

Received 11 November 2015 Accepted 20 November 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

**Keywords**: crystal structure; optical resolving agent; 2<sub>1</sub>-helical columnar structure; intermolecular hydrogen bonding; C—H··· $\pi$  and N—H··· $\pi$  interactions

CCDC reference: 1438134 Supporting information: this article has supporting information at journals.iucr.org/e

# Crystal structure of racemic *cis*-2-amino-1,2-diphenylethanol (ADE)

### Isao Fujii

School of Science, Tokai University, 4-1-1 Kitakaname, Hiratuka, Kanagawa 259-1292, Japan. \*Correspondence e-mail: fujii@wing.ncc.u-tokai.ac.jp

In the title racemic compound,  $C_{14}H_{15}NO$ , the hydroxy and amino groups form a bent tweezer-like motif towards the phenyl groups. In the crystal, enantiomers aggregate with each other and are linked by  $O-H\cdots N$  hydrogen bonds, forming chiral 2<sub>1</sub>-helical columnar structures from C(5) chains along the *b*-axis direction. Left- and right-handed 2<sub>1</sub> helices are formed from (1S,2R)-2-amino-1,2-diphenylethanol and (1R,2S)-2-amino-1,2-diphenylethanol, respectively.

### 1. Chemical context

The production of chiral compounds has great importance in the pharmaceutical industry, and diastereomer salt separation is still widely applied in the process. An optical resolving agent, chiral 2-amino-1,2-diphenylethanol (ADE) (Read & Steele, 1927), has been widely tried and used in diastereomer salt separation methods; for example, chiral discrimination of 2-arylalkanoic acids by (1R,2S)-ADE (cis-isomer) (Kinbara et al., 1998). The ADE molecule with two adjacent stereogenic centers exists as diastereoisomers (and more, enantiomers of cis- and trans-forms), and can be purchased without difficulty. It was considered that cis- and trans-ADE have different properties and play different roles in diastereomer salt separations. In fact, co-crystal structures with cis-ADE enantiomers have been found in previous reports. The racemic structure of *trans*-ADE has been reported (Bari et al., 2012), but that of cis-ADE has not. The crystal structure of racemic cis-ADE is reported on herein.







### 2. Structural commentary

In the title compound (*cis*-ADE), Fig. 1, the hydroxy and amino groups form a tweezer-like motif. Selected geometrical parameters are given in Table 1. The dihedral angle between the phenyl rings is  $50.29 (6)^{\circ}$  and the torsion angle O1-C1-C2-N1 is  $59.72 (11)^{\circ}$ . These values are similar to those observed for *trans*-ADE (Bari *et al.*, 2012), *viz.* 48.05 (5) and 54.01 (10)°, respectively. However, in *cis*-ADE the hydroxyl group against the opposed phenyl ring adopts a *gauche* 

# research communications



Figure 1

A view of the molecular structure of cis-(1S,2R)-ADE, with atom and ring labelling. Displacement ellipsoids are drawn at the 50% probability level.

conformation  $[O1-C1-C2-C9 = -67.39 (11)^{\circ}]$  compared to a *trans* conformation in *trans*-ADE. Thus a tweezer-like motif bent against the phenyl groups is seen in *cis*-ADE *versus* a projected motif in *trans*-ADE. The arrangements are similar to those found in the diastereomer salts with *cis*-enantiomers, except for (1R,2S)-2-ammonio-1,2-diphenylethanol (Imai *et al.*, 2008).

### 3. Supramolecular features

In the crystal, enantiomers aggregate separately and are linked by O1-H13···N1 = [2.7977 (16) Å] hydrogen bonds, forming chiral 2<sub>1</sub>-helical columnar structures from C(5) chains along the *b*-axis direction (Table 2 and Fig. 2): Left- and right-handed 2<sub>1</sub> helices are formed from (1*S*, 2*R*)-ADE and (1*R*,



Figure 2

A partial view of the crystal packing of the title compound. Dashed lines indicate the hydrogen bonds, and  $C-H\cdots\pi$  and  $N-H\cdots\pi$  interactions (see Table 2).

| Table 1                       |         |
|-------------------------------|---------|
| Selected geometric parameters | (Å, °). |

| 0           | 1 ( )       | /           |             |
|-------------|-------------|-------------|-------------|
| O1-C1       | 1.4213 (14) | N1-C2       | 1.4732 (15) |
| O1-C1-C3    | 112.57 (9)  | N1-C2-C9    | 115.19 (9)  |
| O1-C1-C2    | 107.90 (9)  | N1-C2-C1    | 106.72 (9)  |
| O1-C1-C2-N1 | 59.72 (11)  | C3-C1-C2-N1 | -175.47 (9) |
| O1-C1-C2-C9 | -67.39 (11) | C3-C1-C2-C9 | 57.42 (12)  |

Table 2

Hydrogen-bond geometry (Å, °).

