data reports

open 👌 access

The crystal structure of a new polymorph of hexaaquanickel(II) bis(6-oxo-1,6-di-hydropyridine-3-carboxylate)

Rubén Pérez-Aguirre, Sonia Pérez-Yáñez, Garikoitz Beobide, Oscar Castillo,* Juan Manuel Gutiérrez-Zorrilla and Antonio Luque

Departamento de Química Inorgánica., Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV/EHU, Apdo. 644, E-48080 Bilbao, Spain. *Correspondence e-mail: oscar.castillo@ehu.eus

Received 16 November 2015; accepted 24 November 2015

Edited by M. Weil, Vienna University of Technology, Austria

In a new polymorph of the title salt, $[Ni(H_2O)_6](C_6H_4NO_3)_2$, the metal atom of the cationic complex lies on a symmetry centre and is coordinated by six water molecules to provide a quite regular octahedral coordination environment. These cations interact with 6-oxo-1,6-dihydropyridine-3-carboxylate anions through electrostatic interactions and by means of O- $H \cdots O$ and $N-H \cdots O$ hydrogen bonds involving the carboxylate, keto and protonated imine groups of the anion, and the coordinating water molecules from the cationic complex entity to generate a supramolecular three-dimensional architecture. The previously reported polymorph of this compound presents a network of hydrogen bonds, in which the organic anions establish mutual hydrogen-bonding interactions involving their keto and protonated imine groups.

Keywords: crystal structure; polymorph; 6-oxo-1,6-dihydropyridine-3-carboxylate anion; hydrogen bonding,.

CCDC reference: 1438522

1. Related literature

The zinc and cobalt analogues (Zhang *et al.*, 2005; Song *et al.*, 2005; Zhang & Ng, 2005*a*) of the title salt are isostructural with the previously reported polymorph of $[Ni(H_2O)_6](C_6H_4NO_3)_2$ (Zhang & Ng, 2005*b*). It is worth mentioning that although the authors claimed a lactim tautomer of the organic anion to be present in all these structures, the C–O bond length seems to indicate of a lactam tautomer as in the case of the title compound. For additional examples of coordination complexes with 6-oxo-1,6-dihydropyridine-3-carboxylate anions and copper(II), see: Zeng *et al.* (2007).

 $\gamma = 114.823 \ (8)^{\circ}$ $V = 410.49 \ (7) \ \text{\AA}^3$

Mo $K\alpha$ radiation

 $0.08 \times 0.07 \times 0.06 \ \mathrm{mm}$

2781 measured reflections

1801 independent reflections

1654 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 1.26 \text{ mm}^{-1}$ T = 100 K

 $R_{\rm int}=0.020$

refinement $\Delta \rho_{\text{max}} = 0.45 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.39 \text{ e} \text{ Å}^{-3}$

Z = 1

2. Experimental

2.1. Crystal data

$$\begin{split} & [\mathrm{Ni}(\mathrm{H}_{2}\mathrm{O})_{6}](\mathrm{C}_{6}\mathrm{H}_{4}\mathrm{NO}_{3})_{2} \\ & M_{r} = 443.01 \\ & \mathrm{Triclinic}, \ P\overline{1} \\ & a = 6.2620 \ (5) \ \mathrm{\AA} \\ & b = 7.1053 \ (7) \ \mathrm{\AA} \\ & c = 10.7101 \ (10) \ \mathrm{\AA} \\ & \alpha = 102.461 \ (8)^{\circ} \\ & \beta = 96.754 \ (7)^{\circ} \end{split}$$

2.2. Data collection

Bruker SMART 1K CCD areadetector diffractometer Absorption correction: analytical (*CrysAlis RED*; Oxford Diffraction, 2003) $T_{\rm min} = 0.888, T_{\rm max} = 0.936$

2.3. Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	
$wR(F^2) = 0.070$	
S = 1.06	
1801 reflections	
146 parameters	

 Table 1

 Selected bond lengths (Å).

