

Received 27 October 2015 Accepted 1 November 2015

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; sodium coordination compound; pyrazine N,N'-dioxide (pzdo); C—H···O interactions; O—H···O interactions; C—H··· π interactions; O—H··· π interactions

CCDC reference: 1434594 Supporting information: this article has supporting information at journals.iucr.org/e

1. Chemic The use of N,N'-dioxid in the syn compounds interest (H Sun *et al.*, bonding m 2001; Man

Elaine P. Boron,^a Kelsey K. Carter^a and Jacqueline M. Knaust^b*

^aChemistry Department, 520 North Main St., Meadville, PA 16335, USA, and ^bDepartment of Chemistry Mathematics and Physics, Clarion University, 840 Wood Street, Clarion, PA 16214, USA. *Correspondence e-mail: jknaust@clarion.edu

The search for novel lanthanide coordination networks using pyrazine N, N'dioxide (pzdo, $C_4H_4N_2O_2$) as a structure-directing unit, led to the synthesis and the structure determination of the title compound, $[Na_2(C_4H_4N_2O_2)(H_2O)_6]$ - $[B(C_6H_5)_4]_2$ ·C₄H₄N₂O₂·2H₂O. The crystal structure is comprised of discrete $[{Na(H_2O)_2}_2(\mu-H_2O)_2(\mu-pzdo)]^{2+}$ cations and tetraphenylborate anions, as well as pzdo and H₂O solvent molecules. The dinuclear cation is located about a twofold rotation axis, and the symmetry-related Na^I atoms display a distorted square-pyramidal coordination sphere defined by two O atoms of terminal water ligands, two O atoms of bridging water ligands and one O atom of a bridging pzdo ligand. In the crystal, $O-H \cdots O$ hydrogen bonds link the dinuclear cation and solvent pzdo molecules (point-group symmetry $\overline{1}$) into rectangular grid-like layers parallel to the bc plane. Additional C-H···O, O-H···O, C-H··· π and $O-H\cdots\pi$ interactions link the anion and solvent water molecules to the layers. The layers are further linked into a three-dimensional network through a combination of $C-H\cdots\pi$ and $O-H\cdots\pi$ hydrogen bonds involving the tetraphenylborate anion.

1. Chemical context

The use of aromatic N,N'-dioxide ligands such as pyrazine N,N'-dioxide (pzdo) and 4,4'-pyridine-N,N'-dioxide (bpydo) in the synthesis of transition metal and lanthanide metal compounds with coordination networks has been of recent interest (Hill *et al.*, 2005*b*; Ma *et al.*, 2001; Mantero *et al.*, 2006; Sun *et al.*, 2004). The coordination modes and hydrogenbonding modes of N,N'-dioxide ligands are flexible (Ma *et al.*, 2001; Mantero *et al.*, 2006). Structure prediction with these ligands can be difficult, in part due to their flexible bonding, but also due to the influences of the anion and solvent (Hill *et al.*, 2005*a*; Mantero *et al.*, 2006).

We have previously reported the structures of several threedimensional coordination networks of the type $\{[Ln(pzdo)_4](ClO_4)_3\}_n$, with Ln = Nd (Quinn-Elmore *et al.*, 2010*a*), Dy (Quinn-Elmore *et al.*, 2010*b*), Ho (Buchner *et al.*, 2010*a*), and Er (Buchner *et al.*, 2010*b*), which all are

Figure 1

The molecular entities in the crystal structure of $[{Na(H_2O)_2}_2(\mu-H_2O)_2(\mu-pzdo)][B(Ph)_4]_2\cdot 2H_2O\cdot pzdo drawn with displacement ellipsoids at the 50% probability level. Labeled atoms are related to unlabeled atoms by the symmetry operations: <math>-x + 1$, y, $-z + \frac{1}{2}$ for $[{Na(H_2O)_2}_2(\mu-H_2O)_2(\mu-pzdo)]^{2+}$ and by -x + 1, -y + 1, -z for the solvent pzdo molecule (C3, C4, N3, and O3). Only those hydrogen atoms whose positions were refined are labeled.

isostructural to the previously reported La, Ce, Pr, Sm, Eu, Gd, Tb and Y coordination networks (Sun *et al.*, 2004). In an attempt to synthesize a novel lanthanide coordination polymer with pzdo ligands and tetraphenylborate (BPh_4^-) anions, crystals of the title compound, $[{Na(H_2O)_2}_2(\mu - H_2O)_2(\mu - pzdo)][B(C_6H_5)_4]_2 \cdot 2H_2O \cdot pzdo$, were isolated instead.

2. Structural commentary

The asymmetric unit of the title compound contains one Na^I atom, half of a coordinating pzdo ligand, two terminal water ligands, one bridging water ligand, one tetraphenylborate anion, half of a solvent pzdo molecule and one solvent water molecule (Fig. 1). The Na^I atom displays a distorted squarepyramidal coordination sphere defined by two O atoms of terminal water ligands, two O atoms of bridging water ligands and one O atom of the bridging pzdo ligand. The bridging water and pzdo ligands link two Na^I atoms to form a dinuclear cation, $[{Na(H_2O)_2}_2(\mu-H_2O)_2(\mu-pzdo)]^{2+}$, that is located about a twofold rotation axis. The oxygen and nitrogen atoms of the coordinating pzdo ligand (O1, O2, N1, and N2) lie on a twofold rotation axis, and the solvent pzdo molecule (C3, C4, N3 O3) is located around an inversion center. The pzdo ligand bridges the Na^I atoms in the less commonly seen end-on fashion, while the oxygen atom (O2) of the solvent pzdo molecule is involved in O-H···O hydrogen-bonding interwith another $[{Na(H_2O)_2}_2(\mu-H_2O)_2(\mu-pzdo)]^{2+}$ actions cation.

