(11)	0.96584(13)	0.55043(11)	0.0272(3)
H1B1	0.0968	0.9098	0.5440	0.033*
H1B2	0.0559	1.0279	0.5385	0.033*
C2B	0.11490 (14)	0.94238 (14)	0.65192 (12)	0.0339 (4)
H2B1	0.1588	0.8735	0.6697	0.051*
H2B2	0.0443	0.9479	0.6955	0.051*
H2B3	0.1430	0.9905	0.6561	0.051*
C3B	0.19718 (12)	1.02007 (11)	0.38051 (11)	0.0238 (3)
H3B1	0.2584	1.0438	0.3357	0.029*
H3B2	0.1358	1.0798	0.3810	0.029*
				~ ~ ~ ~ ~ ~ ~

C4B	0.18392 (13)	0.94741 (13)	0.34101 (12)	0.0294 (3)	
H4B1	0.2465	0.8903	0.3347	0.044*	
H4B2	0.1726	0.9829	0.2783	0.044*	
H4B3	0.1241	0.9224	0.3847	0.044*	
C5B	0.29651 (11)	0.88733 (11)	0.48674 (11)	0.0239 (3)	
H5B1	0.2804	0.8329	0.4777	0.029*	
H5B2	0.3021	0.8660	0.5523	0.029*	
C6B	0.40009 (12)	0.89960 (13)	0.41604 (12)	0.0298(3)	
H6B1	0.3980	0.9125	0.3512	0.045*	
H6B2	0.4549	0.8376	0.4300	0.045*	
H6B3	0.4144	0.9566	0.4212	0.045*	
NIC	0.7405 (9)	0.5936 (6)	0.2422(6)	0.0241 (7)	0.433(3)
CIC	0 7208 (4)	0.5371(4)	0.3433(3)	0.0351(10)	0.433(3)
H1C1	0.6697	0.5835	0 3830	0.042*	0.433(3)
H1C2	0.7860	0 5122	0.3607	0.042*	0.433(3)
C2C	0.6805 (5)	0.4481 (6)	0.3656 (7)	0.012 0.0465 (19)	0.433(3)
H2C1	0.6252	0.4693	0.3362	0.070*	0.433(3)
H2C2	0.6531	0.4035	0.4349	0.070*	0.433(3)
H2C3	0.7372	0.3937	0.3403	0.070*	0.433(3)
C3C	0.7572	0.6915 (3)	0.2204 (3)	0.070	0.433(3)
H3C1	0.755	0.0913 (3)	0.2294 (5)	0.0207 (9)	0.433(3)
	0.7755	0.7248	0.1005	0.034	0.433(3)
	0.6110	0.0794 0.7621(0)	0.2347 0.2788 (0)	0.034	0.433(3)
	0.0381 (11)	0.7021 (9)	0.2788 (9)	0.032 (2)	0.433(3)
	0.5981	0.7033	0.2044	0.048*	0.433(3)
П4С2	0.0007	0.8304	0.2300	0.048*	0.433(3)
п4С3	0.0472	0.7382	0.3479	0.048	0.433(3)
	0.8334 (3)	0.5558 (5)	0.1848 (5)	0.0249 (9)	0.433(3)
HSCI	0.8277	0.4643	0.2023	0.030*	0.433 (3)
H5C2	0.8950	0.5294	0.1999	0.030*	0.433 (3)
C6C	0.8489 (12)	0.5789(8)	0.0782 (6)	0.0329 (16)	0.433 (3)
H6C1	0.7852	0.5905	0.0638	0.049*	0.433 (3)
H6C2	0.9061	0.5319	0.0433	0.049*	0.433 (3)
H6C3	0.8653	0.6432	0.0587	0.049*	0.433 (3)
NICA	0.7332 (7)	0.5984 (5)	0.2574 (5)	0.0241 (7)	0.567 (3)
CICA	0.7446 (3)	0.4958 (3)	0.3206 (3)	0.0325 (8)	0.567 (3)
H1C3	0.7813	0.4879	0.3652	0.039*	0.567 (3)
H1C4	0.7883	0.4467	0.2816	0.039*	0.567 (3)
C2CA	0.6425 (4)	0.4705 (4)	0.3782 (5)	0.0396 (11)	0.567 (3)
H2C4	0.5999	0.5168	0.4192	0.059*	0.567 (3)
H2C5	0.6558	0.4008	0.4178	0.059*	0.567 (3)
H2C6	0.6059	0.4775	0.3347	0.059*	0.567 (3)
C3CA	0.6975 (2)	0.6728 (2)	0.3129 (2)	0.0286 (7)	0.567 (3)
H3C3	0.7560	0.6695	0.3319	0.034*	0.567 (3)
H3C4	0.6424	0.6543	0.3719	0.034*	0.567 (3)
C4CA	0.6558 (9)	0.7806 (7)	0.2589 (7)	0.0307 (17)	0.567 (3)
H4C4	0.7103	0.8000	0.2009	0.046*	0.567 (3)
H4C5	0.6338	0.8262	0.2995	0.046*	0.567 (3)
H4C6	0.5965	0.7850	0.2415	0.046*	0.567 (3)

