

Received 28 October 2015 Accepted 9 November 2015

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China

Keywords: crystal structure; xanthene; hydrogen bonding

CCDC reference: 1435921

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of 10a-hydroxy-9-(3-nitrophenyl)-3,6-diphenyl-3,4,5,6,7,8a,9,10a-octahydro-1*H*xanthene-1,8(2*H*)-dione

Xin-Yuan Zhang, Bing-Xiang Hu, Ze-Yu Zhou, Lei Zhou and Fang-Ming Wang*

Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China. *Correspondence e-mail: wangfmzj@just.edu.cn

In the octahydroxanthenedione unit of the title compound, $C_{31}H_{27}NO_6$, the central dihydropyran ring shows an envelope conformation, while the bilateral cyclohexene and cyclohexane rings adopt a half-boat conformation and a chair conformation, respectively. The nitrobenzene ring is twisted with respect to the two benzene rings, making dihedral angles of 63.1 (1) and 63.0 (1)°. In the crystal, $O-H\cdots O$ hydrogen bonds link the molecules into supramolecular chains propagating along the *a*-axis direction.

1. Chemical context

Xanthenes are important biologically active heterocyclic compounds, which possess anti-inflammatory, antibacterial and antiviral activities (Shakibaei *et al.*, 2007; Lambert *et al.*, 1997). Many studies have been carried out on xanthene derivatives (Knight & Little, 2001; Jha & Beal, 2004; Lu *et al.*, 2011; Cui *et al.*, 2012; Wang *et al.*, 2015). Herein, we report the synthesis and the crystal structure of the title xanthene derivative.

The molecular structure of the title compound is shown in Fig. 1. The C1–O1 and C15–O2 bond lengths are 1.234 (4) and 1.202 (4) Å, respectively. The central dihydropyran ring shows an envelope conformation with atom C19 as the flap, while the bilateral cyclohexene and cyclohexane rings adopt a half boat conformation and a chair conformation, respectively. The nitrobenzene ring is twisted with respect to the C7–C10 and C20–C25 benzene rings, making dihedral angles of

OPEN d ACCESS

2. Structural commentary

63.1 (1) and 63.0 (1)°, respectively.

Table 1	
Hydrogen-bond geometry (Å, $^{\circ}$).	

$D - H \cdot \cdot A$ D	-н г	$1 \cdots A$ I	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O4-H4C\cdots O1^i$ 0.	82 1	.89 2	2.714 (3)	180

Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, -z$.

3. Supramolecular features

In the crystal (Fig. 2), the molecules are linked by $O-H\cdots O$ hydrogen bonds (Table 1), generating supramolecular chains propagating along the *a*-axis direction.

4. Database survey

A search of the Cambridge Structural Database for 10ahydroxy-3,4,5,6,7,8a,9,10a-octahydro-1*H*-xanthene-1,8(2*H*)dione gave 16 hits. None of them are substituted at the 3,6position with two phenyl groups. Several compounds substituted at the 9-position with an aryl group are similar to the title compound, for example, 9-(2,6-dichlorophenyl)-4a-hydroxy-3,3,6,6-tetramethyl-1,2,3,4,4a,5,6,7,8,9a-decahydroxanthene-1,8-dione (Bolte *et al.*, 2001), 9-(2,3-dichlorophenyl)-4a-hydroxy-3,3,6,6-tetramethyl-3,4,4a,6,7,9,9a,10-octahydroanthracene-1,8(2*H*,5*H*)-dione (Mohammadi Ziarani *et al.*, 2008) and 9-(2-chlorophenyl)-4a-hydroxy-3,4,4a,5,6,7,9,9aoctahydro-1*H*-xanthracene-1,8(2*H*)-dione (Liu *et al.*, 2014).

5. Synthesis and crystallization

The title compound was synthesized in accordance to our previous procedure (Wang *et al.*, 2015). 5-Phenylcyclohexane-1,3-dione (7.52 g, 40 mmol) and 3-nitrobenzaldehyde (20 mmol) were dissolved in the mixture of methanol (10 ml) and ethanol (10 ml) in the presence of trace L-proline (5 mmol) and stirred for 4 h. After completion of the reaction, the white solid products were filtered under reduced pressure

Figure 1

The molecular structure of the title compound, showing the atom labelling, with displacement ellipsoids drawn at the 50% probability level.