3. Supramolecular features

Three unique $C-H\cdots O$ hydrogen-bonding interactions between the $[{Na(H_2O)_2}_2(\mu-H_2O)_2(\mu-pzdo)]^{2+}$ cations and pzdo solvent moieties generate rectangular grid-like layers parallel to the *bc* plane. These interactions involve the bridging water ligand and the solvent pzdo molecule (O4– H4 $A\cdots$ O3), a terminal water ligand and the solvent pzdo
 Table 1

 Hydrogen-bond geometry (Å, °).

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C5–C10, C11–C16, C17–C22 and C23–C28 rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$O4-H4A\cdots O3$	0.86(2)	2.09 (2)	2.8855 (13)	153 (2)
$O4-H4B\cdots O2^{iii}$	0.85 (2)	1.95 (2)	2.6948 (14)	144 (2)
$O5-H5B\cdots O3^{i}$	0.84(2)	1.95 (2)	2.7655 (14)	163 (2)
$O5-H5A\cdots O7$	0.86(2)	2.00(2)	2.8329 (16)	163 (2)
$O6-H6B\cdots O7$	0.88(2)	2.06 (2)	2.9055 (19)	160 (3)
C19−H19···O3 ^{iv}	0.95	2.55	3.4884 (16)	168
$C2-H2\cdots Cg3^{v}$	0.95	2.40	3.2435 (14)	148
$C3-H3\cdots Cg1^{i}$	0.95	2.46	3.2788 (14)	144
$O6-H6A\cdots Cg4^{i}$	0.85 (3)	2.45 (3)	3.1713 (14)	144 (2)
$C7 - H7 \cdots Cg3^{v_i}$	0.95	2.66	3.5365 (14)	153
$O7 - H7A \cdots Cg2^{v}$	0.86(2)	2.55 (2)	3.3871 (15)	165 (2)
$O7-H7B\cdots Cg1^{vii}$	0.85 (3)	2.59 (2)	3.4337 (15)	171 (3)

Symmetry codes: (i) $-x + 1, y, -z + \frac{1}{2}$; (iii) x, y - 1, z; (iv) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (v) $x + \frac{1}{2}, y + \frac{1}{2}, z$; (vi) $-x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1$; (vii) $x + \frac{1}{2}, y - \frac{1}{2}, z$.

molecule $(O5-H5B\cdots O3^{i})$, and the bridging water ligand and the coordinating pzdo ligand $(O4-H4B\cdots O2^{iii})$ (see Table 1 for symmetry codes; Fig. 2). Additional interactions link the anion and solvent water molecule to the layer (Fig. 3.). The anion is linked through $C-H\cdots O$ and $C-H\cdots \pi$ interactions with the solvent pzdo molecule ($C19-H19\cdots O3^{iv}$ and $C2-H2\cdots Cg3^{v}$). The solvent water molecule accepts two hydrogen bonds from coordinating water molecules (O5- $H5A\cdots O7$ and $O6-H6B\cdots O7$) and interacts with two anions through $O-H\cdots \pi$ interactions ($O7-H7A\cdots Cg2^{v}$ and O7- $H7B\cdots Cg1^{vii}$). While all of the aforementioned interactions

Figure 2

Diagram showing hydrogen-bonded $[{Na(H_2O)_2}_2(\mu-H_2O)_2(\mu-pzdo)]^{2+}$ and pzdo moieties which generate a rectangular grid parallel to the *bc* plane. Dashed lines represent O-H···O interactions between coordinating water molecules and the solvent pzdo molecule (O4-H4A···O3 and O5-H5B···O3ⁱ) and between a coordinating water and the coordinating pzdo ligand (O4-H4B···O2ⁱⁱⁱ). [Symmetry codes: (i) $-x + 1, y, -z + \frac{1}{2}$, (iii) x, y - 1, z; (iv) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.]

Figure 3

Diagram showing interactions linking the anion and solvent water molecule to the layers. A small portion of a layer is shown with all $[\{Na(H_2O)_2\}_2(\mu-H_2O)_2(\mu-pzdo)]^{2+}$ and pzdo moieties represented in gray, and the hydrogen-bonding interactions within the layer indicated by dashed gray lines. Two solvent water molecules and one anion are shown in blue. The C-H···O, O-H··O, C-H··· π , and O-H··· π interactions linking the solvent water molecules and anion to the hydrogen-bonded layers are shown as dashed green lines. [Symmetry codes: (iv) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (viii) $x - \frac{1}{2}$, $y + \frac{1}{2}$, z; (ix) $x - \frac{1}{2}$, $y - \frac{1}{2}$, z.]