C5CA	0.8318 (2)	0.6070 (3)	0.1833 (2)	0.0359 (8)	0.567 (3)
H5C3	0.8891	0.5724	0.2128	0.043*	0.567 (3)
H5C4	0.8303	0.6793	0.1563	0.043*	0.567 (3)
C6CA	0.8528 (10)	0.5612 (7)	0.1033 (5)	0.0468 (19)	0.567 (3)
H6C4	0.8599	0.4885	0.1289	0.070*	0.567 (3)
H6C5	0.9171	0.5720	0.0539	0.070*	0.567 (3)
H6C6	0.7951	0.5935	0.0755	0.070*	0.567 (3)
N1D	0.7016 (5)	0.3706 (6)	1.0068 (3)	0.0238 (9)	0.497 (3)
C1D	0.6422 (3)	0.4484 (3)	0.9448 (3)	0.0369 (9)	0.497 (3)
H1D1	0.6234	0.5137	0.9597	0.044*	0.497 (3)
H1D2	0.5770	0.4322	0.9592	0.044*	0.497 (3)
C2D	0.6979 (5)	0.4605 (4)	0.8397 (4)	0.0554 (14)	0.497 (3)
H2D1	0.7587	0.4838	0.8232	0.083*	0.497 (3)
H2D2	0.6510	0.5101	0.8029	0.083*	0.497 (3)
H2D3	0.7203	0 3953	0.8248	0.083*	0.497(3)
C3D	0.7203 0.6371 (4)	0.3525	1,1070(3)	0.005 (10)	0.197(3)
H3D1	0.6761	0.3327 (3)	1 1443	0.047*	0.197(3)
H3D2	0.5743	0.3301	1.1443	0.047	0.497(3)
C4D	0.5745	0.3391	1.1102	0.047	0.497(3)
	0.6630	0.4300 (3)	1.1537 (5)	0.0309 (12)	0.497(3)
	0.0030	0.4437	1.1028	0.076*	0.497(3) 0.407(3)
114D2 114D2	0.5552	0.4200	1.2100	0.076*	0.497(3)
П4D3 С5D	0.3092	0.3004	1.1109	0.076°	0.497(3)
	0.7959 (5)	0.3981 (8)	0.9893 (7)	0.056 (4)	0.497(3)
HSDI	0.8162	0.3669	1.0490	0.06/*	0.497(3)
H5D2	0.7756	0.4722	0.9/9/	0.06/*	0.49/(3)
C6D	0.8967 (2)	0.3713 (3)	0.9051 (3)	0.0386 (9)	0.497 (3)
H6D1	0.9136	0.3001	0.9067	0.058*	0.497 (3)
H6D2	0.9546	0.3831	0.9123	0.058*	0.497 (3)
H6D3	0.8845	0.4141	0.8440	0.058*	0.497 (3)
N1DA	0.7094 (5)	0.3795 (6)	0.9764 (3)	0.0238 (9)	0.503 (3)
C1DA	0.6889 (3)	0.4252 (3)	0.8834 (3)	0.0280 (8)	0.503 (3)
H1D3	0.6261	0.4101	0.8888	0.034*	0.503 (3)
H1D4	0.7475	0.3912	0.8365	0.034*	0.503 (3)
C2DA	0.6733 (3)	0.5392 (2)	0.8428 (3)	0.0366 (9)	0.503 (3)
H2D4	0.6176	0.5744	0.8892	0.055*	0.503 (3)
H2D5	0.6548	0.5611	0.7835	0.055*	0.503 (3)
H2D6	0.7377	0.5551	0.8296	0.055*	0.503 (3)
C3DA	0.6148 (3)	0.4082 (3)	1.0529 (3)	0.0336 (8)	0.503 (3)
H3D3	0.5569	0.3955	1.0455	0.040*	0.503 (3)
H3D4	0.5973	0.4817	1.0456	0.040*	0.503 (3)
C4DA	0.6240 (4)	0.3518 (4)	1.1529 (3)	0.0454 (11)	0.503 (3)
H4D4	0.6519	0.2791	1.1577	0.068*	0.503 (3)
H4D5	0.5554	0.3651	1.1996	0.068*	0.503 (3)
H4D6	0.6707	0.3748	1.1658	0.068*	0.503 (3)
C5DA	0.7983 (5)	0.3993 (5)	0.9831 (4)	0.025 (2)	0.503 (3)
H5D3	0.7715	0.4619	1.0048	0.030*	0.503 (3)
H5D4	0.8463	0.4135	0.9179	0.030*	0.503 (3)
C6DA	0.8645 (4)	0.3148 (4)	1.0504 (5)	0.085 (2)	0.503 (3)
				(=)	

H6D4	0.8256	0.3145	1.1172	0.127*	0.503 (3)
H6D5	0.9303	0.3293	1.0345	0.127*	0.503 (3)
H6D6	0.8784	0.2485	1.0408	0.127*	0.503 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.02612 (17)	0.0363 (2)	0.01956 (17)	-0.00544 (15)	-0.00797 (13)	-0.00754 (14)
C12	0.0435 (2)	0.02378 (18)	0.02120 (17)	-0.00960 (16)	-0.01303 (15)	-0.00132 (14)
01	0.0167 (4)	0.0196 (5)	0.0260 (5)	-0.0077 (4)	-0.0024 (4)	-0.0100 (4)
C1	0.0167 (6)	0.0149 (6)	0.0184 (6)	-0.0050 (5)	-0.0030 (5)	-0.0072 (5)
C2	0.0169 (6)	0.0189 (7)	0.0210 (7)	-0.0038 (5)	-0.0049 (5)	-0.0077 (5)
C3	0.0224 (6)	0.0214 (7)	0.0175 (6)	-0.0059 (5)	-0.0064 (5)	-0.0061 (5)
C4	0.0188 (6)	0.0226 (7)	0.0197 (7)	-0.0045 (5)	-0.0018 (5)	-0.0098 (5)
C5	0.0164 (6)	0.0193 (7)	0.0231 (7)	-0.0027 (5)	-0.0042 (5)	-0.0088 (5)
C6	0.0179 (6)	0.0138 (6)	0.0209 (6)	-0.0041 (5)	-0.0058 (5)	-0.0061 (5)
C7	0.0192 (6)	0.0141 (6)	0.0215 (7)	-0.0053 (5)	-0.0060(5)	-0.0056 (5)
C8	0.0214 (6)	0.0199 (7)	0.0259 (7)	-0.0036 (5)	-0.0085 (5)	-0.0061 (6)
C9	0.0285 (7)	0.0195 (7)	0.0281 (8)	-0.0039 (6)	-0.0144 (6)	-0.0036 (6)
C10	0.0331 (7)	0.0169 (7)	0.0187 (7)	-0.0096 (6)	-0.0100 (6)	-0.0017 (5)
C11	0.0239 (6)	0.0164 (6)	0.0195 (6)	-0.0085 (5)	-0.0045 (5)	-0.0047 (5)
C12	0.0201 (6)	0.0131 (6)	0.0209 (6)	-0.0064 (5)	-0.0064 (5)	-0.0048 (5)
C13	0.0160 (6)	0.0164 (6)	0.0175 (6)	-0.0058 (5)	-0.0034 (5)	-0.0057 (5)
C14	0.0200 (6)	0.0165 (6)	0.0152 (6)	-0.0047 (5)	-0.0028 (5)	-0.0047 (5)
C15	0.0210 (6)	0.0214 (7)	0.0208 (7)	-0.0051 (5)	-0.0039 (5)	-0.0056 (5)
C16	0.0228 (7)	0.0272 (8)	0.0287 (8)	-0.0016 (6)	-0.0022 (6)	-0.0102 (6)
C17	0.0333 (8)	0.0233 (8)	0.0383 (9)	0.0001 (6)	-0.0033 (7)	-0.0168 (7)
C18	0.0343 (8)	0.0215 (8)	0.0348 (9)	-0.0079 (6)	-0.0062 (7)	-0.0131 (6)
C19	0.0239 (7)	0.0176 (7)	0.0207 (7)	-0.0060 (5)	-0.0043 (5)	-0.0061 (5)
C20	0.0251 (7)	0.0140 (6)	0.0236 (7)	-0.0086 (5)	-0.0049 (5)	-0.0064 (5)
C21	0.0290 (7)	0.0180 (7)	0.0205 (7)	-0.0113 (6)	-0.0078 (5)	-0.0036 (5)
C22	0.0279 (7)	0.0198 (7)	0.0191 (7)	-0.0127 (6)	-0.0020 (5)	-0.0059 (5)
Cl1A	0.03125 (19)	0.0573 (3)	0.01955 (18)	-0.02149 (19)	-0.00780 (14)	-0.00025 (17)
Cl2A	0.0673 (3)	0.0322 (2)	0.0268 (2)	0.0014 (2)	-0.0264 (2)	-0.01023 (17)
O1A	0.0177 (4)	0.0138 (5)	0.0242 (5)	-0.0014 (4)	-0.0060 (4)	-0.0075 (4)
C1A	0.0158 (6)	0.0128 (6)	0.0202 (6)	-0.0029 (5)	-0.0052 (5)	-0.0055 (5)
C2A	0.0175 (6)	0.0183 (6)	0.0211 (7)	-0.0053 (5)	-0.0067 (5)	-0.0048 (5)
C3A	0.0238 (7)	0.0246 (7)	0.0182 (7)	-0.0100 (6)	-0.0067 (5)	-0.0026 (5)
C4A	0.0197 (6)	0.0255 (7)	0.0236 (7)	-0.0098 (6)	-0.0026 (5)	-0.0042 (6)
C5A	0.0167 (6)	0.0193 (7)	0.0291 (7)	-0.0060 (5)	-0.0076 (5)	-0.0055 (6)
C6A	0.0189 (6)	0.0130 (6)	0.0244 (7)	-0.0033 (5)	-0.0091 (5)	-0.0061 (5)
C7A	0.0224 (6)	0.0124 (6)	0.0262 (7)	-0.0022 (5)	-0.0123 (5)	-0.0058 (5)
C8A	0.0278 (7)	0.0204 (7)	0.0374 (9)	-0.0027 (6)	-0.0198 (6)	-0.0073 (6)
C9A	0.0416 (9)	0.0212 (7)	0.0394 (9)	0.0005 (6)	-0.0295 (8)	-0.0088 (7)
C10A	0.0446 (9)	0.0183 (7)	0.0250 (7)	0.0008 (6)	-0.0199 (7)	-0.0079 (6)
C11A	0.0312 (7)	0.0175 (7)	0.0231 (7)	0.0004 (6)	-0.0118 (6)	-0.0086 (6)
C12A	0.0232 (6)	0.0125 (6)	0.0221 (7)	-0.0007 (5)	-0.0106 (5)	-0.0073 (5)
C13A	0.0164 (6)	0.0142 (6)	0.0176 (6)	-0.0014 (5)	-0.0056 (5)	-0.0058 (5)