CgA and CgB are the centroids of rings C3-C8 and C9-C14, respectively.

| $D - H \cdots A$                                                                 | $D-\mathrm{H}$               | $H \cdot \cdot \cdot A$        | $D \cdots A$                              | $D - H \cdots A$                |
|----------------------------------------------------------------------------------|------------------------------|--------------------------------|-------------------------------------------|---------------------------------|
| $D1 - H13 \cdots N1^{i}$ $N1 - H15 \cdots CgB^{ii}$ $C12 - H10 \cdots CgA^{iii}$ | 0.95 (2)<br>0.88 (2)<br>0.93 | 1.86 (2)<br>2.670 (19)<br>2.80 | 2.7977 (16)<br>3.5125 (14)<br>3.6780 (17) | 173.1 (16)<br>160.3 (15)<br>158 |
|                                                                                  |                              |                                |                                           |                                 |

Symmetry codes: (i)  $-x + \frac{3}{2}, y + \frac{1}{2}, -z + 1$ ; (ii) -x + 2, -y + 1, -z + 1; (iii)  $x + \frac{1}{2}, -y + \frac{3}{2}, z$ .

2S)-ADE, respectively. The hydrophobic columnar structures surrounded by phenyl groups are consolidated by the C– $H \cdots \pi$  and N– $H \cdots \pi$  interactions, forming slabs parallel to the *ab* plane (Table 2 and Fig. 2). This is in contrast to the columnar structure stacking of racemic  $R_2^2(10)$  ring dimers from the O– $H \cdots$ N hydrogen bonds observed in the crystal structure of *trans*-ADE (Bari *et al.*, 2012).

| Table 3                                                |                                                                              |
|--------------------------------------------------------|------------------------------------------------------------------------------|
| Experimental details.                                  |                                                                              |
| Crystal data                                           |                                                                              |
| Chemical formula                                       | $C_{14}H_{15}NO$                                                             |
| M <sub>r</sub>                                         | 213.27                                                                       |
| Crystal system, space group                            | Monoclinic, $P2_1/a$                                                         |
| Temperature (K)                                        | 297                                                                          |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)                     | 16.7752 (17), 5.7573 (10),<br>12.2887 (13)                                   |
| $\beta$ (°)                                            | 105.680 (7)                                                                  |
| $V(Å^3)$                                               | 1142.7 (3)                                                                   |
| Ζ                                                      | 4                                                                            |
| Radiation type                                         | Cu Ka                                                                        |
| $\mu (\text{mm}^{-1})$                                 | 0.61                                                                         |
| Crystal size (mm)                                      | $0.30 \times 0.30 \times 0.20$                                               |
| Data collection                                        |                                                                              |
| Diffractometer                                         | Entaf-Nonius CAD-4                                                           |
| Absorption correction                                  | $\psi$ scan (North <i>et al.</i> , 1968)                                     |
| $T_{\min}, T_{\max}$                                   | 0.83, 0.90                                                                   |
| No. of measured, independent and                       | 2442, 2354, 2058                                                             |
| observed $[I > 2\sigma(I)]$ reflections                |                                                                              |
| R <sub>int</sub>                                       | 0.019                                                                        |
| $(\sin \theta / \lambda)_{\max} ( \mathring{A}^{-1} )$ | 0.626                                                                        |
| Refinement                                             |                                                                              |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                    | 0.037, 0.105, 1.03                                                           |
| No. of reflections                                     | 2354                                                                         |
| No. of parameters                                      | 158                                                                          |
| H-atom treatment                                       | H atoms treated by a mixture of<br>independent and constrained<br>refinement |
| $\Delta \rho = \Delta \rho + (e \text{ Å}^{-3})$       | 0.22 - 0.18                                                                  |

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012), Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

### 4. Synthesis and crystallization

*cis*-Enantiomers of 2-amino-1,2-diphenylethanol (ADE) were purchased from Sigma–Aldrich Co. Ltd. Equivalent weights were mixed in a bottle. Plate-like colourless crystals of the title racemic compound were obtained by vapour-phase diffusion of an aqueous ethanol solution at 297 K.