Figure 4

Diagram showing all C-H···O, O-H···O, C-H··· π , and O-H··· π interactions that the BPh₄⁻ anion participates in. The C-H···O, C-H··· π and O-H··· π interactions responsible for linking the anion to a layer are shown as dashed red lines. The C-H··· π and O-H··· π interactions responsible for linking the layers into a three-dimensional framework are shown as dashed green lines. [Symmetry codes: (i) -*x* + 1, *y*, -*z* + $\frac{1}{2}$; (iv) -*x* + $\frac{1}{2}$, *y* + $\frac{1}{2}$, -*z* + $\frac{1}{2}$; (vi) -*x* + $\frac{1}{2}$, -*y* + $\frac{3}{2}$, -*z* + 1; (viii) *x* - $\frac{1}{2}$, *y* + $\frac{1}{2}$, *z*; (ix) *x* - $\frac{1}{2}$, *y* - $\frac{1}{2}$, *z*.]

occur within a layer, additional $C-H\cdots\pi$ and $O-H\cdots\pi$ interactions with the tetraphenylborate anions (C3– $H3\cdots Cg1^{i}$, O6– $H6A\cdots Cg4^{i}$, and C7– $H7\cdots Cg3^{vi}$) link the layers into a complex three-dimensional network (Table 1, Fig. 4).

4. Database survey

A survey of the Cambridge Structural Database (CSD, Version 5.36, November 2014; Groom & Allen, 2014) returned hits for 37 structures with pyrazine N,N-dioxide. Three structures are reported for the pzdo molecule. Five structures are reported for pzdo as part of a co-crystal. Fourteen structures are reported where pzdo coordinates to a transition metal and acts as a bridging ligand in a coordination network. Twelve structures are reported where pzdo coordinates to a lanthanide metal and acts as a bridging ligand in a coordination network. In all 26 reported coordination networks, pzdo bridges metal atoms in an end-to-end fashion. Two structures for mixed metal (Na^I/Tb^{III} and Na^I/Er^{III}) coordination networks with *p*-sulfonatocalix[4]arene are reported where the Na^I cation is coordinated by a terminal pzdo ligand, and the structure of the mixed metal coordination network (Na^I/ La^{III}) with sulfonatocalix[4]arene is reported where pzdo is included in the structure as a clathrate (Zheng et al., 2008). One final structure of note deposited after the November 2014

research communications

Table 2Experimental details.

Crystal data	
Chemical formula	$[Na_{2}(C_{4}H_{4}N_{2}O_{2})(H_{2}O)_{6}]-$ $(BC_{4}(H_{2}O_{2})_{2}(C_{4}H_{2}N_{2}O_{2})_{2}(H_{2}O_{2})_$
М	1052.71
Crystal system space group	Monoclinic $C^{2/c}$
Temperature (K)	99
a h c (Å)	20 4224 (9) 10 1950 (4)
	27.2349 (11)
β (°)	102.947 (1)
$V(Å^3)$	5526.3 (4)
Ζ	4
Radiation type	Μο Κα
$\mu (\text{mm}^{-1})$	0.10
Crystal size (mm)	$0.50 \times 0.40 \times 0.25$
Data collection	
Diffractometer	Bruker SMART APEX CCD
	diffractometer
Absorption correction	Multi-scan (SADABS; Bruker, 2001)
T_{\min}, T_{\max}	0.894, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	32437, 8464, 6996
R _{int}	0.037
$(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$	0.715
(), (),	
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.052, 0.140, 1.04
No. of reflections	8464
No. of parameters	377
No. of restraints	8
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.48, -0.21

Computer programs: SMART and SAINT (Bruker, 2007), SHELXS97 and SHELXL97 (Sheldrick, 2008), and X-SEED (Barbour, 2001).

release of the CSD is that of a mixed metal (Na^{I}/W^{V}) coordination network where pzdo bridges Na^{I} atoms in both endto-end and end-on modes (Podgajny *et al.*, 2014).

5. Synthesis and crystallization

Pyrazine-N,N'-dioxide was synthesized from pyrazine according to the method of Simpson *et al.* (1963). All other chemicals were obtained from commercial sources and used without further purification. Initially, NaBPh₄ (0.0821 g, 0.240 mmol), pzdo (0.0171 g, 0.152 mmol) and 40%_{wt} aqueous Ho(ClO₄)₃ (14.8 µl, 0.0201 mmol), were combined in 25 ml of methanol to form a cloudy solution, and colorless crystals of the title compound were obtained upon slow evaporation of the solvent. Further studies showed that crystals of the title compound can also be isolated in the absence of the lanthanide salt. In this case, NaBPh₄ (0.0257 g, 0.0750 mmol) and pzdo (0.0171 g, 0.152 mmol) were combined in 12.5 ml methanol and 1.1 ml of water to form a cloudy solution which yielded colorless crystals of the title compound upon slow evaporation of the solvent.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All aromatic H atoms were positioned geometrically and refined using a riding model with C-H = 0.95 Å and with $U_{iso}(H) = 1.2$ times $U_{eq}(C)$. The positions of water H atoms were located from difference Fourier maps and the O-H distances in the water molecules were restrained to 0.85 (2) Å. U_{iso} parameters of water H atoms were refined freely.

Acknowledgements

The authors are thankful to Clarion University and Allegheny College for providing funding in support of this research. The diffractometer was funded by the NSF (grant No. 0087210), the Ohio Board of Regents (grant No. CAP-491) and by Youngstown State University. The authors would also like to acknowledge Matthias Zeller, Senior Scientist and Crystallographer at the STaRBURSTT CyberInstrumentation Consortium, for assistance with the structure analysis.