C14A	0.0180 (6)	0.0169 (6)	0.0138 (6)	-0.0047 (5)	-0.0038 (5)	-0.0040 (5)
C15A	0.0189 (6)	0.0185 (7)	0.0206 (7)	-0.0027 (5)	-0.0053 (5)	-0.0064 (5)
C16A	0.0176 (6)	0.0275 (8)	0.0260 (7)	-0.0066 (6)	-0.0041 (5)	-0.0064 (6)
C17A	0.0237 (7)	0.0242 (8)	0.0319 (8)	-0.0122 (6)	-0.0046 (6)	-0.0044 (6)
C18A	0.0238 (7)	0.0172 (7)	0.0281 (7)	-0.0067 (5)	-0.0059 (6)	-0.0041 (6)
C19A	0.0184 (6)	0.0175 (6)	0.0159 (6)	-0.0044 (5)	-0.0043 (5)	-0.0046 (5)
C20A	0.0180 (6)	0.0119 (6)	0.0201 (6)	-0.0032 (5)	-0.0047 (5)	-0.0061 (5)
C21A	0.0219 (6)	0.0147 (6)	0.0185 (6)	-0.0031 (5)	-0.0074 (5)	-0.0042 (5)
C22A	0.0214 (6)	0.0162 (6)	0.0161 (6)	-0.0045 (5)	-0.0033 (5)	-0.0049 (5)
N1B	0.0200 (5)	0.0185 (6)	0.0241 (6)	-0.0034 (4)	-0.0066 (5)	-0.0084 (5)
C1B	0.0227 (7)	0.0299 (8)	0.0300 (8)	-0.0084 (6)	-0.0037 (6)	-0.0122 (6)
C2B	0.0356 (8)	0.0369 (9)	0.0271 (8)	-0.0120 (7)	-0.0035 (7)	-0.0101 (7)
C3B	0.0253 (7)	0.0212 (7)	0.0257 (7)	-0.0033 (6)	-0.0096 (6)	-0.0079 (6)
C4B	0.0301 (8)	0.0315 (8)	0.0323 (8)	-0.0045 (6)	-0.0114 (6)	-0.0161 (7)
C5B	0.0242 (7)	0.0189 (7)	0.0280 (7)	-0.0022 (5)	-0.0090 (6)	-0.0078 (6)
C6B	0.0223 (7)	0.0279 (8)	0.0356 (9)	-0.0011 (6)	-0.0078 (6)	-0.0110 (7)
N1C	0.0219 (12)	0.0267 (8)	0.0237 (19)	-0.0050 (8)	-0.0074 (13)	-0.0075 (9)
C1C	0.035 (2)	0.038 (3)	0.026 (2)	-0.009(2)	-0.0104 (18)	-0.0003 (19)
C2C	0.034 (4)	0.055 (5)	0.038 (3)	-0.019 (3)	-0.008 (3)	0.005 (3)
C3C	0.0278 (17)	0.031 (2)	0.032 (2)	-0.0087 (15)	-0.0125 (15)	-0.0090 (15)
C4C	0.032 (3)	0.035 (5)	0.036 (4)	-0.007 (3)	-0.014 (3)	-0.015 (4)
C5C	0.0206 (15)	0.029 (2)	0.0225 (19)	-0.0028 (13)	-0.0084 (13)	-0.0057 (14)
C6C	0.034 (3)	0.035 (3)	0.023 (4)	-0.004 (3)	-0.008 (3)	-0.007 (3)
N1CA	0.0219 (12)	0.0267 (8)	0.0237 (19)	-0.0050 (8)	-0.0074 (13)	-0.0075 (9)
C1CA	0.0298 (17)	0.0235 (18)	0.046 (2)	-0.0022 (13)	-0.0211 (15)	-0.0059 (14)
C2CA	0.041 (3)	0.034 (2)	0.041 (3)	-0.017 (2)	-0.011 (3)	-0.0003 (17)
C3CA	0.0290 (13)	0.0302 (16)	0.0298 (15)	-0.0045 (11)	-0.0131 (11)	-0.0103 (12)
C4CA	0.029 (2)	0.025 (3)	0.039 (4)	-0.0059 (17)	-0.015 (2)	-0.005 (2)
C5CA	0.0266 (14)	0.046 (2)	0.0378 (17)	-0.0115 (13)	-0.0037 (12)	-0.0185 (14)
C6CA	0.039 (3)	0.060 (5)	0.041 (5)	-0.013 (3)	-0.005 (4)	-0.021 (4)
N1D	0.0213 (10)	0.0215 (14)	0.030 (3)	-0.0069 (8)	-0.0059 (19)	-0.009 (2)
C1D	0.0354 (18)	0.0319 (19)	0.041 (2)	0.0001 (15)	-0.0150 (16)	-0.0126 (16)
C2D	0.083 (4)	0.046 (3)	0.040 (3)	-0.020 (3)	-0.021 (3)	-0.008 (2)
C3D	0.061 (3)	0.036 (2)	0.029 (2)	-0.028 (2)	-0.001 (2)	-0.014 (2)
C4D	0.075 (3)	0.048 (3)	0.038 (2)	-0.033 (2)	0.001 (2)	-0.0221 (18)
C5D	0.018 (4)	0.058 (6)	0.112 (7)	-0.004 (4)	-0.012 (4)	-0.060 (5)
C6D	0.0235 (15)	0.0343 (19)	0.060 (2)	-0.0085 (14)	-0.0069 (15)	-0.0190 (17)
N1DA	0.0213 (10)	0.0215 (14)	0.030 (3)	-0.0069 (8)	-0.0059 (19)	-0.009 (2)
C1DA	0.0350 (18)	0.0208 (18)	0.033 (2)	-0.0121 (14)	-0.0138 (18)	-0.0029 (16)
C2DA	0.049 (2)	0.0192 (17)	0.048 (2)	-0.0123 (14)	-0.0269 (17)	0.0003 (14)
C3DA	0.0309 (16)	0.0271 (18)	0.039 (2)	-0.0080 (14)	-0.0002 (14)	-0.0149 (17)
C4DA	0.061 (3)	0.045 (3)	0.028 (2)	-0.024 (2)	0.004 (2)	-0.016 (2)
C5DA	0.034 (5)	0.019 (3)	0.026 (2)	-0.013 (3)	-0.012 (2)	0.000 (2)
C6DA	0.072 (3)	0.054 (3)	0.165 (7)	0.014 (3)	-0.083 (4)	-0.047 (4)