### 5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were located in difference Fourier maps. The NH<sub>2</sub> and OH H atoms were freely refined. The C-bound H atoms were included in calculated positions and treated as riding atoms: C-H = 0.93-0.98 Å with  $U_{iso}(H) = 1.2U_{eq}(C)$ .

### **Acknowledgements**

The author thanks Tokai University for a research grant, which partially supported this work.

#### References

- Bari, A., Al-Obaid, A. M. & Ng, S. W. (2012). Acta Cryst. E68, 0491.
- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Imai, Y., Kawaguchi, K., Matsuno, H., Sato, T., Kuroda, R. & Matsubara, Y. (2008). *Tetrahedron*, 64, 4585–4589.
- Kinbara, K., Kobayashi, Y. & Saigo, K. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 1767–1776.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Read, J. & Steele, C. C. (1927). J. Chem. Soc. pp. 910-918.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

# supporting information

Acta Cryst. (2015). E71, 1539-1541 [https://doi.org/10.1107/S2056989015022318]

## Crystal structure of racemic *cis*-2-amino-1,2-diphenylethanol (ADE)

## Isao Fujii

**Computing details** 

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software* (Enraf–Nonius, 1989); data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014/7* (Sheldrick, 2015); molecular graphics: *ORTEP-3* for Windows (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *PLATON* (Spek, 2009), *publCIF* (Westrip, 2010), and *WinGX* (Farrugia, 2012).

cis-2-Amino-1,2-diphenylethanol

Crystal data C<sub>14</sub>H<sub>15</sub>NO  $M_r = 213.27$ Monoclinic,  $P2_1/a$ Hall symbol: -P 2yab a = 16.7752 (17) Å b = 5.7573 (10) Å c = 12.2887 (13) Å  $\beta = 105.680 (7)^{\circ}$   $V = 1142.7 (3) \text{ Å}^3$ Z = 4

### Data collection

Entaf–Nonius CAD-4 diffractometer Radiation source: tube sealed Graphite monochromator  $2\theta-\omega$  scan Absorption correction:  $\psi$  scan (North *et al.*, 1968)  $T_{\min} = 0.83, T_{\max} = 0.90$ 2442 measured reflections

### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.037$  $wR(F^2) = 0.105$ S = 1.032354 reflections 158 parameters 0 restraints Hydrogen site location: mixed F(000) = 456  $D_x = 1.240 \text{ Mg m}^{-3}$ Cu K\alpha radiation, \lambda = 1.54178 \mathbf{A} Cell parameters from 25 reflections  $\theta = 20-25^{\circ}$   $\mu = 0.61 \text{ mm}^{-1}$  T = 297 KPlate, colourless  $0.30 \times 0.30 \times 0.20 \text{ mm}$ 

2354 independent reflections 2058 reflections with  $I > 2\sigma(I)$   $R_{int} = 0.019$   $\theta_{max} = 74.9^{\circ}, \ \theta_{min} = 3.7^{\circ}$   $h = -21 \rightarrow 0$   $k = -7 \rightarrow 0$   $l = -14 \rightarrow 15$ 3 standard reflections every 300 reflections intensity decay: none

H atoms treated by a mixture of independent and constrained refinement  $W = 1/[\Sigma^2(FO^2) + (0.0588P)^2 + 0.2117P]$ WHERE  $P = (FO^2 + 2FC^2)/3$  $(\Delta/\sigma)_{max} < 0.001$  $\Delta\rho_{max} = 0.22$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.18$  e Å<sup>-3</sup> Extinction correction: SHELXL2014/7 (Sheldrick, 2015),  $FC^*=KFC[1+0.001XFC^2\Lambda^3/SIN(2\Theta)]^{-1/4}$  Extinction coefficient: 0.0107 (9) Absolute structure: see text