Figure 2 Packing diagram showing the hydrogen bonds as dashed lines.

and washed with ethanol (78% yield). m.p. 445.15–447.15 K. IR (KBr pellets, cm⁻¹): 3370 (O–H), 1648 (C=O), 1562 (C=C). MS (ESI) *m/z*: 510.2 [M + H⁺]. ¹H NMR (DMSO-*d*₆, 400 MHz): δ 2.56–2.92 (*m*, 8H, 2a-H, 7a-H, 2b-H, 7b-H, 4a-H, 5a-H, 4b-H, 5b-H); 3.43 (*m*, 2H, 6-H, 3-H); 5.46 (*m*, 1H, 9-H); 7.14 (*m*, 2H, 11-H, 10-OH); 7.22–8.02 (*m*, 14H, PhH). Analysis calculated for C₃₁H₂₇NO₆: C 73.07, H 5.34, N 2.75%; found: C 72.92, H 5.30, N 2.65%. Single crystals of the title compound were obtained by slow evaporation from an ethanol solution at

room temperature in the form of colorless blocks.

Table 2Experimental details.

Crystal data	
Chemical formula	$C_{31}H_{27}NO_6$
M _r	509.53
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	291
<i>a</i> , <i>b</i> , <i>c</i> (Å)	8.973 (4), 13.520 (6), 21.251 (9)
$V(Å^3)$	2578 (2)
Z	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.09
Crystal size (mm)	$0.25 \times 0.20 \times 0.16$
Data collection	
Diffractometer	Bruker SMART APEXII area detector
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2000)
T_{\min}, T_{\max}	0.979, 0.986
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	19805, 5040, 3978
Rint	0.028
$(\sin \theta/\lambda)_{\rm max} ({\rm \AA}^{-1})$	0.617
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.044, 0.125, 1.03
No. of reflections	5040
No. of parameters	344
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.43, -0.21

Computer programs: APEX2 and SAINT (Bruker, 2000), SHELXS2014 (Sheldrick, 2008) and SHELXL2014 (Sheldrick, 2015).

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms of were fixed geometrically and treated as riding with C-H = 0.97(methylene), 0.98 (methine), 0.93 (phenyl) and O-H =0.82 Å, with $U_{iso}(H) = 1.2U_{eq}(C,O)$.

Acknowledgements

This work was supported by the Jiangsu Innovation Program for Undergraduate and Graduate Students (No. KYZZ15-0300) and the Innovation Program for Undergraduate and Graduate Students from Jiangsu University of Science and Technology, China.

References

Bolte, M., Degen, A. & Rühl, S. (2001). Acta Cryst. C57, 444-445.

- Bruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Wang, F.-M., Bao, D., Hu, B.-X., Zhou, Z.-Y., Huang, D.-D., Chen, L.-Z. & Dan, Y.-Y. (2015). J. Chem. Res. 39, 376–379.
- Cui, B., Chen, L.-Z., Hu, X.-L., Wang, M. & Han, G.-F. (2012). J. *Heterocycl. Chem.* 49, 900–904.
- Jha, A. & Beal, J. (2004). Tetrahedron Lett. 45, 8999-9001.
- Knight, D. W. & Little, P. B. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1771–1777.
- Lambert, R. W., Martin, J. A., Merrett, J. H., Parkers, K. E. B. & Thomas, G. J. (1997). PCT Int. Appl. WO 9706178.
- Liu, Q.-L., Wu, X.-Y., Gao, F., Bao, D. & Wang, F.-M. (2014). Acta Cryst. E70, 0442–0443.
- Lu, W., Lian, C., Yang, Y. & Zhu, Y. (2011). Acta Cryst. E67, 02108.
- Mohammadi Ziarani, G., Abbasi, A., Badiei, A., Haddadpour, M. & Abdi Jahangir, A. (2008). *Acta Cryst.* E64, o519.
- Shakibaei, G. I., Mirzaei, P. & Bazgir, A. (2007). Appl. Catal. Gen. **325**, 188–192.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

supporting information

Acta Cryst. (2015). E71, 1510-1512 [https://doi.org/10.1107/S2056989015021246]

Crystal structure of 10a-hydroxy-9-(3-nitrophenyl)-3,6-diphenyl-3,4,5,6,7,8a,9,10a-octahydro-1*H*-xanthene-1,8(2*H*)-dione

Xin-Yuan Zhang, Bing-Xiang Hu, Ze-Yu Zhou, Lei Zhou and Fang-Ming Wang

Computing details

Data collection: *APEX2* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT* (Bruker, 2000); program(s) used to solve structure: *SHELXS2014* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *SHELXL2014* (Sheldrick, 2015); software used to prepare material for publication: *SHELXL2014* (Sheldrick, 2015).