Geometric parameters (Å, °)

Cl1—C3	1.7427 (14)	C3B—H3B1	0.9900
Cl2—C10	1.7502 (15)	C3B—H3B2	0.9900
O1—C13	1.4229 (15)	C4B—H4B1	0.9800
O1—H1	0.8400	C4B—H4B2	0.9800
C1—C2	1.3804 (19)	C4B—H4B3	0.9800
C1—C6	1.4009 (18)	C5B—C6B	1.516 (2)
C1—C13	1.5282 (18)	C5B—H5B1	0.9900
C2—C3	1.3951 (19)	C5B—H5B2	0.9900
С2—Н2	0.9500	C6B—H6B1	0.9800
C3—C4	1.3945 (19)	С6В—Н6В2	0.9800
C4—C5	1.391 (2)	С6В—Н6В3	0.9800
C4—H4	0.9500	N1C—C5C	1.466 (8)
C5—C6	1.3893 (18)	N1C—C1C	1.471 (8)
С5—Н5	0.9500	N1C—C3C	1.473 (8)
C6—C7	1.4709 (19)	C1C—C2C	1.515 (8)
C7—C8	1.3906 (19)	C1C—H1C1	0.9900
C7—C12	1.4017 (18)	C1C—H1C2	0.9900
C8—C9	1.394 (2)	C2C—H2C1	0.9800
С8—Н8	0.9500	C2C—H2C2	0.9800
C9—C10	1.387 (2)	C2C—H2C3	0.9800
С9—Н9	0.9500	C3C—C4C	1.516 (9)
C10—C11	1.392 (2)	C3C—H3C1	0.9900
C11—C12	1.3782 (19)	C3C—H3C2	0.9900
C11—H11	0.9500	C4C—H4C1	0.9800
C12—C13	1.5296 (18)	C4C—H4C2	0.9800
C13—C14	1.5369 (19)	C4C—H4C3	0.9800
C14—C15	1.3945 (19)	C5C—C6C	1.521 (7)
C14—C19	1.4109 (19)	C5C—H5C1	0.9900
C15—C16	1.388 (2)	С5С—Н5С2	0.9900
C15—H15	0.9500	C6C—H6C1	0.9800
C16—C17	1.380 (2)	С6С—Н6С2	0.9800
C16—H16	0.9500	С6С—Н6С3	0.9800
C17—C18	1.384 (2)	N1CA—C1CA	1.467 (6)
С17—Н17	0.9500	N1CA—C5CA	1.470 (7)
C18—C19	1.398 (2)	N1CA—C3CA	1.470 (6)
C18—H18	0.9500	C1CA—C2CA	1.516 (5)
C19—C20	1.4935 (19)	C1CA—H1C3	0.9900
C20—C21	1.396 (2)	C1CA—H1C4	0.9900
C20—C22 ⁱ	1.398 (2)	C2CA—H2C4	0.9800
C21—C22	1.387 (2)	C2CA—H2C5	0.9800
C21—H21	0.9500	C2CA—H2C6	0.9800
$C22-C20^{i}$	1.398 (2)	C3CA—C4CA	1.519 (7)
С22—Н22	0.9500	C3CA—H3C3	0.9900
Cl1A—C3A	1.7383 (15)	C3CA—H3C4	0.9900
Cl2A—C10A	1.7408 (16)	C4CA—H4C4	0.9800
O1A—C13A	1.4243 (15)	C4CA—H4C5	0.9800

O1A—H1A	0.8400	C4CA—H4C6	0.9800
C1A—C2A	1.3777 (19)	C5CA—C6CA	1.522 (7)
C1A—C6A	1.4022 (17)	C5CA—H5C3	0.9900
C1A—C13A	1.5252 (18)	C5CA—H5C4	0.9900
C2A—C3A	1.3905 (19)	С6СА—Н6С4	0.9800
C2A—H2A	0.9500	С6СА—Н6С5	0.9800
C3A—C4A	1.395 (2)	С6СА—Н6С6	0.9800
C4A—C5A	1.391 (2)	N1D—C1D	1.452 (6)
C4A—H4A	0.9500	N1D—C3D	1.472 (6)
C5A—C6A	1.3877 (19)	N1D—C5D	1.478 (7)
С5А—Н5А	0.9500	C1D—C2D	1.508 (5)
C6A—C7A	1.4693 (19)	C1D—H1D1	0.9900
C7A—C8A	1.3937 (19)	C1D—H1D2	0.9900
C7A—C12A	1.3983 (19)	C2D—H2D1	0.9800
C8A—C9A	1.390 (2)	C2D—H2D2	0.9800
C8A—H8A	0.9500	C2D—H2D3	0.9800
C9A—C10A	1.382 (2)	C3D—C4D	1.520 (5)
С9А—Н9А	0.9500	C3D—H3D1	0.9900
C10A—C11A	1.395 (2)	C3D—H3D2	0.9900
C11A—C12A	1.378 (2)	C4D—H4D1	0.9800
C11A—H11A	0.9500	C4D—H4D2	0.9800
C12A—C13A	1.5311 (18)	C4D—H4D3	0.9800
C13A—C14A	1.5308 (18)	C5D—C6D	1.579 (7)
C14A—C15A	1.3978 (18)	C5D—H5D1	0.9900
C14A—C19A	1.4100 (19)	C5D—H5D2	0.9900
C15A—C16A	1.389 (2)	C6D—H6D1	0.9800
C15A—H15A	0.9500	C6D—H6D2	0.9800
C16A—C17A	1.380 (2)	C6D—H6D3	0.9800
C16A—H16A	0.9500	N1DA—C1DA	1.469 (6)
C17A—C18A	1.391 (2)	N1DA—C3DA	1.471 (6)
C17A—H17A	0.9500	N1DA—C5DA	1.484 (7)
C18A—C19A	1.3964 (19)	C1DA—C2DA	1.529 (4)
C18A—H18A	0.9500	C1DA—H1D3	0.9900
C19A—C20A	1.4979 (18)	C1DA—H1D4	0.9900
C20A—C22A ⁱⁱ	1.3956 (19)	C2DA—H2D4	0.9800
C20A—C21A	1.3966 (19)	C2DA—H2D5	0.9800
C21A—C22A	1.3891 (19)	C2DA—H2D6	0.9800
C21A—H21A	0.9500	C3DA—C4DA	1.521 (5)
C22A—C20A ⁱⁱ	1.3956 (19)	C3DA—H3D3	0.9900
C22A—H22A	0.9500	C3DA—H3D4	0.9900
N1B—C1B	1.4714 (18)	C4DA—H4D4	0.9800
N1B—C5B	1.4754 (18)	C4DA—H4D5	0.9800
N1B—C3B	1.4809 (19)	C4DA—H4D6	0.9800
C1B—C2B	1.519 (2)	C5DA—C6DA	1.589 (7)
C1B—H1B1	0.9900	C5DA—H5D3	0.9900
C1B—H1B2	0.9900	C5DA—H5D4	0.9900
C2B—H2B1	0.9800	C6DA—H6D4	0.9800
C2B—H2B2	0.9800	C6DA—H6D5	0.9800