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Buchner, J. D., Quinn-Elmore, B. G., Beach, K. B. & Knaust, J. M. (2010*a*). *Acta Cryst.* E66, m1110–m1111.
- Buchner, J. D., Quinn-Elmore, B. G., Beach, K. B. & Knaust, J. M. (2010b). Acta Cryst. E66, m1108–m1109.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662– 671.
- Hill, R. J., Long, D. L., Champness, N. R., Hubberstey, P. & Schröder, M. (2005a). Acc. Chem. Res. 38, 335–348.
- Hill, R. J., Long, D. L., Hubberstey, P., Schröder, M. & Champness, N. R. (2005b). J. Solid State Chem. 178, 2414–2419.
- Ma, B., Sun, H., Gao, S. & Xu, G. (2001). Inorg. Chem. 40, 6247-6253.
- Mantero, D. G., Neels, A. & Stoeckli-Evans, H. (2006). *Inorg. Chem.* **45**, 3287–3294.
- Podgajny, R., Pinkowicz, D., Czarnecki, B., Kozieł, M., Chorąży, S., Wis, M., Nitek, W., Rams, M. & Sieklucka, B. (2014). *Cryst. Growth Des.* 14, 4030–4040.
- Quinn-Elmore, B. G., Buchner, J. D., Beach, K. B. & Knaust, J. M. (2010*a*). *Acta Cryst.* E66, m1104–m1105.
- Quinn-Elmore, B. G., Buchner, J. D., Beach, K. B. & Knaust, J. M. (2010b). Acta Cryst. E66, m1106–m1107.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Simpson, P. G., Vinciguerra, A. & Quagliano, J. V. (1963). Inorg. Chem. 2, 282–286.
- Sun, H. L., Gao, S., Ma, B. Q., Chang, F. & Fu, W. F. (2004). *Microporous Mesoporous Mater.* 73, 89–95.
- Zheng, G., Zhang, F., Li, Y. & Zhang, H. (2008). CrystEngComm, 10, 1560–1564.

supporting information

Acta Cryst. (2015). E71, 1467-1470 [https://doi.org/10.1107/S205698901502071X]

Crystal structure of di- μ -aqua- μ -(pyrazine *N*,*N*'-dioxide)- $\kappa^2 O$:*O*-bis(diaquasodium) tetraphenylborate dihydrate pyrazine *N*,*N*'-dioxide monosolvate

Elaine P. Boron, Kelsey K. Carter and Jacqueline M. Knaust

Computing details

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *X-SEED* (Barbour, 2001).

 $Di-\mu$ -aqua- μ -(pyrazine *N*,*N*'-dioxide)- $\kappa^2 O$:*O*-bis(diaquasodium) tetraphenylborate pyrazine *N*,*N*'-dioxide monosolvate dihydrate

```
Crystal data
```

```
 \begin{bmatrix} Na_2(C_4H_4N_2O_2)(H_2O)_6 \end{bmatrix} \\ (BC_{24}H_{20})_2 \cdot C_4H_4N_2O_2 \cdot 2H_2O \\ M_r = 1052.71 \\ Monoclinic, C2/c \\ Hall symbol: -C 2yc \\ a = 20.4224 (9) Å \\ b = 10.1950 (4) Å \\ c = 27.2349 (11) Å \\ \beta = 102.947 (1)^{\circ} \\ V = 5526.3 (4) Å^3
```

Data collection

Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\min} = 0.894, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.140$ S = 1.048464 reflections 377 parameters 8 restraints Z = 4 F(000) = 2224 $D_x = 1.265 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 14931 reflections $\theta = 2.2-30.5^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 99 K Block, colorless $0.50 \times 0.40 \times 0.25 \text{ mm}$

32437 measured reflections 8464 independent reflections 6996 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 30.5^{\circ}, \theta_{min} = 1.5^{\circ}$ $h = -29 \rightarrow 29$ $k = -14 \rightarrow 14$ $l = -37 \rightarrow 38$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0739P)^{2} + 3.1014P] \qquad \Delta \rho_{\max} = 0.48 \text{ e } \text{\AA}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{\min} = -0.21 \text{ e } \text{\AA}^{-3}$ $(\Delta/\sigma)_{\max} = 0.001$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	v	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	
Nal	0.57681 (3)	0.53904 (5)	0.27762 (2)	0.02408 (12)	
01	0.5000	0.70101 (12)	0.2500	0.0302 (3)	
O2	0.5000	1.22491 (12)	0.2500	0.0253 (3)	
03	0.48519 (5)	0.52324 (10)	0.09489 (3)	0.0272 (2)	
O4	0.52081 (5)	0.44163 (9)	0.19893 (4)	0.0266 (2)	
05	0.61154 (5)	0.62448 (11)	0.35909 (4)	0.0316 (2)	
O6	0.68618 (6)	0.53238 (14)	0.27608 (5)	0.0441 (3)	
O7	0.75011 (6)	0.56103 (14)	0.38213 (5)	0.0434 (3)	
N1	0.5000	0.82883 (14)	0.2500	0.0210 (3)	
N2	0.5000	1.09705 (14)	0.2500	0.0195 (3)	
N3	0.49248 (5)	0.51216 (10)	0.04872 (4)	0.0196 (2)	
C1	0.53467 (6)	0.89566 (12)	0.29054 (5)	0.0214 (2)	
H1	0.5591	0.8492	0.3191	0.026*	
C2	0.53468 (6)	1.02966 (12)	0.29060 (5)	0.0209 (2)	
H2	0.5591	1.0760	0.3192	0.025*	
C3	0.54999 (6)	0.55124 (12)	0.03612 (5)	0.0215 (2)	
H3	0.5855	0.5872	0.0612	0.026*	
C4	0.44262 (6)	0.46070 (12)	0.01235 (5)	0.0212 (2)	
H4	0.4021	0.4326	0.0207	0.025*	
C5	0.28988 (5)	0.68369 (11)	0.39692 (4)	0.0165 (2)	
C6	0.29439 (6)	0.74729 (12)	0.44320 (4)	0.0204 (2)	
H6	0.2623	0.7264	0.4624	0.024*	
C7	0.34389 (6)	0.83982 (13)	0.46232 (5)	0.0240 (2)	
H7	0.3450	0.8808	0.4938	0.029*	
C8	0.39154 (6)	0.87171 (13)	0.43493 (5)	0.0257 (3)	
H8	0.4258	0.9337	0.4478	0.031*	
C9	0.38860 (6)	0.81212 (13)	0.38855 (5)	0.0249 (3)	
H9	0.4208	0.8336	0.3695	0.030*	
C10	0.33829 (6)	0.72066 (12)	0.37003 (4)	0.0202 (2)	
H10	0.3367	0.6819	0.3381	0.024*	
C11	0.28603 (6)	0.43432 (11)	0.40579 (4)	0.0176 (2)	
C12	0.28816 (6)	0.39219 (12)	0.45536 (4)	0.0203 (2)	