10a-Hydroxy-9-(3-nitrophenyl)-3,6-diphenyl-3,4,5,6,7,8a,9,10a-octahydro-1H-xanthene-1,8(2H)-dione

Crystal data	
$C_{31}H_{27}NO_6$ $M_r = 509.53$ Orthorhombic, $P2_12_12_1$ a = 8.973 (4) Å b = 13.520 (6) Å c = 21.251 (9) Å V = 2578 (2) Å ³ Z = 4 F(000) = 1072	$D_{\rm x} = 1.313 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7999 reflections $\theta = 2.5-25.5^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 291 K Block, colorless $0.25 \times 0.20 \times 0.16 \text{ mm}$
Data collection	
Bruker SMART APEXII area-detector diffractometer Radiation source: sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{min} = 0.979, T_{max} = 0.986$	19805 measured reflections 5040 independent reflections 3978 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 2.4^{\circ}$ $h = -10 \rightarrow 11$ $k = -16 \rightarrow 16$ $l = -26 \rightarrow 26$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.125$ S = 1.03 5040 reflections 344 parameters 0 restraints Hydrogen site location: inferred from neighbouring sites	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0674P)^2 + 0.3283P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.010$ $\Delta\rho_{max} = 0.43 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.21 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack <i>x</i> determined using 1503 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons <i>et</i> <i>al.</i> , 2013) Absolute structure parameter: 1.3 (4)

Special details

Experimental. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 6.7298 (0.0116) x + 5.2391 (0.0295) v + 11.3904 (0.0347) z = 4.9647 (0.0106)* -0.0122 (0.0031) C20 * 0.0030 (0.0039) C21 * 0.0057 (0.0040) C22 * -0.0052 (0.0037) C23 * -0.0042 (0.0035) C24 * 0.0128 (0.0031) C25 Rms deviation of fitted atoms = 0.00815.3891 (0.0148) x - 9.6057 (0.0212) y - 7.7932 (0.0389) z = 1.2144 (0.0092) Angle to previous plane (with approximate esd) = 88.773 (14.5)* 0.0060 (0.0029) C7 * -0.0023 (0.0029) C8 * -0.0024 (0.0031) C9 * 0.0034 (0.0036) C10 * 0.0004 (0.0038) C11 * -0.0052 (0.0034) C12 Rms deviation of fitted atoms = 0.0038-1.0457 (0.0125) x + 0.3544 (0.0170) y + 21.0986 (0.0100) z = 0.3439 (0.0082)Angle to previous plane (with approximate esd) = 63.082 (14.2) * 0.0003 (0.0022) C26 * -0.0038 (0.0023) C27 * 0.0040 (0.0025) C28 * -0.0005 (0.0025) C29 * -0.0030 (0.0022) C30 * 0.0030 (0.0020) C31 Rms deviation of fitted atoms = 0.0028

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.3896 (4)	0.0908 (2)	-0.07887 (14)	0.0532 (7)
C2	0.3277 (3)	0.09893 (19)	-0.01590 (13)	0.0444 (6)
C3	0.1786 (3)	0.1037 (2)	-0.00994 (13)	0.0448 (6)
C4	0.0696 (3)	0.0842 (2)	-0.06132 (15)	0.0537 (7)
H4A	0.0206	0.1457	-0.0725	0.064*
H4B	-0.0061	0.0390	-0.0460	0.064*
C5	0.1411 (4)	0.0405 (3)	-0.11952 (16)	0.0699 (10)
H5A	0.1651	-0.0280	-0.1084	0.084*
C6	0.2850 (4)	0.0872 (3)	-0.13382 (17)	0.0749 (10)
H6A	0.2672	0.1541	-0.1484	0.090*
H6B	0.3323	0.0511	-0.1678	0.090*
C7	0.0334 (4)	0.0332 (3)	-0.17443 (15)	0.0657 (9)
C8	0.0491 (5)	0.0871 (3)	-0.22896 (16)	0.0795 (12)
H8A	0.1254	0.1333	-0.2324	0.095*
C9	-0.0483 (8)	0.0729 (4)	-0.27876 (19)	0.1001 (17)
H9A	-0.0365	0.1097	-0.3154	0.120*
C10	-0.1603 (7)	0.0061 (5)	-0.2747 (2)	0.109 (2)
H10A	-0.2248	-0.0033	-0.3084	0.131*
C11	-0.1778 (6)	-0.0470 (5)	-0.2208 (3)	0.1080 (17)
H11A	-0.2546	-0.0929	-0.2176	0.130*
C12	-0.0816 (5)	-0.0329 (4)	-0.1710 (2)	0.0873 (13)
H12A	-0.0952	-0.0692	-0.1342	0.105*
C13	0.4348 (3)	0.1112 (2)	0.03895 (13)	0.0448 (6)
H13A	0.4897	0.1731	0.0329	0.054*
C14	0.3463 (3)	0.1195 (2)	0.10028 (13)	0.0454 (6)