### Special details

**Geometry**. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

**Refinement**. Refinement on  $F^2$  for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The observed criterion of  $F^2 > \sigma(F^2)$  is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

| Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A | Ų, | ) |
|------------------------------------------------------------------------------------------------|----|---|
|------------------------------------------------------------------------------------------------|----|---|

|     | x           | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|-------------|--------------|--------------|-----------------------------|
| 01  | 0.76749 (6) | 0.89601 (14) | 0.38299 (7)  | 0.0445 (3)                  |
| N1  | 0.85894 (7) | 0.5703 (2)   | 0.53117 (9)  | 0.0478 (3)                  |
| C1  | 0.75159 (7) | 0.65596 (19) | 0.36005 (9)  | 0.0359 (3)                  |
| C2  | 0.83327 (6) | 0.5226 (2)   | 0.40885 (9)  | 0.0370 (3)                  |
| C3  | 0.71413 (6) | 0.60757 (19) | 0.23561 (9)  | 0.0347 (3)                  |
| C4  | 0.67124 (8) | 0.4020 (2)   | 0.20194 (10) | 0.0438 (3)                  |
| C5  | 0.63480 (9) | 0.3576 (2)   | 0.08879 (12) | 0.0514 (4)                  |
| C6  | 0.64086 (8) | 0.5178 (3)   | 0.00766 (10) | 0.0527 (4)                  |
| C7  | 0.68404 (8) | 0.7206 (3)   | 0.04003 (10) | 0.0516 (4)                  |
| C8  | 0.72072 (7) | 0.7658 (2)   | 0.15340 (10) | 0.0427 (3)                  |
| C9  | 0.89766 (6) | 0.57714 (19) | 0.34642 (9)  | 0.0352 (3)                  |
| C10 | 0.91137 (8) | 0.4216 (2)   | 0.26755 (11) | 0.0458 (4)                  |
| C11 | 0.96758 (8) | 0.4696 (3)   | 0.20612 (11) | 0.0552 (4)                  |
| C12 | 1.01117 (8) | 0.6743 (3)   | 0.22244 (11) | 0.0521 (4)                  |
| C13 | 0.99884 (8) | 0.8302 (2)   | 0.30109 (12) | 0.0517 (4)                  |
| C14 | 0.94275 (8) | 0.7827 (2)   | 0.36305 (11) | 0.0454 (4)                  |
| H1  | 0.71190     | 0.60500      | 0.40080      | 0.0430*                     |
| H2  | 0.82070     | 0.35640      | 0.39920      | 0.0440*                     |
| Н3  | 0.66700     | 0.29320      | 0.25600      | 0.0530*                     |
| H4  | 0.60610     | 0.21950      | 0.06720      | 0.0620*                     |
| Н5  | 0.61590     | 0.48860      | -0.06840     | 0.0630*                     |
| H6  | 0.68870     | 0.82810      | -0.01440     | 0.0620*                     |
| H7  | 0.74990     | 0.90330      | 0.17440      | 0.0510*                     |
| H8  | 0.88230     | 0.28220      | 0.25550      | 0.0550*                     |
| H9  | 0.97580     | 0.36260      | 0.15350      | 0.0660*                     |
| H10 | 1.04860     | 0.70720      | 0.18080      | 0.0630*                     |
| H11 | 1.02840     | 0.96890      | 0.31290      | 0.0620*                     |
| H12 | 0.93530     | 0.88950      | 0.41620      | 0.0540*                     |
| H13 | 0.7225 (12) | 0.959 (3)    | 0.4061 (15)  | 0.077 (5)*                  |
| H14 | 0.8637 (12) | 0.732 (4)    | 0.5400 (16)  | 0.085 (6)*                  |
| H15 | 0.9080 (12) | 0.508 (3)    | 0.5611 (15)  | 0.074 (5)*                  |