H12	0.2577	0.4301	0.4731	0.024*
C13	0.33308 (6)	0.29710 (13)	0.47952 (5)	0.0244 (2)
H13	0.3325	0.2711	0.5129	0.029*
C14	0.37864 (7)	0.24013 (13)	0.45489 (5)	0.0281 (3)
H14	0.4094	0.1754	0.4712	0.034*
C15	0.37846 (6)	0.27962 (13)	0.40590 (5)	0.0264 (3)
H15	0.4095	0.2421	0.3886	0.032*
C16	0.33281 (6)	0.37423 (12)	0.38211 (5)	0.0217 (2)
H16	0.3333	0.3990	0.3486	0.026*
C17	0.16906 (6)	0.57084 (11)	0.39863 (4)	0.0164 (2)
C18	0.13473 (6)	0.69104 (11)	0.39796 (4)	0.0186 (2)
H18	0.1562	0.7692	0.3909	0.022*
C19	0.07050 (6)	0.69938 (12)	0.40727 (4)	0.0215 (2)
H19	0.0487	0.7820	0.4058	0.026*
C20	0.03822 (6)	0.58705 (13)	0.41870 (5)	0.0232 (2)
H20	-0.0052	0.5927	0.4257	0.028*
C21	0.07032 (6)	0.46643 (12)	0.41976 (5)	0.0211 (2)
H21	0.0488	0.3889	0.4275	0.025*
C22	0.13431 (6)	0.45933 (11)	0.40948 (4)	0.0183 (2)
H22	0.1551	0.3759	0.4098	0.022*
C23	0.21392 (6)	0.54690 (11)	0.31871 (4)	0.0181 (2)
C24	0.19493 (6)	0.66032 (12)	0.28925 (4)	0.0209 (2)
H24	0.2043	0.7439	0.3047	0.025*
C25	0.16291 (6)	0.65426 (14)	0.23831 (5)	0.0254 (3)
H25	0.1507	0.7329	0.2198	0.030*
C26	0.14892 (7)	0.53359 (14)	0.21466 (5)	0.0273 (3)
H26	0.1270	0.5290	0.1800	0.033*
C27	0.16730 (7)	0.41963 (14)	0.24223 (5)	0.0268 (3)
H27	0.1583	0.3365	0.2264	0.032*
C28	0.19901 (6)	0.42686 (12)	0.29327 (5)	0.0220 (2)
H28	0.2109	0.3477	0.3115	0.026*
B1	0.23971 (6)	0.55838 (12)	0.37996 (5)	0.0161 (2)
H4A	0.5221 (12)	0.451 (2)	0.1677 (6)	0.057 (7)*
H5A	0.6528 (8)	0.605 (2)	0.3724 (8)	0.053 (6)*
H6A	0.7091 (14)	0.514 (3)	0.2547 (9)	0.090 (9)*
H5B	0.5879 (10)	0.597 (2)	0.3788 (8)	0.059 (7)*
H4B	0.5158 (11)	0.3594 (16)	0.2028 (8)	0.059 (6)*
H7A	0.7775 (12)	0.625 (2)	0.3922 (10)	0.086 (9)*
H6B	0.7144 (13)	0.543 (3)	0.3054 (8)	0.082 (9)*
H7B	0.7749 (15)	0.496 (2)	0.3939 (12)	0.101 (11)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Na1	0.0223 (2)	0.0254 (3)	0.0240 (3)	0.00197 (19)	0.00423 (19)	0.00052 (19)
01	0.0338 (7)	0.0136 (6)	0.0365 (7)	0.000	-0.0068 (6)	0.000
O2	0.0339 (7)	0.0137 (5)	0.0280 (6)	0.000	0.0063 (5)	0.000
03	0.0331 (5)	0.0334 (5)	0.0162 (4)	0.0025 (4)	0.0080 (4)	-0.0001 (3)