H14A	0.3183	0.0525	0.1133	0.054*
C15	0.4323 (4)	0.1669 (2)	0.15441 (14)	0.0502 (7)
C16	0.3445 (4)	0.1767 (3)	0.21452 (15)	0.0594 (8)
H16A	0.4040	0.2117	0.2455	0.071*
H16B	0.3230	0.1114	0.2310	0.071*
C17	0.1982 (4)	0.2325 (2)	0.20407 (14)	0.0531 (7)
H17A	0.2239	0.2996	0.1905	0.064*
C18	0.1095 (4)	0.1841 (2)	0.15049 (13)	0.0500 (7)
H18A	0.0795	0.1180	0.1629	0.060*
H18B	0.0202	0.2223	0.1422	0.060*
C19	0.2036 (3)	0.1785 (2)	0.09110 (13)	0.0477 (7)
C20	0.1030 (4)	0.2418 (3)	0.26275 (14)	0.0583 (8)
C21	0.0884 (7)	0.1681 (4)	0.3066 (2)	0.0987 (15)
H21A	0.1430	0.1101	0.3018	0.118*
C22	-0.0045 (7)	0.1777 (5)	0.3573 (2)	0.1152 (18)
H22A	-0.0120	0.1263	0.3862	0.138*
C23	-0.0851 (5)	0.2603 (6)	0.3660 (2)	0.1031 (18)
H23A	-0.1489	0.2661	0.4003	0.124*
C24	-0.0718 (6)	0.3356 (5)	0.3235 (2)	0.1023 (17)
H24A	-0.1272	0.3931	0.3289	0.123*
C25	0.0237 (5)	0.3272 (3)	0.27247 (18)	0.0790 (11)
H25A	0.0341	0.3798	0.2446	0.095*
C26	0.5470 (3)	0.0276 (2)	0.04296 (13)	0.0469 (7)
C27	0.6988 (3)	0.0467 (3)	0.04997 (15)	0.0556 (8)
H27A	0.7324	0.1117	0.0502	0.067*
C28	0.7995 (4)	-0.0294 (3)	0.05661 (17)	0.0660 (9)
H28A	0.9002	-0.0150	0.0617	0.079*
C29	0.7535 (4)	-0.1262 (3)	0.05574 (17)	0.0654 (9)
H29A	0.8214	-0.1777	0.0599	0.079*
C30	0.6046 (4)	-0.1444 (2)	0.04855 (14)	0.0538 (7)
C31	0.4998 (3)	-0.0703 (2)	0.04240 (14)	0.0484 (7)
H31A	0.3993	-0.0856	0.0379	0.058*
N1	0.5518 (4)	-0.2479 (2)	0.04813 (15)	0.0718 (8)
01	0.5249 (2)	0.09640 (17)	-0.08882 (11)	0.0611 (6)
O2	0.5583 (3)	0.19545 (18)	0.14823 (11)	0.0635 (6)
03	0.1096 (2)	0.12872 (16)	0.04468 (9)	0.0519 (5)
O4	0.2463 (2)	0.27061 (15)	0.06846 (10)	0.0537 (5)
H4C	0.1792	0.3106	0.0746	0.081*
O5	0.6420 (4)	-0.3133 (2)	0.03810 (18)	0.1123 (12)
O6	0.4215 (4)	-0.2637 (2)	0.0582 (2)	0.1056 (11)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0563 (18)	0.0513 (17)	0.0522 (17)	-0.0012 (15)	0.0112 (15)	-0.0060 (14)
C2	0.0519 (17)	0.0372 (14)	0.0441 (14)	0.0000 (12)	0.0036 (13)	0.0003 (12)
С3	0.0515 (16)	0.0427 (15)	0.0402 (14)	-0.0003 (12)	0.0023 (12)	-0.0001 (12)
C4	0.0528 (17)	0.0608 (18)	0.0476 (16)	0.0010 (15)	-0.0005 (13)	-0.0023 (14)