# supporting information

|     | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$   | $U^{23}$    |
|-----|------------|------------|------------|-------------|------------|-------------|
| 01  | 0.0495 (5) | 0.0365 (4) | 0.0494 (5) | 0.0033 (4)  | 0.0169 (4) | -0.0058 (3) |
| N1  | 0.0460 (6) | 0.0600(7)  | 0.0362 (5) | -0.0006(5)  | 0.0089 (4) | 0.0094 (5)  |
| C1  | 0.0370 (5) | 0.0355 (5) | 0.0375 (5) | 0.0012 (4)  | 0.0138 (4) | 0.0019 (4)  |
| C2  | 0.0378 (6) | 0.0353 (6) | 0.0381 (5) | 0.0000 (4)  | 0.0106 (4) | 0.0049 (4)  |
| C3  | 0.0315 (5) | 0.0362 (6) | 0.0374 (5) | 0.0048 (4)  | 0.0108 (4) | 0.0026 (4)  |
| C4  | 0.0496 (6) | 0.0368 (6) | 0.0456 (6) | -0.0001 (5) | 0.0140 (5) | 0.0032 (5)  |
| C5  | 0.0540 (7) | 0.0442 (7) | 0.0536 (7) | -0.0054 (6) | 0.0102 (6) | -0.0083 (6) |
| C6  | 0.0535 (7) | 0.0617 (8) | 0.0390 (6) | 0.0018 (6)  | 0.0059 (5) | -0.0046 (6) |
| C7  | 0.0566 (7) | 0.0565 (8) | 0.0400 (6) | -0.0017 (6) | 0.0104 (5) | 0.0096 (6)  |
| C8  | 0.0430 (6) | 0.0419 (6) | 0.0427 (6) | -0.0041 (5) | 0.0108 (5) | 0.0047 (5)  |
| С9  | 0.0321 (5) | 0.0346 (5) | 0.0378 (5) | 0.0039 (4)  | 0.0077 (4) | 0.0051 (4)  |
| C10 | 0.0417 (6) | 0.0437 (7) | 0.0525 (7) | -0.0027 (5) | 0.0138 (5) | -0.0079 (5) |
| C11 | 0.0465 (7) | 0.0714 (9) | 0.0508 (7) | -0.0004 (6) | 0.0186 (6) | -0.0137 (7) |
| C12 | 0.0375 (6) | 0.0719 (9) | 0.0495 (7) | 0.0009 (6)  | 0.0162 (5) | 0.0087 (6)  |
| C13 | 0.0431 (6) | 0.0468 (7) | 0.0669 (8) | -0.0062 (5) | 0.0176 (6) | 0.0070 (6)  |
| C14 | 0.0453 (6) | 0.0382 (6) | 0.0548 (7) | -0.0019(5)  | 0.0171 (5) | -0.0028(5)  |

Atomic displacement parameters  $(Å^2)$ 

## Geometric parameters (Å, °)

| 01—C1      | 1.4213 (14) | C10-C11  | 1.386 (2) |
|------------|-------------|----------|-----------|
| N1C2       | 1.4732 (15) | C11—C12  | 1.373 (2) |
| O1—H13     | 0.95 (2)    | C12—C13  | 1.375 (2) |
| C1—C3      | 1.5138 (15) | C13—C14  | 1.388 (2) |
| N1—H15     | 0.88 (2)    | C1—H1    | 0.9800    |
| N1—H14     | 0.94 (2)    | C2—H2    | 0.9800    |
| C1—C2      | 1.5435 (16) | C4—H3    | 0.9300    |
| C2—C9      | 1.5172 (15) | С5—Н4    | 0.9300    |
| C3—C8      | 1.3868 (16) | С6—Н5    | 0.9300    |
| C3—C4      | 1.3888 (16) | С7—Н6    | 0.9300    |
| C4—C5      | 1.3831 (19) | С8—Н7    | 0.9300    |
| C5—C6      | 1.382 (2)   | C10—H8   | 0.9300    |
| C6—C7      | 1.375 (2)   | С11—Н9   | 0.9300    |
| С7—С8      | 1.3870 (17) | C12—H10  | 0.9300    |
| C9—C14     | 1.3896 (16) | C13—H11  | 0.9300    |
| C9—C10     | 1.3837 (17) | C14—H12  | 0.9300    |
|            |             |          |           |
| C1—O1—H13  | 108.0 (11)  | O1—C1—H1 | 108.00    |
| O1—C1—C3   | 112.57 (9)  | C2—C1—H1 | 108.00    |
| C2—C1—C3   | 112.55 (9)  | C3—C1—H1 | 108.00    |
| H14—N1—H15 | 108.3 (17)  | N1—C2—H2 | 107.00    |
| 01—C1—C2   | 107.90 (9)  | C1—C2—H2 | 107.00    |
| C2—N1—H14  | 107.2 (12)  | C9—C2—H2 | 107.00    |
| C2—N1—H15  | 109.4 (12)  | C3—C4—H3 | 120.00    |
| N1-C2-C9   | 115.19 (9)  | С5—С4—Н3 | 120.00    |
| C1—C2—C9   | 112.28 (9)  | C4—C5—H4 | 120.00    |