supporting information

O4	0.0377 (5)	0.0205 (4)	0.0220 (4)	0.0011 (4)	0.0075 (4)	0.0000 (3)
05	0.0267 (5)	0.0407 (6)	0.0266 (5)	-0.0035 (4)	0.0046 (4)	0.0008 (4)
06	0.0254 (5)	0.0644 (8)	0.0446 (7)	-0.0014 (5)	0.0124 (5)	-0.0088 (6)
07	0.0276 (6)	0.0469 (7)	0.0502 (7)	0.0008 (5)	-0.0030 (5)	0.0040 (6)
N1	0.0220 (7)	0.0159 (6)	0.0225 (7)	0.000	-0.0004 (5)	0.000
N2	0.0217 (7)	0.0156 (6)	0.0211 (7)	0.000	0.0046 (5)	0.000
N3	0.0221 (5)	0.0196 (5)	0.0168 (4)	0.0010 (4)	0.0037 (4)	0.0005 (3)
C1	0.0214 (5)	0.0211 (6)	0.0193 (5)	-0.0001 (4)	-0.0009 (4)	0.0006 (4)
C2	0.0221 (5)	0.0205 (5)	0.0183 (5)	-0.0013 (4)	0.0009 (4)	-0.0007 (4)
C3	0.0206 (5)	0.0217 (5)	0.0203 (5)	-0.0036 (4)	0.0003 (4)	0.0004 (4)
C4	0.0180 (5)	0.0238 (6)	0.0212 (5)	-0.0020 (4)	0.0032 (4)	0.0021 (4)
C5	0.0155 (5)	0.0173 (5)	0.0158 (5)	0.0009 (4)	0.0012 (4)	0.0021 (4)
C6	0.0200 (5)	0.0217 (5)	0.0192 (5)	-0.0012 (4)	0.0037 (4)	-0.0014 (4)
C7	0.0254 (6)	0.0225 (6)	0.0216 (6)	-0.0020 (4)	0.0001 (4)	-0.0035 (4)
C8	0.0233 (6)	0.0222 (6)	0.0283 (6)	-0.0057 (5)	-0.0011 (5)	0.0019 (5)
C9	0.0207 (5)	0.0278 (6)	0.0256 (6)	-0.0041 (5)	0.0039 (4)	0.0069 (5)
C10	0.0205 (5)	0.0229 (6)	0.0167 (5)	-0.0013 (4)	0.0028 (4)	0.0026 (4)
C11	0.0165 (5)	0.0165 (5)	0.0193 (5)	-0.0002 (4)	0.0031 (4)	0.0009 (4)
C12	0.0192 (5)	0.0210 (5)	0.0209 (5)	0.0006 (4)	0.0052 (4)	0.0025 (4)
C13	0.0256 (6)	0.0237 (6)	0.0231 (6)	0.0010 (5)	0.0035 (5)	0.0066 (4)
C14	0.0271 (6)	0.0226 (6)	0.0328 (7)	0.0076 (5)	0.0030 (5)	0.0053 (5)
C15	0.0246 (6)	0.0253 (6)	0.0293 (6)	0.0074 (5)	0.0064 (5)	-0.0008 (5)
C16	0.0217 (5)	0.0219 (6)	0.0219 (5)	0.0028 (4)	0.0058 (4)	0.0005 (4)
C17	0.0165 (5)	0.0184 (5)	0.0139 (5)	0.0009 (4)	0.0025 (4)	-0.0006 (4)
C18	0.0193 (5)	0.0177 (5)	0.0179 (5)	0.0001 (4)	0.0021 (4)	-0.0011 (4)
C19	0.0202 (5)	0.0224 (6)	0.0210 (5)	0.0050 (4)	0.0028 (4)	-0.0024 (4)
C20	0.0158 (5)	0.0311 (6)	0.0231 (6)	0.0021 (4)	0.0050 (4)	0.0006 (5)
C21	0.0179 (5)	0.0240 (6)	0.0213 (5)	-0.0022 (4)	0.0037 (4)	0.0034 (4)
C22	0.0180 (5)	0.0188 (5)	0.0176 (5)	0.0002 (4)	0.0026 (4)	0.0008 (4)
C23	0.0178 (5)	0.0205 (5)	0.0168 (5)	-0.0001 (4)	0.0055 (4)	-0.0008 (4)
C24	0.0212 (5)	0.0228 (6)	0.0182 (5)	0.0005 (4)	0.0036 (4)	0.0001 (4)
C25	0.0235 (6)	0.0321 (7)	0.0198 (6)	0.0011 (5)	0.0032 (4)	0.0035 (5)
C26	0.0246 (6)	0.0402 (8)	0.0165 (5)	-0.0029 (5)	0.0032 (4)	-0.0028 (5)
C27	0.0280 (6)	0.0308 (7)	0.0218 (6)	-0.0050 (5)	0.0063 (5)	-0.0079 (5)
C28	0.0228 (6)	0.0238 (6)	0.0198 (5)	-0.0004 (4)	0.0054 (4)	-0.0023 (4)
B1	0.0162 (5)	0.0166 (5)	0.0152 (5)	0.0000 (4)	0.0033 (4)	-0.0004 (4)

Geometric parameters (Å, °)