supporting information

		/- \			/	
C5	0.064 (2)	0.098 (3)	0.0475 (18)	-0.0060 (19)	-0.0007 (16)	0.0034 (18)
C6	0.075 (2)	0.098 (3)	0.0523 (19)	-0.001(2)	0.0060 (17)	-0.0111 (19)
C7	0.072 (2)	0.085 (2)	0.0401 (16)	0.014 (2)	0.0003 (16)	-0.0048 (17)
C8	0.116 (3)	0.076 (2)	0.0467 (19)	0.015 (2)	-0.009(2)	-0.0058 (17)
C9	0.152 (5)	0.103 (3)	0.046 (2)	0.049 (4)	-0.020 (3)	-0.011 (2)
C10	0.122 (4)	0.138 (5)	0.067 (3)	0.039 (4)	-0.037 (3)	-0.037 (3)
C11	0.087 (3)	0.148 (5)	0.088 (3)	-0.010 (3)	-0.019 (3)	-0.028 (3)
C12	0.076 (3)	0.126 (4)	0.060 (2)	-0.011 (3)	-0.008 (2)	0.000 (2)
C13	0.0469 (15)	0.0406 (14)	0.0468 (15)	-0.0042 (12)	0.0022 (12)	-0.0013 (12)
C14	0.0508 (16)	0.0393 (14)	0.0461 (15)	-0.0014 (13)	0.0015 (12)	0.0004 (12)
C15	0.0555 (19)	0.0452 (16)	0.0499 (16)	0.0099 (15)	-0.0032 (14)	0.0003 (13)
C16	0.068 (2)	0.0623 (19)	0.0475 (17)	0.0058 (17)	-0.0025 (15)	-0.0006 (15)
C17	0.0623 (19)	0.0505 (16)	0.0464 (16)	0.0015 (15)	0.0059 (14)	-0.0012 (13)
C18	0.0537 (16)	0.0511 (16)	0.0451 (15)	0.0001 (14)	0.0066 (14)	0.0009 (13)
C19	0.0478 (15)	0.0505 (16)	0.0448 (15)	0.0019 (13)	0.0008 (12)	-0.0022 (13)
C20	0.0622 (19)	0.068 (2)	0.0450 (16)	-0.0021 (18)	-0.0014 (15)	-0.0082 (15)
C21	0.136 (4)	0.082 (3)	0.078 (3)	0.008 (3)	0.043 (3)	0.011 (2)
C22	0.132 (5)	0.132 (5)	0.082 (3)	-0.014 (4)	0.038 (3)	0.015 (3)
C23	0.068 (3)	0.183 (6)	0.058 (3)	-0.013 (3)	0.014 (2)	-0.030 (3)
C24	0.085 (3)	0.144 (5)	0.078 (3)	0.033 (3)	0.006 (3)	-0.032(3)
C25	0.081 (3)	0.096 (3)	0.060 (2)	0.025 (2)	0.0047 (19)	-0.009 (2)
C26	0.0509 (16)	0.0467 (15)	0.0430 (14)	-0.0013 (13)	0.0070 (13)	0.0006 (12)
C27	0.0506 (17)	0.0625 (19)	0.0538 (18)	-0.0055 (15)	0.0042 (14)	0.0030 (15)
C28	0.0467 (17)	0.083 (2)	0.068 (2)	0.0033 (17)	0.0045 (16)	0.0026 (18)
C29	0.063 (2)	0.069 (2)	0.064 (2)	0.0190 (18)	0.0052 (17)	0.0072 (16)
C30	0.067 (2)	0.0470 (16)	0.0469 (15)	0.0042 (14)	0.0035 (15)	0.0039 (13)
C31	0.0508 (16)	0.0501 (16)	0.0444 (14)	0.0012 (13)	0.0013 (13)	0.0014 (12)
N1	0.095 (2)	0.0502 (17)	0.0700 (18)	0.0082 (18)	0.0015 (18)	0.0109 (14)
01	0.0579 (13)	0.0663 (14)	0.0591 (13)	-0.0065 (11)	0.0139 (10)	-0.0047 (10)
O2	0.0595 (14)	0.0683 (15)	0.0627 (14)	-0.0025 (12)	-0.0050 (11)	-0.0077 (11)
03	0.0455 (10)	0.0657 (13)	0.0444 (10)	-0.0024 (10)	0.0029 (9)	-0.0066 (9)
O4	0.0587 (12)	0.0471 (11)	0.0554 (12)	0.0045 (10)	0.0076 (10)	0.0075 (9)
05	0.139 (3)	0.0557 (16)	0.142 (3)	0.0285 (18)	0.020 (2)	0.0107 (18)
O6	0.097 (2)	0.0608 (16)	0.159 (3)	-0.0136 (16)	-0.007(2)	0.0041 (18)
	· /	× /	× /	· /	· /	

