data reports

OPEN access

Crystal structure of a third polymorph of tris(acetylacetonato- $\kappa^2 O, O'$)iron(III)

Tessa M. Baker, Kevin M. Howard, William W. Brennessel and Michael L. Neidig*

Department of Chemistry, 120 Trustee Road, University of Rochester, Rochester, NY 14627, USA. *Correspondence e-mail: michael.neidig@rochester.edu

Received 11 November 2015; accepted 16 November 2015

Edited by A. Van der Lee, Université de Montpellier II, France

In the structure of the title complex, $[Fe(C_5H_7O_2)_3]$ or $Fe(acac)_3$, the asymmetric unit contains one molecule in a general position. The coordination sphere of the Fe^{III} atom is that of a slightly distorted octahedron. The crystal under investigation was a two-component pseudo-merohedral twin in the monoclinic system with a β angle close to 90°. Twin law [100/010/001] reduced the *R*1 residual $[I > 2\sigma(I)]$ from 0.0769 to 0.0312, and the mass ratio of twin components refined to 0.8913 (5):0.1087 (5). In the crystal, molecules are arranged in sheets normal to [001] via non-classical C-H···O hydrogen bonding. No other significant intermolecular interactions are observed. The structure is a new polymorph of $Fe(acac)_3$ and is isotypic with one polymorph of its gallium analog.

Keywords: crystal structure; twin; polymorphism; ferric acetylacetonate.

CCDC reference: 1437249

1. Related literature

For an early report of the first polymorph of tris(acetylacetonato)iron(III), see: Morgan & Drew (1921), and references therein. For a later occurrence of this polymorph, see: Molokhia et al. (1981). For multiple reports of the second polymorph, see: Roof Jr (1956); Shkol'nikova (1959); Iball & Morgan (1967); Kabak et al. (1996); Diaz-Acosta et al. (2001); Hu et al. (2001); Stabnikov et al. (2007); Weng et al. (2011). For the isotypic gallium analog, see: Sultan et al. (2005).

 $V = 1658.1 (10) \text{ Å}^3$

Mo $K\alpha$ radiation

 $0.48 \times 0.20 \times 0.06 \text{ mm}$

52218 measured reflections

9058 independent reflections

7693 reflections with $I > 2\sigma(I)$

 $\mu = 0.93 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.041$

Z = 4

2. Experimental

2.1. Crystal data

 $[Fe(C_5H_7O_2)_3]$ $M_r = 353.17$ Monoclinic, $P2_1/n$ a = 8.011 (3) Å b = 13.092 (5) Å c = 15.808 (6) Å $\beta = 90.108 \ (7)^{\circ}$

2.2. Data collection

Bruker SMART APEXII CCD platform diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2014) $T_{\rm min}=0.642,\;T_{\rm max}=0.748$

2.3. Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	206 parameters
$wR(F^2) = 0.081$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^{-3}$
9058 reflections	$\Delta \rho_{\rm min} = -0.58 \text{ e } \text{\AA}^{-3}$

Table 1 Selected bond lengths (Å).

Fe1-O5	1.9874 (9)	Fe1-O6	2.0008 (9)
Fe1-O2	1.9986 (9)	Fe1-O1	2.0063 (9)
Fe1-O4	1.9987 (9)	Fe1-O3	2.0098 (10)

Table	2
TT 1	

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C11-H11C\cdots O3^i$	0.98	2.60	3.4736 (15)	148
$C15-H15C\cdots O3^{ii}$	0.98	2.47	3.4326 (15)	167
	. 1 . 1	1.1.(**) 1.1		

Symmetry codes: (i) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x + 1, y, z.

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve

structure: *SHELXS2013* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Acknowledgements

TMB acknowledges financial support in the form of an NSF graduate fellowship.

Supporting information for this paper is available from the IUCr electronic archives (Reference: VN2103).