Na1—O6	2.2444 (13)	C9—C10	1.3954 (17)	
Nal—Ol	2.2857 (10)	С9—Н9	0.9500	
Na1—O5	2.3410 (12)	C10—H10	0.9500	
Na1—O4	2.4059 (11)	C11—C16	1.4070 (16)	
Na1—O4 ⁱ	2.4371 (12)	C11—C12	1.4083 (16)	
01—N1	1.3031 (19)	C11—B1	1.6404 (17)	
O1—Na1 ⁱ	2.2857 (10)	C12—C13	1.3942 (17)	
O2—N2	1.3035 (18)	C12—H12	0.9500	
O3—N3	1.3040 (13)	C13—C14	1.3903 (19)	

O4—Na1 ⁱ	2.4371 (12)	С13—Н13	0.9500
O4—H4A	0.862 (16)	C14—C15	1.3927 (19)
O4—H4B	0.854 (16)	C14—H14	0.9500
O5—H5A	0.863 (15)	C15—C16	1.3959 (17)
O5—H5B	0.844 (16)	С15—Н15	0.9500
О6—Н6А	0.844 (17)	С16—Н16	0.9500
O6—H6B	0.880 (17)	C17—C22	1.4062 (16)
07—H7A	0.861 (17)	C17 - C18	1 4100 (16)
07—H7B	0.855(18)	C17—B1	1 6386 (17)
$N1-C1^{i}$	1 3544 (14)	C18 - C19	1 3932 (16)
N1—C1	1.3544(14)	C18—H18	0.9500
$N2-C2^{i}$	1 3583 (14)	C19-C20	1 3910 (18)
N2C2	1.3583(14) 1.3584(14)	C19 - H19	0.9500
N3_C3	1 3552 (16)	C_{20}	1 3909 (18)
$N_3 = C_4$	1.3552(10) 1.3570(15)	C_{20} H_{20}	0.0500
13-04	1.3570(15) 1.3661(17)	C_{20} C_{21} C_{22}	1.3082(16)
$C_1 = C_2$	0.0500	$C_{21} = C_{22}$	0.0500
	0.9500	C22_H21	0.9500
C_2 — H_2	0.9500	C22—H22	0.9500
C3—C4"	1.30/3 (1/)	$C_{23} = C_{28}$	1.4056 (17)
	0.9500	C23—C24	1.4113 (16)
C4—C3"	1.36/2 (17)	C23—B1	1.63/3(1/)
C4—H4	0.9500	C24—C25	1.3962 (16)
	1.4020 (16)	C24—H24	0.9500
C5—C10	1.4073 (16)	C25—C26	1.3884 (19)
C5—B1	1.6381 (17)	C25—H25	0.9500
C6—C7	1.3953 (17)	C26—C27	1.389 (2)
С6—Н6	0.9500	C26—H26	0.9500
С7—С8	1.3908 (19)	C27—C28	1.3978 (17)
С7—Н7	0.9500	C27—H27	0.9500
C8—C9	1.3909 (19)	C28—H28	0.9500
C8—H8	0.9500		
	100.00 (5)	Co. C10. 1110	110.0
06—Nal—Ol	128.92 (5)	C9—C10—H10	118.8
06—Nal—05	86.41 (5)	C5—C10—H10	118.8
Ol—Nal—O5	94.76 (4)	C16—C11—C12	115.36 (10)
06—Na1—O4	104.32 (5)	C16—C11—B1	121.65 (10)
01—Na1—O4	81.42 (3)	C12—C11—B1	122.49 (10)
O5—Na1—O4	168.66 (4)	C13—C12—C11	122.70 (11)
O6—Na1—O4 ⁱ	150.29 (5)	C13—C12—H12	118.7
O1—Na1—O4 ⁱ	80.75 (3)	C11—C12—H12	118.7
O5—Na1—O4 ⁱ	89.72 (4)	C14—C13—C12	120.24 (12)
O4—Na1—O4 ⁱ	79.15 (4)	C14—C13—H13	119.9
N1—O1—Na1 ⁱ	136.26 (3)	C12—C13—H13	119.9
N1—O1—Na1	136.26 (3)	C13—C14—C15	118.88 (12)
Na1 ⁱ —O1—Na1	87.49 (5)	C13—C14—H14	120.6
Na1—O4—Na1 ⁱ	81.48 (4)	C15—C14—H14	120.6
Na1—O4—H4A	136.1 (15)	C14—C15—C16	120.17 (12)
Na1 ⁱ —O4—H4A	115.0 (15)	C14—C15—H15	119.9