Ni1 - O1W	2.0184 (16)	Ni1 - O2W	2.0990 (16)
Ni1 - O3W	2.0242 (16)		

Table 2		
Hydrogen-bond	geometry (Å	., °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1···O2W	0.87 (2)	2.06 (3)	2.906 (2)	167 (2)
$O1W-H11W\cdots O71^{i}$	0.77 (3)	1.85 (3)	2.612 (2)	173 (3)
$O1W-H12W\cdots O72^{ii}$	0.78 (3)	1.97 (3)	2.748 (2)	173 (3)
O2W−H21W···O2 ⁱⁱⁱ	0.88 (3)	1.90 (3)	2.772 (2)	173 (2)
$O2W - H22W \cdot \cdot \cdot O2^{iv}$	0.77 (3)	1.98 (3)	2.743 (2)	169 (3)
$O3W - H31W \cdot \cdot \cdot O72^{i}$	0.74 (3)	1.92 (3)	2.660(2)	174 (3)
$O3W - H32W \cdots O2^{v}$	0.81 (3)	2.01 (3)	2.813 (2)	172 (3)
Symmetry codes: (i)	-r + 1 - v	-7 + 2 (ii)	-r + 2 - v	-7 + 2 (iii)

Symmetry codes: (1) -x + 1, -y, -z + 2; (1) -x + 2, -y, -z + 2; (11) -x + 1, -y - 1, -z + 1; (iv) x - 1, y, z; (v) -x + 1, -y, -z + 1.

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics:

ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

Acknowledgements

This work has been funded by Eusko Jaurlaritza/Gobierno Vasco (Grant IT477–10), Universidad del País Vasco/Euskal Herriko Unibertsitatea (EHUA14/09, Grant UFI11/53), and the Ministerio de Economía y Competitividad (MAT2013–46502-C2–1-P). The authors are thankful for technical and human support provided by S. GIker of UPV/EHU.

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5241).

References

- Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Oxford Diffraction (2003). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Song, Y.-S., Yan, B. & Chen, Z.-X. (2005). Inorg. Chem. Commun. 8, 1165–1168.
- Zeng, Y.-F., Zhao, J.-P., Hu, B.-W., Hu, X., Liu, F.-C., Ribas, J., Ribas-Ariño, J. & Bu, X. H. (2007). *Chem. Eur. J.* **13**, 9924–9930.
- Zhang, X.-L., Lu, Y.-J., Li, J.-Z. & Ng, S. W. (2005). Acta Cryst. E61, m1063-m1064.
- Zhang, X.-L. & Ng, S. W. (2005a). Acta Cryst. E61, m1140-m1141.
- Zhang, X.-L. & Ng, S. W. (2005b). Acta Cryst. E61, m1142-m1143.

supporting information

Acta Cryst. (2015). E71, m238-m239 [https://doi.org/10.1107/S2056989015022422]

The crystal structure of a new polymorph of hexaaquanickel(II) bis(6-oxo-1,6dihydropyridine-3-carboxylate)

Rubén Pérez-Aguirre, Sonia Pérez-Yáñez, Garikoitz Beobide, Oscar Castillo, Juan Manuel Gutiérrez-Zorrilla and Antonio Luque

S1. Experimental

6-Oxo-1,6-dihydropyridine-3-carboxylic acid (0.8 mmol) and Ni(NO₃)₂·6H₂O (0.4 mmol) were dissolved in 40 ml of distilled water. After stirring for half an hour, the solution was left evaporating at room temperature. Two weeks later light green crystals of the title compound were obtained.

S2. Refinement

H atoms bonded to N and O atoms were located in a difference map and were refined with $U_{iso}(H) = 1.2U_{eq}(N)$ and $U_{iso}(H) = 1.5U_{eq}(O)$. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The structures of the molecular entities in (I), drawn with displacement ellipsoids at the 50% probability level. [Symmetry code: -x+1, -y, -z+1.]