Geometric parameters (Å, °)

C1-01	1.234 (4)	C16—H16A	0.9700
C1—C2	1.453 (4)	C16—H16B	0.9700
C1—C6	1.499 (5)	C17—C20	1.517 (4)
С2—С3	1.345 (4)	C17—C18	1.536 (4)
C2—C13	1.520 (4)	C17—H17A	0.9800
C3—O3	1.358 (3)	C18—C19	1.520 (4)
C3—C4	1.489 (4)	C18—H18A	0.9700
C4—C5	1.513 (5)	C18—H18B	0.9700
C4—H4A	0.9700	C19—O4	1.389 (4)
C4—H4B	0.9700	C19—O3	1.462 (4)
C5—C6	1.468 (5)	C20—C21	1.371 (5)

С5—С7	1.519 (5)	C20—C25	1.371 (5)
C5—H5A	0.9800	C21—C22	1.369 (7)
С6—Н6А	0.9700	C21—H21A	0.9300
С6—Н6В	0.9700	C22—C23	1.343 (8)
C7—C12	1.367 (6)	C22—H22A	0.9300
C7—C8	1.376 (5)	C23—C24	1.365 (9)
C8—C9	1.385 (6)	С23—Н23А	0.9300
C8—H8A	0.9300	C24—C25	1.387 (6)
C9—C10	1.354 (8)	C24—H24A	0.9300
С9—Н9А	0.9300	С25—Н25А	0.9300
C10—C11	1.360 (8)	C26—C31	1.390 (4)
С10—Н10А	0.9300	C26—C27	1.394 (4)
C11—C12	1.380 (6)	C27—C28	1.377 (5)
С11—Н11А	0.9300	C27—H27A	0.9300
С12—Н12А	0.9300	C28—C29	1.373 (6)
C13—C26	1.515 (4)	C28—H28A	0.9300
C13—C14	1.530 (4)	C29—C30	1.366 (5)
С13—Н13А	0.9800	C29—H29A	0.9300
C14—C19	1.521 (4)	C30—C31	1.380 (4)
C14—C15	1.527 (4)	C30—N1	1.477 (5)
C14—H14A	0.9800	C31—H31A	0.9300
C15—O2	1.202 (4)	N1—O6	1.207 (4)
C15—C16	1.507 (5)	N1—O5	1.218 (4)
C16—C17	1.530 (5)	O4—H4C	0.8200
O1—C1—C2	121.9 (3)	C15—C16—H16B	109.3
O1—C1—C6	119.0 (3)	C17—C16—H16B	109.3
C2—C1—C6	118.7 (3)	H16A—C16—H16B	108.0
C3—C2—C1	118.1 (3)	C20—C17—C16	113.9 (3)
C3—C2—C13	123.5 (3)	C20—C17—C18	110.7 (3)
C1—C2—C13	118.2 (3)	C16—C17—C18	110.0 (3)
C2—C3—O3	123.1 (3)	С20—С17—Н17А	107.3
C2—C3—C4	125.1 (3)	С16—С17—Н17А	107.3
O3—C3—C4	111.8 (2)	C18—C17—H17A	107.3
C3—C4—C5	112.9 (3)	C19—C18—C17	110.4 (2)
C3—C4—H4A	109.0	C19—C18—H18A	109.6
C5—C4—H4A	109.0	C17—C18—H18A	109.6
C3—C4—H4B	109.0	C19—C18—H18B	109.6
C5—C4—H4B	109.0	C17—C18—H18B	109.6
H4A—C4—H4B	107.8	H18A—C18—H18B	108.1
C6—C5—C4	112.0 (3)	O4—C19—O3	109.8 (2)
C6—C5—C7	115.4 (3)	O4—C19—C18	113.4 (2)
C4—C5—C7	112.5 (3)	O3—C19—C18	105.2 (2)
С6—С5—Н5А	105.3	O4—C19—C14	106.4 (2)
C4—C5—H5A	105.3	O3—C19—C14	109.3 (2)
С7—С5—Н5А	105.3	C18—C19—C14	112.8 (2)
C5—C6—C1	113.8 (3)	C21—C20—C25	117.4 (3)
С5—С6—Н6А	108.8	C21—C20—C17	123.5 (3)