References

Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2014). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

- Diaz-Acosta, I., Baker, J., Cordes, W. & Pulay, P. (2001). J. Phys. Chem. A, 105, 238–244.
- Hu, M.-L., Jin, Z.-M., Miao, Q. & Fang, L.-P. (2001). Z. Kristallogr. New Cryst. Struct. 216, 597–598.
- Iball, J. & Morgan, C. H. (1967). Acta Cryst. 23, 239-244.
- Kabak, M., Elmali, A., Ozbey, S., Atakol, O. & Kenar, A. (1996). Z. Kristallogr. 211, 831–832.
- Molokhia, N. M., El Shahat, M. F. & El Sawi, E. (1981). *Ferroelectrics*, **31**, 23–26.
- Morgan, G. T. & Drew, H. D. K. (1921). J. Chem. Soc. Trans. 119, 1058–1066. Roof, R. B. Jr (1956). Acta Cryst. 9, 781–786.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2014). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Shkol'nikova, L. M. (1959). Kristallografiya, 4, 419-420.
- Stabnikov, P. A., Pervukhina, N. V., Baidina, I. A., Sheludyakova, L. A. & Borisov, S. V. (2007). J. Struct. Chem. 48, 186–192.
- Sultan, M., Mazhar, M., Zeller, M. & Hunter, A. D. (2005). Private communication (refcode ACACGA02). CCDC, Cambridge, England.
- Weng, S.-S., Ke, C.-S., Chen, F.-K., Lyu, Y.-F. & Lin, G. Y. (2011). *Tetrahedron*, **67**, 1640–1648.

supporting information

Acta Cryst. (2015). E71, m228–m229 [https://doi.org/10.1107/S2056989015021805]

Crystal structure of a third polymorph of tris(acetylacetonato- $\kappa^2 O, O'$)iron(III)

Tessa M. Baker, Kevin M. Howard, William W. Brennessel and Michael L. Neidig

S1. Comment

To date crystal structures of the unsolvated title complex (Figure 1) have only appeared in one of two polymorphic forms, and both are orthorhombic. The original report of the first polymorph was described by von Lang in 1899 (Morgan & Drew, 1921, and references therein), and was reported again over 80 years later (Molokhia *et al.*, 1981). The second polymorph has been presented in multiple publications (Roof Jr, 1956, Shkol'nikova, 1959, Iball & Morgan, 1967, Kabak *et al.*, 1996, Diaz-Acosta *et al.*, 2001, Hu *et al.*, 2001, Stabnikov *et al.*, 2007, and Weng *et al.*, 2011). This report presents a new (third) polymorph for the iron complex. The structure is isotypic with one polymorph of its gallium analog (Sultan *et al.*, 2005).

Although the beta angle of the title compound is very close to 90°, the data are truly monoclinic. Because of the near-90° beta angle, the potential for twinning existed, and indeed, the crystal was a pseudo-merohedral twin. Upon completion of the experiment at 100 K, additional sets of data were collected at room temperature to check for any phase changes, of which there were none. Attempts to reproduce the crystallization of this polymorph have been unsuccessful to date.

S2. Experimental

Large flat red rectangular prisms grew over the course of weeks from the slow evaporation of a diethyl ether solution at 243 K.

S3. Refinement

H atoms were placed geometrically and treated as riding atoms: C—H(sp^2) = 0.95 Å with U_{isot} H) = 1.2 U_{eq} (C) and C—H(methyl) = 0.98 Å with U_{isot} H) = 1.5 U_{eq} (C).

Figure 1

The structure of the molecule showing the atom numbering, with displacement ellipsoids drawn at the 50% probability level.