C2B—H2B3	0.9800	C6DA—H6D6	0.9800
C3B—C4B	1.527 (2)		
C13—O1—H1	109.5	N1B—C5B—H5B1	108.9
C2—C1—C6	121.32 (12)	C6B—C5B—H5B1	108.9
C2-C1-C13	127.78 (12)	N1B—C5B—H5B2	108.9
C6—C1—C13	110.87 (11)	C6B—C5B—H5B2	108.9
C1—C2—C3	117.59 (12)	H5B1—C5B—H5B2	107.7
С1—С2—Н2	121.2	C5B—C6B—H6B1	109.5
С3—С2—Н2	121.2	C5B—C6B—H6B2	109.5
C4—C3—C2	122.09 (13)	H6B1—C6B—H6B2	109.5
C4—C3—Cl1	119.22 (11)	C5B—C6B—H6B3	109.5
C2—C3—Cl1	118.69 (11)	H6B1—C6B—H6B3	109.5
C5—C4—C3	119.43 (12)	H6B2—C6B—H6B3	109.5
С5—С4—Н4	120.3	C5C—N1C—C1C	109.4 (7)
C3—C4—H4	120.3	C5C—N1C—C3C	110.0 (7)
C6—C5—C4	119.23 (12)	C1C—N1C—C3C	110.4 (7)
С6—С5—Н5	120.4	N1C—C1C—C2C	113.1 (7)
C4—C5—H5	120.4	N1C—C1C—H1C1	109.0
C5—C6—C1	120.30 (13)	C2C—C1C—H1C1	109.0
C5—C6—C7	130.96 (12)	N1C—C1C—H1C2	109.0
C1—C6—C7	108.71 (11)	C2C—C1C—H1C2	109.0
C8—C7—C12	120.11 (13)	H1C1—C1C—H1C2	107.8
C8—C7—C6	131.60 (13)	C1C—C2C—H2C1	109.5
C12—C7—C6	108.27 (12)	C1C—C2C—H2C2	109.5
С7—С8—С9	119.29 (13)	H2C1—C2C—H2C2	109.5
С7—С8—Н8	120.4	C1C—C2C—H2C3	109.5
С9—С8—Н8	120.4	H2C1-C2C-H2C3	109.5
C10—C9—C8	119.12 (13)	H2C2—C2C—H2C3	109.5
С10—С9—Н9	120.4	N1C—C3C—C4C	113.3 (8)
С8—С9—Н9	120.4	N1C—C3C—H3C1	108.9
C9-C10-C11	122.68 (13)	C4C—C3C—H3C1	108.9
C9—C10—Cl2	118.86 (11)	N1C—C3C—H3C2	108.9
C11—C10—Cl2	118.44 (11)	C4C—C3C—H3C2	108.9
C12-C11-C10	117.41 (13)	H3C1—C3C—H3C2	107.7
C12—C11—H11	121.3	C3C—C4C—H4C1	109.5
C10-C11-H11	121.3	C3C—C4C—H4C2	109.5
C11—C12—C7	121.39 (13)	H4C1-C4C-H4C2	109.5
C11—C12—C13	127.54 (12)	C3C—C4C—H4C3	109.5
C7—C12—C13	111.07 (12)	H4C1—C4C—H4C3	109.5
O1—C13—C1	111.11 (10)	H4C2—C4C—H4C3	109.5
O1—C13—C12	111.35 (11)	N1C—C5C—C6C	112.6 (7)
C1—C13—C12	101.02 (10)	N1C—C5C—H5C1	109.1
O1—C13—C14	107.02 (10)	C6C—C5C—H5C1	109.1
C1—C13—C14	114.40 (11)	N1C—C5C—H5C2	109.1
C12-C13-C14	111.99 (11)	C6C—C5C—H5C2	109.1
C15-C14-C19	118.90 (13)	H5C1-C5C-H5C2	107.8
C15-C14-C13	118.26 (12)	C5C—C6C—H6C1	109.5

C19—C14—C13	122.80 (12)	С5С—С6С—Н6С2	109.5
C16—C15—C14	121.50 (14)	H6C1—C6C—H6C2	109.5
C16—C15—H15	119.2	С5С—С6С—Н6С3	109.5
C14—C15—H15	119.2	H6C1—C6C—H6C3	109.5
C17—C16—C15	119.80 (14)	Н6С2—С6С—Н6С3	109.5
С17—С16—Н16	120.1	C1CA—N1CA—C5CA	110.5 (6)
С15—С16—Н16	120.1	C1CA—N1CA—C3CA	110.3 (5)
C16—C17—C18	119.45 (15)	C5CA—N1CA—C3CA	110.3 (5)
С16—С17—Н17	120.3	N1CA—C1CA—C2CA	113.7 (5)
С18—С17—Н17	120.3	N1CA—C1CA—H1C3	108.8
C17—C18—C19	121.92 (15)	C2CA—C1CA—H1C3	108.8
C17—C18—H18	119.0	N1CA—C1CA—H1C4	108.8
C19—C18—H18	119.0	C_2C_A — C_1C_A — H_1C_4	108.8
C18 - C19 - C14	118.42 (13)	H1C3-C1CA-H1C4	107.7
C18 - C19 - C20	117.00(13)	C1CA - C2CA - H2C4	109.5
C14-C19-C20	124 57 (12)	C1CA - C2CA - H2C5	109.5
C_{21} C_{20} C_{22}^{i}	121.37(12) 11820(13)	H_2C_4 C_2C_4 H_2C_5	109.5
$C_{21} = C_{20} = C_{19}$	121 51 (13)	C1CA - C2CA - H2C6	109.5
$C22^{i}$ $C20$ $C19$	121.31(13) 120.16(13)	H_2C_4 C_2C_4 H_2C_6	109.5
$C_{22} = C_{21} = C_{20}$	120.10(13) 120.84(13)	H_2C_5 C_2C_4 H_2C_6	109.5
$C_{22} = C_{21} = C_{20}$	119.6	N1CA—C3CA—C4CA	113.5 (6)
C_{20} C_{21} H_{21}	119.6	NICA—C3CA—H3C3	108.9
$C_{20} = C_{21} = C_{20}^{i}$	120.95 (13)	C4CA - C3CA - H3C3	108.9
$C_{21} = C_{22} = C_{20}$	119.5	N1CA - C3CA - H3C4	108.9
C_{20}^{i} C_{22}^{i} H22	119.5	C4CA - C3CA - H3C4	108.9
C13A - O1A - H1A	109.5	H_3C_3 C_3C_4 H_3C_4	107.7
$C_{2}A - C_{1}A - C_{6}A$	109.3 121 37 (12)	C_3C_4 — C_4C_4 — H_4C_4	109.5
C_{2A} C_{1A} C_{13A}	121.37(12) 127.42(11)	$C_{3}C_{4}$ $C_{4}C_{4}$ $C_{4}C_{5}$	109.5
C6A - C1A - C13A	127.42(11) 111.20(12)	$H_{4}C_{4}$	109.5
C1A - C2A - C3A	117.20(12) 117.54(12)	$C_{3}C_{4}$ $C_{4}C_{4}$ $H_{4}C_{6}$	109.5
C1A - C2A - H2A	121.2	$H_{4}C_{4}$ $C_{4}C_{4}$ $H_{4}C_{6}$	109.5
C_{3A} C_{2A} H_{2A}	121.2	H4C5-C4CA-H4C6	109.5
$C_{2A} = C_{2A} = C_{4A}$	121.2	N1CA - C5CA - C6CA	112.3 (6)
$C_2A = C_3A = C_1A$	122.26(13) 118.45(11)	N1CA - C5CA - H5C3	109.1
C_{4A} C_{3A} C_{11A}	110.45 (11)	C6CA - C5CA - H5C3	109.1
$C_{4A} = C_{4A} = C_{3A}$	119.20(11) 119.30(13)	N1CA - C5CA - H5C4	109.1
$C_{A} - C_{A} - H_{A}$	119.50 (15)	C6CA - C5CA - H5C4	109.1
C_{3A} C_{4A} H_{4A}	120.4	H_{5C3} C_{5C4} H_{5C4}	107.0
C6A - C5A - C4A	120.4 110 10 (12)	$C_{5}C_{4}$	107.5
C6A $C5A$ $H5A$	119.19 (12)	C5CA C6CA H6C5	109.5
C_{AA} C_{5A} H_{5A}	120.4	HECA CECA HECS	109.5
$C_{A} = C_{A} = C_{A}$	120.4 120.27(13)	$C_{100} = C_{100} = C_{100}$	109.5
$C_{5A} = C_{6A} = C_{7A}$	120.27(13) 131.30(12)		109.5
$C_{A} = C_{A} = C_{A}$	101.00(12) 108 37 (12)	$H6C5 - C6C \Delta - H6C6$	109.5
C84 - C74 - C124	120.37(12) 120.06(14)	$\frac{1000}{10} = 000 = 1000$	111 1 (5)
C84 - C74 - C64	120.00(14) 131 51 (14)	C1D $N1D$ $C5D$	108.6 (6)
C124 - C74 - C64	101.01(17) 108.43(11)	C_{1D} N_{1D} C_{5D}	114.6(5)
$C_{12} = C_{12} = C$	118 70 (15)	N1D_C1D_C2D	$114 \Delta (3)$
$\cup \Lambda = \cup 0 \Lambda = \cup I \Lambda$	110./0(12)	11D - 01D - 02D	117.7(4)