Figure 2

Hydrogen-bonding interactions (dashed lines) taking place between the $[Ni(H_2O)_6]^{2+}$ complex cations and the 6-oxo-1,6-dihydropyridine-3-carboxylate anions.

Z = 1

F(000) = 230 $D_x = 1.792 \text{ Mg m}^{-3}$

 $\theta = 2.0-28.2^{\circ}$ $\mu = 1.26 \text{ mm}^{-1}$ T = 100 K

Block, light green $0.08 \times 0.07 \times 0.06 \text{ mm}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 2781 reflections

Hexaaquanickel(II) bis(6-oxo-1,6-dihydropyridine-3-carboxylate)

Crystal data

[Ni(H ₂ O) ₆](C ₆ H ₄ NO ₃) ₂
$M_r = 443.01$
Triclinic, $P\overline{1}$
a = 6.2620 (5) Å
<i>b</i> = 7.1053 (7) Å
<i>c</i> = 10.7101 (10) Å
$\alpha = 102.461 \ (8)^{\circ}$
$\beta = 96.754 \ (7)^{\circ}$
$\gamma = 114.823 \ (8)^{\circ}$
$V = 410.49 (7) \text{ Å}^3$

Data collection

Bruker SMART 1K CCD area-detector	2781 measured reflections
diffractometer	1801 independent reflections
Radiation source: sealed tube	1654 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.020$
Detector resolution: 8.192 pixels mm ⁻¹	$\theta_{\rm max} = 28.2^\circ, \ \theta_{\rm min} = 2.0^\circ$
thin–slice ω scans	$h = -5 \rightarrow 8$
Absorption correction: analytical	$k = -9 \longrightarrow 5$
(CrysAlis RED; Oxford Diffraction, 2003)	$l = -14 \rightarrow 13$
$T_{\min} = 0.888, \ T_{\max} = 0.936$	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.070$ S = 1.061801 reflections 146 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0191P)^2 + 0.3293P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.45$ e Å⁻³ $\Delta\rho_{min} = -0.39$ e Å⁻³