Tris(acetylacetonato- $\kappa^2 O, O'$)iron(III)

Crystal data

$[Fe(C_{5}H_{7}O_{2})_{3}]$ $M_{r} = 353.17$ Monoclinic, $P2_{1}/n$ $a = 8.011$ (3) Å b = 13.092 (5) Å c = 15.808 (6) Å $\beta = 90.108$ (7)°	F(000) = 740 $D_x = 1.415 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3703 reflections $\theta = 2.9-37.9^{\circ}$ $\mu = 0.93 \text{ mm}^{-1}$ T = 100 K
$V = 1658.1 (10) Å^{3}$ Z = 4 Data collection	Rectangular prism, red $0.48 \times 0.20 \times 0.06 \text{ mm}$
Bruker SMART APEXII CCD platform diffractometer Radiation source: fine-focus sealed tube ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2014) $T_{\min} = 0.642, T_{\max} = 0.748$ 52218 measured reflections	9058 independent reflections 7693 reflections with $I > 2\sigma(I)$ $R_{int} = 0.041$ $\theta_{max} = 38.6^{\circ}, \theta_{min} = 1.3^{\circ}$ $h = -14 \rightarrow 13$ $k = -22 \rightarrow 22$ $l = -27 \rightarrow 27$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.031$	Hydrogen site location: inferred from
$wR(F^2) = 0.081$	neighbouring sites
S = 1.06	H-atom parameters constrained
9058 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0422P)^2 + 0.1283P]$
206 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: heavy-atom method	$\Delta \rho_{\rm max} = 0.50 \text{ e } \text{\AA}^{-3}$
· ·	$\Delta \rho_{\min} = -0.58 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. The crystal was a two-component pseudo-merohedral twin. Twin law $\begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \end{bmatrix}$ reduced the

Refinement. The crystal was a two-component pseudo-merohedral twin. Twin Taw $\begin{bmatrix} 1 & 0 & 7 & 0 & -1 \end{bmatrix}$ reduced the R1 residual (observed) from 0.0769 to 0.0312. The mass ratio of twin components refined to 0.8913 (5):0.1087 (5).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Fe1	0.45028 (2)	0.51493 (2)	0.25157 (2)	0.01370 (3)	
01	0.34731 (10)	0.56636 (5)	0.35904 (4)	0.01882 (13)	
O2	0.45230 (9)	0.37683 (5)	0.30543 (4)	0.01803 (12)	
03	0.22215 (9)	0.49718 (5)	0.20055 (5)	0.01809 (12)	
O4	0.54074 (9)	0.44882 (6)	0.14732 (4)	0.01907 (12)	
05	0.44928 (9)	0.65608 (5)	0.20532 (4)	0.01776 (12)	
O6	0.68337 (9)	0.54067 (5)	0.29194 (5)	0.01786 (12)	
C1	0.24199 (14)	0.58184 (9)	0.49814 (6)	0.02391 (19)	
H1A	0.2763	0.6533	0.4922	0.036*	
H1B	0.2799	0.5555	0.5529	0.036*	
H1C	0.1201	0.5773	0.4948	0.036*	
C2	0.31834 (12)	0.51942 (7)	0.42813 (6)	0.01747 (15)	
C3	0.34901 (13)	0.41562 (8)	0.44180 (6)	0.01941 (16)	
H3A	0.3256	0.3883	0.4962	0.023*	
C4	0.41212 (11)	0.34971 (7)	0.38019 (6)	0.01657 (15)	
C5	0.43362 (15)	0.23768 (8)	0.39930 (7)	0.02404 (19)	
H5A	0.5452	0.2157	0.3818	0.036*	
H5B	0.3492	0.1983	0.3684	0.036*	
H5C	0.4204	0.2262	0.4602	0.036*	
C6	-0.00658 (14)	0.44499 (9)	0.11612 (7)	0.0257 (2)	
H6A	-0.0578	0.5103	0.1317	0.039*	
H6B	-0.0571	0.3899	0.1494	0.039*	
H6C	-0.0249	0.4320	0.0558	0.039*	
C7	0.17850 (12)	0.44918 (7)	0.13395 (6)	0.01805 (16)	
C8	0.28949 (14)	0.40143 (9)	0.07851 (7)	0.0253 (2)	
H8A	0.2443	0.3651	0.0318	0.030*	
C9	0.46286 (14)	0.40398 (7)	0.08771 (6)	0.02005 (16)	