C9A—C8A—H8A	120.7	N1D—C1D—H1D1	108.7
C7A—C8A—H8A	120.7	C2D-C1D-H1D1	108.7
C10A—C9A—C8A	120.05 (14)	N1D—C1D—H1D2	108.7
С10А—С9А—Н9А	120.0	C2D—C1D—H1D2	108.7
С8А—С9А—Н9А	120.0	H1D1—C1D—H1D2	107.6
C9A—C10A—C11A	122.21 (15)	C1D—C2D—H2D1	109.5
C9A—C10A—C12A	118.90 (12)	C1D-C2D-H2D2	109.5
C11A - C10A - C12A	118.87 (13)	H^2D^1 C^2D H^2D^2	109.5
C12A— $C11A$ — $C10A$	117 19 (15)	C1D-C2D-H2D3	109.5
C12A— $C11A$ — $H11A$	121.4	H^2D^1 C^2D H^2D^3	109.5
C10A - C11A - H11A	121.1	H2D2 - C2D - H2D3	109.5
$C_{11}A - C_{12}A - C_{7}A$	121.4	N1D-C3D-C4D	107.5 117.0(5)
$C_{11}A - C_{12}A - C_{13}A$	127.10(13) 127.11(13)	$\frac{1}{10} \frac{1}{200} \frac{1}{200} \frac{1}{100} \frac{1}{$	108.1
C7A $C12A$ $C13A$	127.11(13) 111 13(12)	C4D $C3D$ $H3D1$	108.1
C/A = C12A = C13A	111.13(12) 111.22(10)	N1D C3D H3D2	108.1
OIA = CI3A = CI4A	111.32(10) 107.22(10)	C4D $C2D$ $H2D2$	108.1
C1A = C12A = C14A	107.22(10) 114.25(11)	C4D - C3D - H3D2	106.1
CIA = CI3A = CI2A	114.23(11) 110.72(10)	$H_{3}D_{1} = C_{3}D_{2} = H_{3}D_{2}$	107.5
CIA = CI2A = CI2A	110.75(10) 100.74(10)	$C_{3}D = C_{4}D = H_{4}D_{1}$	109.5
CIA = CI3A = CI2A	100.74 (10)	$C_{3}D - C_{4}D - H_{4}D_{2}$	109.5
C14A - C13A - C12A	112.58 (11)	H4D1 - C4D - H4D2	109.5
C15A - C14A - C19A	118.83 (12)	$C_{3}D - C_{4}D - H_{4}D_{3}$	109.5
C15A - C14A - C13A	118.53 (12)	H4D1 - C4D - H4D3	109.5
C19A—C14A—C13A	122.59 (11)	H4D2—C4D—H4D3	109.5
C16A—C15A—C14A	121.32 (13)	N1D	121.3 (7)
C16A—C15A—H15A	119.3	N1D—C5D—H5D1	107.0
C14A—C15A—H15A	119.3	C6D—C5D—H5D1	107.0
C17A—C16A—C15A	119.96 (13)	N1D—C5D—H5D2	107.0
C17A—C16A—H16A	120.0	C6D—C5D—H5D2	107.0
C15A—C16A—H16A	120.0	H5D1—C5D—H5D2	106.7
C16A—C17A—C18A	119.45 (13)	C5D—C6D—H6D1	109.5
C16A—C17A—H17A	120.3	C5D—C6D—H6D2	109.5
C18A—C17A—H17A	120.3	H6D1—C6D—H6D2	109.5
C17A—C18A—C19A	121.57 (14)	C5D—C6D—H6D3	109.5
C17A—C18A—H18A	119.2	H6D1-C6D-H6D3	109.5
C19A—C18A—H18A	119.2	H6D2—C6D—H6D3	109.5
C18A—C19A—C14A	118.79 (12)	C1DA—N1DA—C3DA	110.3 (5)
C18A—C19A—C20A	116.71 (12)	C1DA—N1DA—C5DA	115.5 (5)
C14A—C19A—C20A	124.50 (12)	C3DA—N1DA—C5DA	110.9 (5)
C22A ⁱⁱ —C20A—C21A	118.27 (12)	N1DA—C1DA—C2DA	117.3 (4)
C22A ⁱⁱ —C20A—C19A	120.83 (12)	N1DA—C1DA—H1D3	108.0
C21A—C20A—C19A	120.78 (12)	C2DA—C1DA—H1D3	108.0
C22A—C21A—C20A	120.81 (13)	N1DA—C1DA—H1D4	108.0
C22A—C21A—H21A	119.6	C2DA—C1DA—H1D4	108.0
C20A—C21A—H21A	119.6	H1D3—C1DA—H1D4	107.2
C21A—C22A—C20A ⁱⁱ	120.92 (12)	C1DA—C2DA—H2D4	109.5
C21A—C22A—H22A	119.5	C1DA—C2DA—H2D5	109.5
C20A ⁱⁱ —C22A—H22A	119.5	H2D4—C2DA—H2D5	109.5
C1B—N1B—C5B	111.33 (12)	C1DA—C2DA—H2D6	109.5