Special details

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Ni1	0.5000	0.0000	0.5000	0.01281 (12)
O1W	0.7185 (3)	0.1609 (3)	0.68193 (15)	0.0168 (3)
O71	0.5271 (3)	-0.1565 (3)	1.13681 (15)	0.0202 (4)
O2W	0.3038 (3)	-0.2654 (3)	0.56622 (15)	0.0154 (3)
O3W	0.2933 (3)	0.1461 (3)	0.55076 (17)	0.0231 (4)
O2	0.8636 (3)	-0.3362 (3)	0.62046 (14)	0.0176 (3)
O72	0.8231 (3)	-0.2245 (3)	1.21937 (15)	0.0202 (4)
N1	0.6616 (3)	-0.2558 (3)	0.76999 (18)	0.0162 (4)
C2	0.8355 (4)	-0.3128 (4)	0.7379 (2)	0.0141 (4)
C4	0.9331 (4)	-0.3021 (3)	0.9661 (2)	0.0140 (4)
H4	1.0278	-0.3170	1.0333	0.017*
C3	0.9726 (4)	-0.3378 (4)	0.8423 (2)	0.0148 (4)
H3	1.0917	-0.3793	0.8264	0.018*
C5	0.7512 (4)	-0.2432 (3)	0.9937 (2)	0.0130 (4)
C7	0.6965 (4)	-0.2048 (3)	1.1271 (2)	0.0144 (4)
C6	0.6196 (4)	-0.2203 (4)	0.8921 (2)	0.0154 (4)
H6	0.4995	-0.1797	0.9070	0.018*
H1	0.574 (4)	-0.240 (4)	0.708 (3)	0.018*
H31W	0.266 (5)	0.177 (4)	0.615 (3)	0.023*
H21W	0.262 (5)	-0.387 (5)	0.505 (3)	0.023*
H22W	0.189 (5)	-0.270 (4)	0.588 (3)	0.023*
H11W	0.650 (5)	0.171 (4)	0.736 (3)	0.023*
H12W	0.844 (5)	0.170 (4)	0.712 (3)	0.023*
H32W	0.236 (5)	0.196 (5)	0.503 (3)	0.038 (9)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0108 (2)	0.0231 (2)	0.0093 (2)	0.01104 (17)	0.00397 (15)	0.00593 (16)
O1W	0.0119 (8)	0.0321 (10)	0.0095 (8)	0.0130 (7)	0.0037 (6)	0.0053 (7)
O71	0.0201 (8)	0.0353 (10)	0.0169 (8)	0.0204 (8)	0.0102 (7)	0.0109 (7)
O2W	0.0127 (8)	0.0239 (9)	0.0126 (8)	0.0102 (7)	0.0056 (6)	0.0058 (7)
O3W	0.0303 (10)	0.0467 (12)	0.0121 (8)	0.0320 (9)	0.0110 (7)	0.0135 (8)
O2	0.0198 (8)	0.0248 (9)	0.0126 (8)	0.0127 (7)	0.0073 (6)	0.0067 (7)
O72	0.0180 (8)	0.0384 (10)	0.0112 (8)	0.0187 (8)	0.0048 (6)	0.0079 (7)
N1	0.0152 (9)	0.0275 (11)	0.0121 (9)	0.0135 (8)	0.0047 (8)	0.0094 (8)
C2	0.0133 (10)	0.0176 (11)	0.0130 (10)	0.0074 (9)	0.0061 (8)	0.0054 (9)
C4	0.0132 (10)	0.0156 (11)	0.0138 (10)	0.0084 (9)	0.0010 (8)	0.0033 (9)
C3	0.0118 (10)	0.0190 (11)	0.0170 (11)	0.0102 (9)	0.0053 (8)	0.0042 (9)

supporting information

C5	0.0113 (10)	0.0159 (11)	0.0115 (10)	0.0058 (8)	0.0038 (8)	0.0038 (8)
C7	0.0127 (10)	0.0169 (11)	0.0133 (11)	0.0062 (9)	0.0039 (8)	0.0047 (9)
C6	0.0130 (10)	0.0233 (12)	0.0145 (11)	0.0107 (9)	0.0066 (9)	0.0075 (9)

