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The isomeric derivatives 1,2-bis(iodomethyl)benzene, (I), and 1,3-bis(iodo-

methyl)benzene (II), both C8H8I2, were prepared by metathesis from their

dibromo analogues. The ortho-derivative, (I), lies about a crystallographic

twofold axis that bisects the C—C bond between the two iodomethyl

substituents. The packing in (I) relies solely on C—H� � �I hydrogen bonds

supported by weak parallel slipped �–� stacking interactions [inter-centroid

distance = 4.0569 (11) Å, inter-planar distance = 3.3789 (8) Å and slippage =

2.245 Å]. While C—H� � �I hydrogen bonds are also found in the packing of (II),

type II, I� � �I halogen bonds [I� � �I = 3.8662 (2) Å] and C—H� � �� contacts

feature prominently in stabilizing the three-dimensional structure.

1. Chemical context

The isomeric xylene derivatives reported here, 1,2-bis(iodo-

methyl)benzene, (I), and 1,3-bis(iodomethyl)benzene (II), are

useful synthons for the preparation of a range of organic

compounds. (I) is used particularly in the synthesis of poly-

cyclic aromatic systems (see for example: Takahashi et al. 2006;

Abreu et al., 2010; Wang et al., 2012). Similarly (II) has been

used in polymer formation (Pandya & Gibson, 1991), in the

synthesis of metacyclophanes (Ramming & Gleiter, 1997) and

to provide aromatic spacers in organic synthesis (Kida et al.,

2005). Our interest in such compounds is as components of

ionene polymers. The compounds were readily prepared by

metathesis from the bis(bromomethyl)benzene derivatives.

2. Structural commentary

The molecular structures of 1,2-bis(iodomethyl)benzene, (I),

and 1,3-bis(iodomethyl)benzene, (II), are shown in Figs. 1 and

2 and are sufficiently similar to be discussed together. Each

comprises a benzene ring with two iodomethyl substituents in

the 1,2- and 1,3-positions for (I) and (II) respectively. The
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molecule of (I) lies about a twofold axis that bisects the C—C

bond between the two iodomethyl substituents. For each

molecule the C—I bonds of the substituents point away from

opposite faces of the benzene rings with the C—C—I planes

almost orthogonal to the ring planes; dihedral angles =

87.99 (14)� for (I) and 82.23 (14) and 83.61 (15)� for (II). The

C1—C11 and C11—I1 bond lengths in (I) and C1—C11, C11—

I1, C3—C31 and C31—I3 in (II) are reasonably self-consistent

and also compare well with those found in the isomeric 1,4-

bis(iodomethyl)benzene (McAdam et al. 2009).

3. Supramolecular features

3.1. Crystal packing for (I)

In the crystal of (I), weak parallel slipped �–� stacking

interactions [inter-centroid distance = 4.0569 (11) Å, inter-

planar distance = 3.3789 (8) Å, slippage = 2.245 Å], between

the benzene rings of inversion-related molecules are

supported by C3—H3� � �I1 hydrogen bonds, Table 1, to link

molecules in a head-to tail-fashion, stacking them along c,

Fig. 3. In addition, the iodine atoms act as bifurcated accep-

tors, forming weak C2—H2� � �I1 and C11—H112� � �I1

hydrogen bonds generating R1
2(6) ring motifs (Bernstein et al.,

1995). These contacts link the molecules into zigzag chains

along [101], Fig. 4. These contacts combine to link stacked

columns of molecules through weak C—H� � �I hydrogen
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Figure 2
The molecular structure of compound (II), with displacement ellipsoids
drawn at the 50% probability level.

Figure 1
The molecular structure of compound (I), with displacement ellipsoids
drawn at the 50% probability level. The unlabelled atoms are related to
labelled atoms by the symmetry operation (�x + 1, y, �z + 3

2).

Table 1
Hydrogen-bond geometry (Å, �) for (I).

D—H� � �A D—H H� � �A D� � �A D—H� � �A

C3—H3� � �I1i 0.95 3.38 4.046 (2) 129
C11—H112� � �I1ii 0.99 3.33 4.179 (2) 145
C2—H2� � �I1ii 0.95 3.36 4.257 (2) 158

Symmetry codes: (i) x;�y þ 1; z� 1
2; (ii) �xþ 1

2;�yþ 1
2;�zþ 1.

Figure 3
�–� stacking interactions (green dotted lines) supported by C—H� � �I
hydrogen bonds for (I). Hydrogen bonds in this and subsequent figures
are drawn as blue dashed lines.

Figure 4
Chains of molecules of (I) in [101].



bonds and generate a three dimensional network structure,

Fig. 5.