Na1—O4—H4B	109.9 (15)	C16—C15—H15	119.9
Na1 ⁱ —O4—H4B	103.9 (15)	C15—C16—C11	122.66 (11)
H4A—O4—H4B	105 (2)	C15—C16—H16	118.7
Na1—O5—H5A	111.9 (15)	C11—C16—H16	118.7
Na1—O5—H5B	112.6 (16)	C22—C17—C18	115.62 (10)
H5A—O5—H5B	108 (2)	C22—C17—B1	121.57 (10)
Na1—O6—H6A	137 (2)	C18—C17—B1	122.22 (10)
Na1—O6—H6B	115.5 (19)	C19—C18—C17	122.44 (11)
H6A—O6—H6B	108 (3)	C19—C18—H18	118.8
H7A-07-H7B	100 (3)	C17 - C18 - H18	118.8
01 11 11 11 11 11 11 11	120(3)	C_{20} C_{19} C_{18}	120.22(11)
O1 N1 C1	120.20(7)	$C_{20} = C_{19} = C_{18}$	120.22 (11)
Cli NI Cl	120.20(7)	$C_{20} = C_{19} = 1119$	119.9
CI - NI - CI	119.39 (13)	С18—С19—Н19	119.9
$02 - N2 - C2^{-1}$	120.38 (7)	$C_{21} = C_{20} = C_{19}$	119.19 (11)
02—N2—C2	120.38 (7)	C21—C20—H20	120.4
$C2^{1}$ N2 $C2$	119.24 (14)	С19—С20—Н20	120.4
O3—N3—C3	120.75 (10)	C20—C21—C22	119.93 (11)
O3—N3—C4	120.55 (10)	C20—C21—H21	120.0
C3—N3—C4	118.69 (10)	C22—C21—H21	120.0
N1—C1—C2	120.25 (11)	C21—C22—C17	122.59 (11)
N1—C1—H1	119.9	C21—C22—H22	118.7
C2—C1—H1	119.9	C17—C22—H22	118.7
N2—C2—C1	120.33 (11)	C28—C23—C24	115.57 (11)
N2—C2—H2	119.8	C28—C23—B1	123.30 (10)
C1—C2—H2	119.8	C24—C23—B1	120.36 (10)
N3—C3—C4 ⁱⁱ	120.51 (11)	C25—C24—C23	122.44 (12)
N3—C3—H3	119.7	C25—C24—H24	118.8
C4 ⁱⁱ —C3—H3	119.7	C23—C24—H24	118.8
N_{3} C_{4} C_{3}^{ii}	120.80 (11)	$C_{26} = C_{25} = C_{24}$	120.14(12)
N3-C4-H4	119.6	$C_{26} = C_{25} = H_{25}$	110.0
$C3^{ii}$ $C4$ $H4$	119.6	$C_{20} = C_{20} = H_{20}$	110.0
$C_{5} = C_{4} = 114$	115.58 (10)	$C_{24} = C_{25} = M_{25}$	119.9 110.20(12)
C_{0}	113.36(10) 121.67(10)	$C_{25} = C_{20} = C_{27}$	119.20 (12)
$C_0 - C_3 - B_1$	121.07(10)	$C_{23} = C_{20} = H_{20}$	120.4
C10-C5-B1	122.01 (10)	$C_2/-C_{26}$ -H ₂₆	120.4
C/	122.97 (11)	C26—C27—C28	120.17 (12)
С7—С6—Н6	118.5	С26—С27—Н27	119.9
С5—С6—Н6	118.5	С28—С27—Н27	119.9
C8—C7—C6	119.57 (12)	C27—C28—C23	122.48 (12)
С8—С7—Н7	120.2	С27—С28—Н28	118.8
С6—С7—Н7	120.2	C23—C28—H28	118.8
C9—C8—C7	119.46 (11)	C23—B1—C5	112.40 (9)
С9—С8—Н8	120.3	C23—B1—C17	102.54 (9)
С7—С8—Н8	120.3	C5—B1—C17	113.00 (9)
C8—C9—C10	119.92 (12)	C23—B1—C11	113.87 (9)
С8—С9—Н9	120.0	C5—B1—C11	102.49 (9)

supporting information

С10—С9—Н9	120.0	C17—B1—C11	112.96 (9)
C9—C10—C5	122.48 (11)		

Symmetry codes: (i) -*x*+1, *y*, -*z*+1/2; (ii) -*x*+1, -*y*+1, -*z*.

Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C5-C10, C11-C16, C17-C22 and C23-C28 rings, respectively.

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A
04—H4 <i>A</i> ···O3	0.86 (2)	2.09 (2)	2.8855 (13)	153 (2)
O4—H4 <i>B</i> ···O2 ⁱⁱⁱ	0.85 (2)	1.95 (2)	2.6948 (14)	144 (2)
O5—H5 <i>B</i> ···O3 ⁱ	0.84 (2)	1.95 (2)	2.7655 (14)	163 (2)
O5—H5A····O7	0.86 (2)	2.00 (2)	2.8329 (16)	163 (2)
O6—H6 <i>B</i> ···O7	0.88 (2)	2.06 (2)	2.9055 (19)	160 (3)
C19—H19…O3 ^{iv}	0.95	2.55	3.4884 (16)	168
$C2-H2\cdots Cg3^{v}$	0.95	2.40	3.2435 (14)	148
$C3-H3\cdots Cg1^{i}$	0.95	2.46	3.2788 (14)	144
$O6-H6A\cdots Cg4^{i}$	0.85 (3)	2.45 (3)	3.1713 (14)	144 (2)
$C7-H7\cdots Cg3^{vi}$	0.95	2.66	3.5365 (14)	153
$O7-H7A\cdots Cg2^{v}$	0.86(2)	2.55 (2)	3.3871 (15)	165 (2)
O7—H7 B ··· $Cg1^{vii}$	0.85 (3)	2.59 (2)	3.4337 (15)	171 (3)

Symmetry codes: (i) -x+1, y, -z+1/2; (iii) x, y-1, z; (iv) -x+1/2, y+1/2, -z+1/2; (v) x+1/2, y+1/2, z; (vi) -x+1/2, -y+3/2, -z+1; (vii) x+1/2, y-1/2, z.