supporting information

C10	0.57164 (17)	0.35230 (10)	0.02260 (8)	0.0309 (2)	
H10A	0.6496	0.4022	-0.0013	0.046*	
H10B	0.5014	0.3243	-0.0226	0.046*	
H10C	0.6346	0.2969	0.0495	0.046*	
C11	0.51133 (13)	0.82920 (7)	0.17750 (6)	0.01980 (17)	
H11A	0.4886	0.8213	0.1169	0.030*	
H11B	0.6042	0.8770	0.1855	0.030*	
H11C	0.4116	0.8558	0.2058	0.030*	
C12	0.55669 (12)	0.72745 (6)	0.21471 (5)	0.01511 (14)	
C13	0.71029 (11)	0.71624 (7)	0.25599 (6)	0.01816 (15)	
H13A	0.7801	0.7746	0.2609	0.022*	
C14	0.76718 (11)	0.62403 (7)	0.29054 (6)	0.01557 (14)	
C15	0.93944 (13)	0.61963 (8)	0.32810 (7)	0.02235 (18)	
H15A	0.9331	0.5932	0.3860	0.034*	
H15B	0.9879	0.6884	0.3289	0.034*	
H15C	1.0097	0.5744	0.2939	0.034*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.01298 (5)	0.01363 (5)	0.01448 (5)	-0.00062 (4)	0.00053 (5)	-0.00014 (4)
O1	0.0206 (3)	0.0188 (3)	0.0170 (3)	0.0029 (2)	0.0013 (2)	-0.0015 (2)
O2	0.0210 (3)	0.0148 (3)	0.0183 (3)	-0.0001 (2)	0.0040 (2)	0.0009 (2)
O3	0.0150 (3)	0.0211 (3)	0.0182 (3)	-0.0018 (2)	-0.0002(2)	-0.0028 (2)
04	0.0180 (3)	0.0215 (3)	0.0177 (3)	0.0000 (2)	0.0024 (2)	-0.0022 (2)
05	0.0155 (3)	0.0167 (3)	0.0210 (3)	-0.0015 (2)	-0.0029 (2)	0.0028 (2)
06	0.0151 (3)	0.0159 (3)	0.0225 (3)	-0.0001 (2)	-0.0033 (2)	0.0012 (2)
C1	0.0207 (4)	0.0325 (5)	0.0185 (4)	0.0061 (4)	0.0001 (3)	-0.0066 (4)
C2	0.0132 (3)	0.0235 (4)	0.0157 (3)	0.0009 (3)	-0.0012 (3)	-0.0034 (3)
C3	0.0198 (4)	0.0231 (4)	0.0154 (3)	0.0001 (3)	0.0015 (3)	0.0013 (3)
C4	0.0137 (3)	0.0176 (3)	0.0184 (4)	-0.0023 (3)	-0.0003 (3)	0.0023 (3)
C5	0.0267 (5)	0.0183 (4)	0.0272 (5)	-0.0005 (3)	0.0032 (4)	0.0065 (3)
C6	0.0187 (4)	0.0345 (5)	0.0238 (5)	-0.0066 (4)	-0.0048(4)	-0.0005 (4)
C7	0.0186 (4)	0.0165 (3)	0.0190 (4)	-0.0037 (3)	-0.0020 (3)	0.0015 (3)
C8	0.0241 (5)	0.0283 (5)	0.0235 (4)	-0.0038 (4)	-0.0006 (4)	-0.0093 (4)
C9	0.0250 (5)	0.0168 (4)	0.0184 (4)	0.0000 (3)	0.0038 (3)	-0.0028 (3)
C10	0.0331 (6)	0.0315 (5)	0.0281 (5)	0.0022 (5)	0.0081 (4)	-0.0113 (4)
C11	0.0236 (4)	0.0156 (3)	0.0202 (4)	0.0012 (3)	0.0002 (3)	0.0019 (3)
C12	0.0167 (4)	0.0142 (3)	0.0144 (3)	0.0006 (3)	0.0031 (3)	-0.0004 (2)
C13	0.0150 (3)	0.0153 (3)	0.0241 (4)	-0.0014 (3)	-0.0002 (3)	-0.0008 (3)
C14	0.0129 (3)	0.0173 (3)	0.0165 (3)	0.0010 (3)	0.0005 (3)	-0.0027 (3)
C15	0.0147 (4)	0.0240 (4)	0.0283 (4)	0.0009 (3)	-0.0047 (3)	-0.0041 (3)