C1—C6—H6A	108.8	C25—C20—C17	119.1 (3)
С5—С6—Н6В	108.8	C22—C21—C20	121.6 (5)
C1—C6—H6B	108.8	C22—C21—H21A	119.2
H6A—C6—H6B	107.7	C20—C21—H21A	119.2
C12—C7—C8	118.0 (4)	C23—C22—C21	121.0 (5)
C12—C7—C5	118.8 (3)	C23—C22—H22A	119.5
C8—C7—C5	123.2 (4)	C21—C22—H22A	119.5
C7—C8—C9	120.4 (5)	C_{22} — C_{23} — C_{24}	118.8 (4)
C7—C8—H8A	119.8	C22—C23—H23A	120.6
C9—C8—H8A	119.8	C24— $C23$ — $H23A$	120.6
C10-C9-C8	120.8 (5)	C^{23} C^{24} C^{25}	120.0 120.7(5)
C10-C9-H9A	119.6	C_{23} C_{24} C_{23} C_{24} C_{23} C_{24} C_{23} C_{24} C_{23} C_{23} C_{24} C_{23} C	119.7
C8 - C9 - H9A	119.6	C_{25} C_{24} H_{24A}	119.7
C_{0} C_{10} C_{11}	119.0	$C_{23} = C_{24} = \Pi_{24} \Lambda$	119.7 120.4(5)
$C_{P} = C_{10} = C_{11}$	119.4 (5)	$C_{20} = C_{25} = C_{24}$	110.8
$C_{11} = C_{10} = H_{10A}$	120.3	$C_{20} = C_{25} = H_{25} A$	119.0
C_{10} C_{11} C_{12}	120.3	$C_{24} = C_{25} = \Pi_{25} A$	119.0 118.2(2)
C10 - C11 - U11A	120.1 (0)	$C_{21} = C_{20} = C_{27}$	110.5(3)
CIQ_CII_HIIA	120.0	$C_{31} = C_{20} = C_{13}$	120.5(3)
	120.0	$C_2/-C_{20}$	121.2(3)
	121.4 (5)	$C_{28} = C_{27} = C_{26}$	121.0 (3)
C/—C12—H12A	119.3	C28—C27—H27A	119.5
CII—CI2—HI2A	119.3	C26—C27—H27A	119.5
C26—C13—C2	112.5 (2)	C29—C28—C27	120.9 (3)
C26—C13—C14	110.6 (2)	C29—C28—H28A	119.6
C2—C13—C14	109.4 (2)	C27—C28—H28A	119.6
C26—C13—H13A	108.1	C30—C29—C28	117.9 (3)
C2—C13—H13A	108.1	C30—C29—H29A	121.1
C14—C13—H13A	108.1	C28—C29—H29A	121.1
C19—C14—C15	107.6 (2)	C29—C30—C31	123.0 (3)
C19—C14—C13	111.5 (2)	C29—C30—N1	119.0 (3)
C15—C14—C13	114.2 (2)	C31—C30—N1	117.9 (3)
C19—C14—H14A	107.8	C30—C31—C26	118.9 (3)
C15—C14—H14A	107.8	С30—С31—Н31А	120.5
C13—C14—H14A	107.8	C26—C31—H31A	120.5
O2—C15—C16	123.8 (3)	O6—N1—O5	123.1 (4)
O2—C15—C14	121.9 (3)	O6—N1—C30	118.5 (3)
C16—C15—C14	114.3 (3)	O5—N1—C30	118.4 (4)
C15—C16—C17	111.7 (3)	C3—O3—C19	115.4 (2)
C15—C16—H16A	109.3	C19—O4—H4C	109.5
C17—C16—H16A	109.3		
Q1-C1-C2-C3	172.3 (3)	C16—C17—C18—C19	-55.4(3)
C6-C1-C2-C3	-0.5(4)	C17 - C18 - C19 - O4	-61.8(3)
01-C1-C2-C13	-2.1(4)	C_{17} C_{18} C_{19} C_{3}	178 2 (2)
C6-C1-C2-C13	-1750(3)	C_{17} C_{18} C_{19} C_{14}	59 2 (3)
C1 - C2 - C3 - O3	-1680(2)	C_{15} C_{14} C_{19} C_{14}	68.2(3)
$C_1^3 = C_2^2 = C_3^2 = C_3^3$	61(4)	C_{13} C_{14} C_{19} O_{4}	-57.8(3)
C1 - C2 - C3 - C4	11 1 (4)	$C_{15} = C_{14} = C_{19} = O_{4}$	-173 4 (2)
$C_1 C_2 C_3 C_7$	**** (7)	010 017 01 01 000	1/2.7(4)