| N1—C2—C1     | 106.72 (9)   | С6—С5—Н4        | 120.00       |
|--------------|--------------|-----------------|--------------|
| C1—C3—C4     | 119.87 (10)  | C5—C6—H5        | 120.00       |
| C1—C3—C8     | 121.46 (10)  | С7—С6—Н5        | 120.00       |
| C4—C3—C8     | 118.66 (10)  | С6—С7—Н6        | 120.00       |
| C3—C4—C5     | 120.64 (11)  | С8—С7—Н6        | 120.00       |
| C4—C5—C6     | 120.21 (12)  | С3—С8—Н7        | 120.00       |
| C5—C6—C7     | 119.59 (12)  | С7—С8—Н7        | 120.00       |
| C6—C7—C8     | 120.39 (13)  | С9—С10—Н8       | 119.00       |
| C3—C8—C7     | 120.49 (12)  | С11—С10—Н8      | 119.00       |
| C2—C9—C10    | 119.74 (10)  | С10—С11—Н9      | 120.00       |
| C2—C9—C14    | 122.38 (10)  | С12—С11—Н9      | 120.00       |
| C10—C9—C14   | 117.86 (11)  | C11—C12—H10     | 120.00       |
| C9—C10—C11   | 121.26 (12)  | C13—C12—H10     | 120.00       |
| C10-C11-C12  | 120.37 (13)  | C12—C13—H11     | 120.00       |
| C11—C12—C13  | 119.19 (13)  | C14—C13—H11     | 120.00       |
| C12—C13—C14  | 120.66 (12)  | C9—C14—H12      | 120.00       |
| C9—C14—C13   | 120.65 (11)  | C13—C14—H12     | 120.00       |
|              |              |                 |              |
| 01—C1—C2—N1  | 59.72 (11)   | C1—C3—C8—C7     | -178.29 (12) |
| O1—C1—C2—C9  | -67.39 (11)  | C4—C3—C8—C7     | 0.98 (18)    |
| C3—C1—C2—N1  | -175.47 (9)  | C3—C4—C5—C6     | 0.1 (2)      |
| C3—C1—C2—C9  | 57.42 (12)   | C4—C5—C6—C7     | 0.6 (2)      |
| O1—C1—C3—C4  | -159.70 (11) | C5—C6—C7—C8     | -0.6 (2)     |
| O1—C1—C3—C8  | 19.56 (15)   | C6—C7—C8—C3     | -0.2 (2)     |
| C2—C1—C3—C4  | 78.10 (13)   | C2-C9-C10-C11   | 177.69 (11)  |
| C2—C1—C3—C8  | -102.65 (12) | C14—C9—C10—C11  | -0.64 (18)   |
| N1-C2-C9-C10 | 136.09 (11)  | C2-C9-C14-C13   | -177.49 (11) |
| N1-C2-C9-C14 | -45.66 (15)  | C10-C9-C14-C13  | 0.80 (18)    |
| C1-C2-C9-C10 | -101.48 (12) | C9-C10-C11-C12  | 0.0 (2)      |
| C1-C2-C9-C14 | 76.77 (13)   | C10-C11-C12-C13 | 0.5 (2)      |
| C1—C3—C4—C5  | 178.33 (12)  | C11—C12—C13—C14 | -0.4 (2)     |
| C8—C3—C4—C5  | -0.94 (19)   | C12—C13—C14—C9  | -0.3 (2)     |
|              |              |                 |              |

## Hydrogen-bond geometry (Å, °)

CgA and CgB are the centroids of rings C3–C8 and C9–C14, respectively.

| D—H···A                      | D—H      | H···A      | D····A      | <i>D</i> —H··· <i>A</i> |
|------------------------------|----------|------------|-------------|-------------------------|
| O1—H13···N1 <sup>i</sup>     | 0.95 (2) | 1.86 (2)   | 2.7977 (16) | 173.1 (16)              |
| N1—H15···CgB <sup>ii</sup>   | 0.88 (2) | 2.670 (19) | 3.5125 (14) | 160.3 (15)              |
| C12—H10···CgA <sup>iii</sup> | 0.93     | 2.80       | 3.6780 (17) | 158                     |

Symmetry codes: (i) -x+3/2, y+1/2, -z+1; (ii) -x+2, -y+1, -z+1; (iii) x+1/2, -y+3/2, z.