Geometric parameters (Å, °)			
Nil—OlW	2.0184 (16)	O2—C2	1.275 (2)
Ni1—O1W ⁱ	2.0184 (16)	O72—C7	1.262 (3)
Ni1—O3W ⁱ	2.0242 (16)	N1—C6	1.356 (3)
Ni1—O3W	2.0242 (16)	N1—C2	1.366 (3)
Ni1—O2W ⁱ	2.0990 (16)	N1—H1	0.87 (2)
Ni1—O2W	2.0990 (16)	C2—C3	1.417 (3)
O1W—H11W	0.77 (3)	C4—C3	1.367 (3)
O1W—H12W	0.78 (3)	C4—C5	1.409 (3)
O71—C7	1.253 (2)	C4—H4	0.9300
O2W—H21W	0.88 (3)	С3—Н3	0.9300
O2W—H22W	0.77 (3)	C5—C6	1.366 (3)
O3W—H31W	0.74 (3)	С5—С7	1.503 (3)
O3W—H32W	0.81 (3)	С6—Н6	0.9300
O1W—Ni1—O1W ⁱ	180.0	H31W—O3W—H32W	106 (3)
O1W—Ni1—O2W	89.95 (6)	C6—N1—C2	124.28 (18)
O1W-Ni1-O2W ⁱ	90.05 (6)	C6—N1—H1	118.1 (16)
O1W—Ni1—O3W	88.06 (7)	C2—N1—H1	117.6 (16)
O1W-Ni1-O3W ⁱ	91.94 (7)	O2—C2—N1	118.94 (19)
O2W—Ni1—O3W	92.99 (7)	O2—C2—C3	125.81 (19)
O2W-Ni1-O3W ⁱ	87.01 (7)	N1—C2—C3	115.24 (18)
O1W ⁱ —Ni1—O3W ⁱ	88.06 (7)	C3—C4—C5	121.08 (19)
O1W ⁱ —Ni1—O3W	91.94 (7)	C3—C4—H4	119.5
O3W ⁱ —Ni1—O3W	180.0	C5—C4—H4	119.5
O1W ⁱ —Ni1—O2W ⁱ	89.95 (6)	C4—C3—C2	121.22 (19)
O3W ⁱ —Ni1—O2W ⁱ	92.99 (7)	С4—С3—Н3	119.4
O1W ⁱ —Ni1—O2W	90.05 (6)	С2—С3—Н3	119.4
O3W ⁱ —Ni1—O2W	87.01 (7)	C6—C5—C4	117.18 (19)
O2W ⁱ —Ni1—O2W	180.0	C6—C5—C7	119.20 (18)
Ni1—O1W—H11W	114 (2)	C4—C5—C7	123.62 (18)
Ni1—O1W—H12W	130 (2)	O71—C7—O72	125.51 (19)
H11W—O1W—H12W	110 (3)	O71—C7—C5	116.72 (18)
Ni1—O2W—H21W	110.1 (17)	O72—C7—C5	117.77 (18)
Ni1—O2W—H22W	116 (2)	N1—C6—C5	120.98 (19)
H21W—O2W—H22W	108 (3)	N1—C6—H6	119.5
Ni1—O3W—H31W	129 (2)	С5—С6—Н6	119.5
Ni1—O3W—H32W	124 (2)		
C6—N1—C2—O2	-178.1 (2)	C6—C5—C7—O71	1.2 (3)
C6—N1—C2—C3	1.1 (3)	C4—C5—C7—O71	-178.9 (2)
C5—C4—C3—C2	1.2 (3)	C6—C5—C7—O72	-179.1 (2)
O2—C2—C3—C4	177.9 (2)	C4—C5—C7—O72	0.8 (3)

supporting information

N1-C2-C3-C4	-1.2 (3)	C2—N1—C6—C5	-1.0 (3)
C3—C4—C5—C6	-1.0 (3)	C4—C5—C6—N1	0.8 (3)
C3—C4—C5—C7	179.1 (2)	C7—C5—C6—N1	-179.3 (2)

Symmetry code: (i) -x+1, -y, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H···A
N1—H1…O2W	0.87 (2)	2.06 (3)	2.906 (2)	167 (2)
O1 <i>W</i> —H11 <i>W</i> …O71 ⁱⁱ	0.77 (3)	1.85 (3)	2.612 (2)	173 (3)
O1 <i>W</i> —H12 <i>W</i> ···O72 ⁱⁱⁱ	0.78 (3)	1.97 (3)	2.748 (2)	173 (3)
O2W—H21 W ···O2 ^{iv}	0.88 (3)	1.90 (3)	2.772 (2)	173 (2)
O2 <i>W</i> —H22 <i>W</i> ···O2 ^v	0.77 (3)	1.98 (3)	2.743 (2)	169 (3)
O3 <i>W</i> —H31 <i>W</i> ···O72 ⁱⁱ	0.74 (3)	1.92 (3)	2.660 (2)	174 (3)
O3W—H32 W ····O2 ⁱ	0.81 (3)	2.01 (3)	2.813 (2)	172 (3)

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*+1, -*y*, -*z*+2; (iii) -*x*+2, -*y*, -*z*+2; (iv) -*x*+1, -*y*-1, -*z*+1; (v) *x*-1, *y*, *z*.