C1B—N1B—C3B	110.96 (11)	H2D4—C2DA—H2D6	109.5
C5B—N1B—C3B	113.05 (11)	H2D5—C2DA—H2D6	109.5
N1B—C1B—C2B	113.88 (13)	N1DA—C3DA—C4DA	113.9 (4)
N1B-C1B-H1B1	108.8	N1DA—C3DA—H3D3	108.8
C2B—C1B—H1B1	108.8	C4DA—C3DA—H3D3	108.8
N1B-C1B-H1B2	108.8	N1DA—C3DA—H3D4	108.8
C2B-C1B-H1B2	108.8	C4DA - C3DA - H3D4	108.8
H1B1 - C1B - H1B2	107.7	$H_{3}D_{3}$ $C_{3}D_{4}$ $H_{3}D_{4}$	107.7
C1B-C2B-H2B1	109.5	C3DA - C4DA - H4D4	109.5
C1B - C2B - H2B2	109.5	C3DA - C4DA - H4D5	109.5
$H^2B_1 - C^2B - H^2B_2$	109.5	H4D4— $C4DA$ — $H4D5$	109.5
C1B-C2B-H2B3	109.5	C3DA - C4DA - H4D6	109.5
$H^2B1 - C^2B - H^2B^3$	109.5	H4D4— $C4DA$ — $H4D6$	109.5
H2B2 C2B H2B3	109.5	H4D5-C4DA-H4D6	109.5
N1B C3B C4B	116.88 (13)	NIDA C5DA C6DA	109.3 118.7 (5)
NIB C3B H3B1	10.88 (15)	N1DA = C5DA = C6DA	107.6
$CAP C_{2}P H_{2}P_{1}$	108.1	C6DA = C5DA = H5D3	107.6
C4D - C3D - H3D1	100.1	NIDA CSDA USDA	107.0
N1B - C3B - H3B2	108.1	NIDA—C5DA—H5D4	107.6
C4B - C3B - H3D2	108.1	Coda—Coda—Hoda	107.0
H3B1 - C3B - H3B2	107.3	H5D3—C5DA—H5D4	107.1
C3B - C4B - H4B1	109.5	C5DA - C6DA - H6D4	109.5
	109.5	CSDA—C6DA—H6D5	109.5
H4B1—C4B—H4B2	109.5	H6D4—C6DA—H6D5	109.5
C3B—C4B—H4B3	109.5	C5DA—C6DA—H6D6	109.5
H4B1—C4B—H4B3	109.5	H6D4—C6DA—H6D6	109.5
H4B2—C4B—H4B3	109.5	H6D5—C6DA—H6D6	109.5
N1B—C5B—C6B	113.51 (12)		
	0.5.(2)	G5A G(A G7A G12A	175 29 (14)
$C_{0} - C_{1} - C_{2} - C_{3}$	0.5(2)	$C_{A} = C_{A} = C_{A} = C_{A} = C_{A}$	-1/5.28(14)
C13 - C1 - C2 - C3	1/8.35 (13)	CIA - COA - C/A - CI2A	2.01 (15)
C1 - C2 - C3 - C4	1.1 (2)	C12A—C/A—C8A—C9A	0.9 (2)
C1C2C3C11	-1/9.17 (10)	C6A—C/A—C8A—C9A	-178.38 (14)
C2—C3—C4—C5	-1.4 (2)	C7A—C8A—C9A—C10A	0.9 (2)
Cl1—C3—C4—C5	178.80 (11)	C8A—C9A—C10A—C11A	-1.7 (2)
C3—C4—C5—C6	0.2 (2)	C8A—C9A—C10A—Cl2A	176.99 (12)
C4—C5—C6—C1	1.4 (2)	C9A—C10A—C11A—C12A	0.6 (2)
C4—C5—C6—C7	179.40 (13)	Cl2A—C10A—C11A—C12A	-178.09 (11)
C2—C1—C6—C5	-1.8 (2)	C10A—C11A—C12A—C7A	1.3 (2)
C13—C1—C6—C5	-179.92 (12)	C10A—C11A—C12A—C13A	-177.59 (13)
C2—C1—C6—C7	179.81 (12)	C8A—C7A—C12A—C11A	-2.0 (2)
C13—C1—C6—C7	1.66 (15)	C6A—C7A—C12A—C11A	177.39 (12)
C5—C6—C7—C8	0.0 (3)	C8A—C7A—C12A—C13A	177.00 (12)
C1—C6—C7—C8	178.18 (14)	C6A—C7A—C12A—C13A	-3.57 (15)
C5—C6—C7—C12	-178.43 (14)	C2A—C1A—C13A—O1A	-64.61 (17)
C1—C6—C7—C12	-0.24 (15)	C6A-C1A-C13A-O1A	115.17 (12)
C12—C7—C8—C9	0.3 (2)	C2A-C1A-C13A-C14A	57.01 (18)
C6—C7—C8—C9	-177.96 (14)	C6A-C1A-C13A-C14A	-123.21 (12)
C7—C8—C9—C10	-0.3 (2)	C2A-C1A-C13A-C12A	177.95 (13)