C13—C2—C3—C4	-174.8 (3)	C13—C14—C19—O3	60.6 (3)
C2—C3—C4—C5	10.0 (4)	C15—C14—C19—C18	-56.7 (3)
O3—C3—C4—C5	-170.8 (3)	C13—C14—C19—C18	177.3 (2)
C3—C4—C5—C6	-40.7 (4)	C16—C17—C20—C21	-38.2 (5)
C3—C4—C5—C7	-172.6 (3)	C18—C17—C20—C21	86.3 (5)
C4—C5—C6—C1	51.0 (5)	C16—C17—C20—C25	143.3 (3)
C7—C5—C6—C1	-178.6 (3)	C18—C17—C20—C25	-92.1 (4)
O1—C1—C6—C5	155.9 (4)	C25—C20—C21—C22	1.8 (8)
C2-C1-C6-C5	-31.1 (5)	C17—C20—C21—C22	-176.7 (4)
C6—C5—C7—C12	161.1 (4)	C20—C21—C22—C23	-0.1 (9)
C4—C5—C7—C12	-68.7 (5)	C21—C22—C23—C24	-0.7 (9)
C6—C5—C7—C8	-16.1 (6)	C22—C23—C24—C25	-0.2 (8)
C4—C5—C7—C8	114.1 (4)	C21—C20—C25—C24	-2.7 (6)
C12—C7—C8—C9	-0.9 (6)	C17—C20—C25—C24	175.9 (4)
C5—C7—C8—C9	176.3 (4)	C23—C24—C25—C20	2.0 (7)
C7—C8—C9—C10	0.1 (6)	C2-C13-C26-C31	-51.4 (3)
C8—C9—C10—C11	0.4 (7)	C14—C13—C26—C31	71.3 (3)
C9-C10-C11-C12	-0.2 (8)	C2-C13-C26-C27	131.3 (3)
C8—C7—C12—C11	1.2 (7)	C14—C13—C26—C27	-106.0 (3)
C5—C7—C12—C11	-176.2 (4)	C31—C26—C27—C28	-0.4 (5)
C10-C11-C12-C7	-0.7 (8)	C13—C26—C27—C28	176.9 (3)
C3—C2—C13—C26	128.5 (3)	C26—C27—C28—C29	0.8 (5)
C1—C2—C13—C26	-57.3 (3)	C27—C28—C29—C30	-0.5 (5)
C3—C2—C13—C14	5.2 (4)	C28—C29—C30—C31	-0.2 (5)
C1—C2—C13—C14	179.3 (2)	C28-C29-C30-N1	-179.3 (3)
C26—C13—C14—C19	-162.0 (2)	C29—C30—C31—C26	0.6 (5)
C2-C13-C14-C19	-37.5 (3)	N1-C30-C31-C26	179.7 (3)
C26—C13—C14—C15	75.8 (3)	C27—C26—C31—C30	-0.2 (4)
C2-C13-C14-C15	-159.8 (2)	C13—C26—C31—C30	-177.5 (3)
C19—C14—C15—O2	-123.8 (3)	C29—C30—N1—O6	161.0 (4)
C13—C14—C15—O2	0.6 (4)	C31—C30—N1—O6	-18.2 (5)
C19—C14—C15—C16	54.7 (3)	C29—C30—N1—O5	-18.4 (5)
C13—C14—C15—C16	179.0 (2)	C31—C30—N1—O5	162.4 (3)
O2-C15-C16-C17	123.6 (3)	C2—C3—O3—C19	17.6 (4)
C14—C15—C16—C17	-54.8 (4)	C4—C3—O3—C19	-161.6 (2)
C15—C16—C17—C20	178.2 (3)	O4—C19—O3—C3	66.2 (3)
C15—C16—C17—C18	53.3 (4)	C18—C19—O3—C3	-171.5 (2)
C20-C17-C18-C19	177.8 (3)	C14—C19—O3—C3	-50.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
O4— $H4C$ ···O1 ⁱ	0.82	1.89	2.714 (3)	180

Symmetry code: (i) x-1/2, -y+1/2, -z.