Geometric parameters (Å, °)

Fe1—O5	1.9874 (9)	C6—C7	1.5097 (16)
Fe1—O2	1.9986 (9)	С6—Н6А	0.9800
Fe1—O4	1.9987 (9)	С6—Н6В	0.9800

supporting information

Fe1—O6	2.0008 (9)	С6—Н6С	0.9800
Fe1—O1	2.0063 (9)	C7—C8	1.3973 (15)
Fe1—O3	2.0098 (10)	C8—C9	1.3967 (17)
O1—C2	1.2747 (13)	C8—H8A	0.9500
O2—C4	1.2759 (12)	C9—C10	1.5100 (15)
O3—C7	1.2745 (12)	C10—H10A	0.9800
04—C9	1.2726 (12)	C10—H10B	0.9800
05—C12	1.2788 (12)	C10—H10C	0.9800
06—C14	1.2816 (12)	C11—C12	1.5006 (13)
C1-C2	1 5065 (14)	C11—H11A	0.9800
C1—H1A	0.9800	C11—H11B	0.9800
C1—H1B	0.9800	C11—H11C	0.9800
C1—H1C	0.9800	C12-C13	1 3994 (14)
$C^2 - C^3$	1 3979 (15)	C13 - C14	1.3991(11) 1 4010(13)
$C_2 = C_3$	1 3966 (14)	C13—H13A	0.9500
C3—H3A	0.9500	C14— $C15$	1.5024(14)
C4-C5	1,5073(14)	C15H15A	0.9800
C_{5} H5A	0.0800	C15 H15R	0.9800
C5 H5P	0.9800	C15_H15C	0.9800
C5_H5C	0.9800		0.9800
65—1156	0.9800		
O5—Fe1—O2	176.37 (3)	С7—С6—Н6А	109.5
O5—Fe1—O4	95.77 (4)	С7—С6—Н6В	109.5
O2—Fe1—O4	87.52 (4)	H6A—C6—H6B	109.5
O5—Fe1—O6	87.93 (3)	С7—С6—Н6С	109.5
O2—Fe1—O6	90.56 (3)	H6A—C6—H6C	109.5
O4—Fe1—O6	89.79 (4)	H6B—C6—H6C	109.5
O5—Fe1—O1	89.89 (3)	O3—C7—C8	124.38 (10)
O2—Fe1—O1	86.90 (3)	Q3—C7—C6	116.10 (9)
04—Fe1—01	173.63 (3)	C8—C7—C6	119.51 (9)
06—Fe1—01	93.35 (4)	C9—C8—C7	123.91 (9)
05—Fe1—O3	87.53 (3)	C9—C8—H8A	118.0
Ω^2 —Fe1— Ω^3	94 18 (3)	C7—C8—H8A	118.0
04—Fe1— 03	87 13 (4)	04-C9-C8	125.04 (9)
06—Fe1—O3	174 22 (3)	04-C9-C10	11538(10)
01—Fe1— 03	90 21 (4)	C8-C9-C10	119.50(10) 119.57(10)
$C^2 - O^1 - Fe^1$	129 75 (7)	C9-C10-H10A	109 5
C4-O2-Fe1	130.12 (6)	C9-C10-H10B	109.5
C7-O3-Fel	12953(7)	H10A—C10—H10B	109.5
C9	129.33(7) 129.22(7)	C9-C10-H10C	109.5
C12-O5-Fe1	129.38 (6)	H_{10A} $-C_{10}$ H_{10C}	109.5
C12 = 0.5 = 101	129.50 (6)	H10B-C10-H10C	109.5
$C_2 - C_1 - H_1 A$	109.5	C_{12} C_{11} H_{11A}	109.5
$C_2 - C_1 - H_1 B$	109.5	C12_C11_H11R	109.5
HIA_C1_HIB	109.5	H11A_C11_H11B	109.5
$C_2 - C_1 - H_1C$	109.5	C12_C11_H11C	109.5
$H_1A - C_1 - H_1C$	109.5	H11A_C11_H11C	109.5
HIR CI HIC	109.5	H11R C11 H11C	109.5
	107.5		109.5