C8—C9—C10—C11	-0.3 (2)	C6A—C1A—C13A—C12A	-2.27 (14)
C8—C9—C10—Cl2	177.89 (11)	C11A—C12A—C13A—O1A	64.65 (17)
C9-C10-C11-C12	0.7 (2)	C7A—C12A—C13A—O1A	-114.32 (12)
Cl2—C10—C11—C12	-177.43 (10)	C11A—C12A—C13A—C1A	-177.48 (13)
C10-C11-C12-C7	-0.7 (2)	C7A—C12A—C13A—C1A	3.54 (14)
C10-C11-C12-C13	179.42 (12)	C11A—C12A—C13A—C14A	-55.37 (18)
C8—C7—C12—C11	0.2 (2)	C7A—C12A—C13A—C14A	125.66 (12)
C6—C7—C12—C11	178.82 (12)	O1A—C13A—C14A—C15A	5.45 (16)
C8—C7—C12—C13	-179.90 (12)	C1A—C13A—C14A—C15A	-118.40(13)
C6—C7—C12—C13	-1.27 (15)	C12A—C13A—C14A—C15A	127.48 (13)
C2-C1-C13-O1	-62.04(17)	O1A—C13A—C14A—C19A	-171.97(12)
C6-C1-C13-O1	115.96 (12)	C1A—C13A—C14A—C19A	64.18 (16)
C_{2} C_{1} C_{13} C_{12}	179.74 (13)	C12A—C13A—C14A—C19A	-49.94 (17)
C6-C1-C13-C12	-2.26(14)	C19A - C14A - C15A - C16A	2.5 (2)
C_{2} C_{1} C_{13} C_{14}	59 26 (18)	C_{13A} C_{14A} C_{15A} C_{16A}	-175.04(13)
C6-C1-C13-C14	-122.74(12)	C14A - C15A - C16A - C17A	-0.1(2)
$C_{11} - C_{12} - C_{13} - O_{1}$	63.97 (17)	C15A - C16A - C17A - C18A	-14(2)
C7-C12-C13-O1	-115.93(12)	C_{16A} C_{17A} C_{18A} C_{19A}	0.6(2)
$C_{11} - C_{12} - C_{13} - C_{1}$	-177.99(13)	C17A - C18A - C19A - C14A	1.8(2)
C7-C12-C13-C1	2 11 (14)	C_{17A} C_{18A} C_{19A} C_{20A}	-17753(14)
$C_{11} = C_{12} = C_{13} = C_{14}$	-55.82(17)	C15A - C14A - C19A - C18A	-32(2)
C7-C12-C13-C14	$124\ 28\ (12)$	C_{13A} C_{14A} C_{19A} C_{18A}	$174\ 17\ (13)$
01-C13-C14-C15	6 18 (16)	C15A - C14A - C19A - C20A	176.00(13)
C1 - C13 - C14 - C15	-11735(13)	C_{13A} C_{14A} C_{19A} C_{20A}	-6.6(2)
C_{12} C_{13} C_{14} C_{15}	117.55(15) 128 47 (13)	$C18A - C19A - C20A - C22A^{ii}$	-77.30(17)
01 - C13 - C14 - C19	-171.45(12)	$C_{14A} = C_{19A} = C_{20A} = C_{22A}^{ii}$	10344(16)
C1 - C13 - C14 - C19	65 02 (17)	$C_{184} - C_{194} - C_{204} - C_{214}$	98 52 (16)
C_{12} C_{13} C_{14} C_{19}	-49.16(17)	C_{14A} C_{19A} C_{20A} C_{21A}	-80.73(18)
C19 - C14 - C15 - C16	14(2)	$C^{22}A^{ii}$ $C^{20}A$ $C^{21}A$ $C^{22}A$	-0.6(2)
C_{13} C_{14} C_{15} C_{16}	-176.30(13)	$C_{22}C_{19} = C_{20}C_{20}C_{21}C_{21}C_{22}C_{21}C_{22}C_{21}C_{22}C_{21}C_{22}C$	-17654(13)
C_{14} C_{15} C_{16} C_{17}	-0.6(2)	$C_{20A} - C_{21A} - C_{22A} - C_{20A}^{ii}$	0.6(2)
C_{15} C_{16} C_{17} C_{18}	-0.2(3)	C5B—N1B—C1B—C2B	62.98(17)
C_{16} C_{17} C_{18} C_{19}	0.2(5)	C_{3B} NIB C_{1B} C_{2B}	-170 17 (13)
C_{17} C_{18} C_{19} C_{14}	0.1(3) 0.8(2)	C1B $N1B$ $C3B$ $C4B$	-71 11 (16)
C17 - C18 - C19 - C20	17949(15)	$C_{1B} = N_{1B} = C_{3B} = C_{4B}$	54 78 (17)
C_{15} C_{14} C_{19} C_{20}	-15(2)	C1B $N1B$ $C5B$ $C4B$	-177 19 (13)
C_{13} C_{14} C_{19} C_{18}	1.5(2) 176 09 (13)	C_{3B} N1B C_{5B} C_{6B}	57 12 (16)
C_{15} C_{14} C_{19} C_{20}	179.91 (13)	$C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}C_{2}$	-725(10)
C13 - C14 - C19 - C20	-25(2)	$C_{3}C_{N1}C_{C1}C_{C2}C_{C2}C_{C3$	166 3 (7)
C18 - C19 - C20 - C21	102.54(17)	$C_{1}^{1}C_{1}^{1}C_{2}^{1}C$	1743(9)
C_{14} C_{19} C_{20} C_{21}	-78.87(19)	C1C - N1C - C3C - C4C	-64.8(11)
$C18 - C19 - C20 - C22^{i}$	-73.40(18)	C1C - N1C - C5C - C6C	1704(8)
C_{14} C_{19} C_{20} C_{22}	105 19 (17)	$C_{3}C_{N1}C_{5}C_{6}C_{6}C_{6}C_{6}C_{6}C_{6}C_{6}C_{6$	-68.2(11)
C_{22}^{i} C_{20} C_{21} C_{22}^{i}	-0.8(2)	$C_{5}C_{A}$ N1 C_{A} $C_{1}C_{A}$ $C_{2}C_{A}$	-161.8(5)
C19 - C20 - C21 - C22	-176.85(13)	$C_{3}C_{4}$ N1 C_{4} $C_{1}C_{4}$ $C_{2}C_{4}$	75 9 (8)
C_{20} C_{21} C_{22} C_{20}^{i}	0.9 (2)	C1CA—N1CA—C3CA—C4CA	-1643(7)
C6A - C1A - C2A - C3A	14(2)	C5CA = N1CA = C3CA = C4CA	73 4 (9)
C13A - C1A - C2A - C3A	-178.87 (13)	C1CA—N1CA—C5CA—C6CA	78.2 (8)
	- , 0, 0, , , , , , , , , , , , , , , ,		

C1A—C2A—C3A—C11A -179.27 (11) C3D—N1D—C1D—C2D -171.4 (5)	
C2A-C3A-C4A-C5A -1.8 (2) $C5D-N1D-C1D-C2D$ 61.8 (7)	
Cl1A—C3A—C4A—C5A 178.12 (11) C1D—N1D—C3D—C4D -69.0 (7)	
C3A—C4A—C5A—C6A 0.9 (2) C5D—N1D—C3D—C4D 54.4 (8)	
C4A—C5A—C6A—C1A 1.0 (2) C1D—N1D—C5D—C6D -84.2 (9)	
C4A—C5A—C6A—C7A 178.05 (14) C3D—N1D—C5D—C6D 151.0 (7)	
C2A—C1A—C6A—C5A –2.2 (2) C3DA—N1DA—C1DA—C2DA 72.0 (6)	
C13A—C1A—C6A—C5A 177.97 (12) C5DA—N1DA—C1DA—C2DA -54.7 (7)	
C2A—C1A—C6A—C7A –179.86 (12) C1DA—N1DA—C3DA—C4DA 171.1 (4)	
C13A—C1A—C6A—C7A 0.34 (15) C5DA—N1DA—C3DA—C4DA -59.7 (6)	
C5A—C6A—C7A—C8A 4.1 (3) C1DA—N1DA—C5DA—C6DA -147.3 (6)	
C1A—C6A—C7A—C8A –178.65 (15) C3DA—N1DA—C5DA—C6DA 86.3 (8)	

Symmetry codes: (i) -*x*+1, -*y*, -*z*; (ii) -*x*+2, -*y*+1, -*z*+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
O1—H1···N1D ⁱⁱⁱ	0.84	1.95	2.781 (2)	171
O1—H1···N1DA ⁱⁱⁱ	0.84	1.91	2.731 (2)	164
$O1A$ — $H1A$ ··· $N1B^{iv}$	0.84	1.94	2.766 (2)	167
C4—H4···O1 A^{v}	0.95	2.54	3.489 (2)	175
C4A—H4A····O1 ^{vi}	0.95	2.47	3.403 (2)	168
C9—H9····N1 <i>C</i> ^{vii}	0.95	2.54	3.459 (2)	163
C9—H9…N1 <i>CA</i> ^{vii}	0.95	2.60	3.519 (2)	162
C2DA—H2D6…C12A	0.98	2.90	3.819 (4)	157
C15—H15…O1	0.95	2.22	2.621 (2)	104
C15A—H15A…O1A	0.95	2.23	2.626 (2)	104

Symmetry codes: (iii) x, y, z-1; (iv) -x+1, -y+2, -z+1; (v) -x+1, -y+1, -z+1; (vi) -x+2, -y+1, -z; (vii) -x+1, -y+1, -z.