O1—C2—C3	124.68 (9)	O5—C12—C13	124.65 (8)
O1—C2—C1	116.28 (9)	O5—C12—C11	116.15 (9)
C3—C2—C1	119.03 (9)	C13—C12—C11	119.20 (8)
C4—C3—C2	123.82 (9)	C12—C13—C14	123.87 (8)
C4—C3—H3A	118.1	C12—C13—H13A	118.1
С2—С3—Н3А	118.1	C14—C13—H13A	118.1
O2—C4—C3	124.50 (9)	O6-C14-C13	124.79 (9)
O2—C4—C5	115.31 (9)	O6—C14—C15	116.19 (8)
C3—C4—C5	120.19 (9)	C13—C14—C15	119.01 (8)
C4—C5—H5A	109.5	C14—C15—H15A	109.5
C4—C5—H5B	109.5	C14—C15—H15B	109.5
H5A—C5—H5B	109.5	H15A—C15—H15B	109.5
C4—C5—H5C	109.5	C14—C15—H15C	109.5
Н5А—С5—Н5С	109.5	H15A—C15—H15C	109.5
H5B—C5—H5C	109.5	H15B—C15—H15C	109.5
Fe1—O1—C2—C3	-2.73 (15)	Fe1—O4—C9—C8	7.50 (16)
Fe1—O1—C2—C1	178.71 (7)	Fe1—O4—C9—C10	-173.67 (8)
O1—C2—C3—C4	-1.55 (16)	C7—C8—C9—O4	0.58 (19)
C1—C2—C3—C4	176.97 (10)	C7—C8—C9—C10	-178.20 (11)
Fe1—O2—C4—C3	2.61 (14)	Fe1—O5—C12—C13	5.79 (14)
Fe1—O2—C4—C5	-178.63 (7)	Fe1—O5—C12—C11	-174.69 (6)
C2—C3—C4—O2	1.63 (16)	O5—C12—C13—C14	1.60 (15)
C2—C3—C4—C5	-177.08 (9)	C11—C12—C13—C14	-177.90 (9)
Fe1—O3—C7—C8	-3.57 (15)	Fe1-06-C14-C13	-2.54 (14)
Fe1—O3—C7—C6	176.19 (7)	Fe1—O6—C14—C15	178.36 (7)
O3—C7—C8—C9	-2.61 (18)	C12—C13—C14—O6	-3.25 (16)
C6—C7—C8—C9	177.64 (11)	C12—C13—C14—C15	175.82 (9)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C11—H11C···O3 ⁱ	0.98	2.60	3.4736 (15)	148
C15—H15 <i>C</i> ···O3 ⁱⁱ	0.98	2.47	3.4326 (15)	167

Symmetry codes: (i) -*x*+1/2, *y*+1/2, -*z*+1/2; (ii) *x*+1, *y*, *z*.