3.2. Crystal packing for (II)

In the crystal of (II), C11—H11B� � �I1 hydrogen bonds,

Table 2, form a column supported by a series of C31—

H31B� � �Cg1 contacts. C31—H31A� � �I3 hydrogen bonds link

these in an obverse fashion, forming double chains along b,

Fig. 6. C5—H5� � �I1 hydrogen bonds, Fig. 7, link the double

chains into sheets in the ab plane. An extensive series of

I1� � �I3 halogen bonds Fig. 8, I1� � �I3v,vi = 3.8662 (2) Å;
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Figure 5
Overall packing for (I) viewed along the c-axis direction.

Table 2
Hydrogen-bond geometry (Å, �) for (II).

Cg is the centroid of the C1–C6 ring.

D—H� � �A D—H H� � �A D� � �A D—H� � �A

C11—H11B� � �I1i 0.99 3.22 4.060 (3) 144
C5—H5� � �I1ii 0.95 3.25 4.078 (3) 147
C31—H31A� � �I3iii 0.99 3.27 4.224 (3) 162
C31—H31A� � �Cgiv 0.99 2.84 3.453 (3) 121

Symmetry codes: (i) x; y� 1; z; (ii) �xþ 1
2; y� 1

2;�zþ 1
2; (iii) �xþ 3

2; yþ 1
2;�zþ 1

2; (iv)
x; yþ 1; z.

Figure 6
Double chains of molecules of (II) formed by a series of C31—
H31B� � �Cg1 contacts (green dotted lines) linked by C—H� � �I hydrogen
bonds.

Figure 7
Sheets of molecules of (II) in the ab plane formed by C—H� � �I. hydrogen
bonds.

Figure 8
Sheets of molecules of (II) in the (101) plane formed by I� � �I halogen
bonds, blue dashed lines, supported by C—H� � �I hydrogen bonds.



symmetry codes: (v) = �1
2 + x, 1

2 � y, 1
2 + z; (vi) = 1

2 + x, 1
2 � y,

�1
2 + z (Desiraju et al., 2013; Metrangolo et al., 2008), extend

the structure in the third dimension, Fig. 9. The angles C11—

I1—I3 = 117� and C31—I3—I1 = 165� characterize this

halogen bond as type II (Pedireddi et al., 1994).

4. Database survey

A search of the Cambridge Structural Database (Version 5.36

with three updates; Groom & Allen, 2014) for molecules

incorporating a C6CH2I fragment surprisingly generated only

five hits for iodomethylbenzene derivatives. One of these is

the isomeric 1,4-bis(iodomethyl)benzene reported by us

previously (McAdam et al., 2009), while two others are the

organic compounds 2-(iodomethyl)-1,3,5-trimethylbenzene

(Bats, 2014) and 30-iodo-50-(iodomethyl)biphenyl-4-carbo-

nitrile (He et al., 2013). The other two entries are metal

complexes (Martı́nez-Garcı́a et al., 2010; Rivada-Wheelaghan

et al., 2012). In one of these, the iodine atom of the iodomethyl

unit was found to act as a ligand to a platinum(II) nucleus

(Rivada-Wheelaghan et al., 2012). The structures of both the

chloro- and bromo-analogues of 1,2-bis(iodomethyl)benzene

(Basaran et al., 1992; Jones & Kus, 2007) and 1,3-bis(iodo-

methyl)benzene (Sanders et al., 2013; Li et al., 2006; Jones &

Kus, 2007) have also been reported. Interestingly, 1,3-bis-

(bromomethyl)benzene is isostructural with (II) and the

packing features for the two compounds are identical, apart

from somewhat increased distances for the iodo compound.

For example I1� � �I3 = 3.8662 (2) Å for (II) but the equivalent

Br� � �Br distance is 3.6742 (3) Å for the meta-dibromo

analogue (Jones & Kus, 2007). Similar isostructural behaviour

is observed for para-bis(iodomethyl)benzene (McAdam et al.,

2009) and its dibromo analogue (Jones & Kus, 2007).

However, in contrast, despite (I) and the ortho-dibromo

analogue both displaying twofold symmetry, compound (I)

crystallizes in the monoclinic space group C2/c while that for
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Figure 9
Overall packing for (II) viewed along the b-axis direction.

Table 3
Experimental details.

(I) (II)

Crystal data
Chemical formula C8H8I2 C8H8I2

Mr 357.94 357.94
Crystal system, space group Monoclinic, C2/c Monoclinic, P21/n
Temperature (K) 90 90
a, b, c (Å) 14.5485 (5), 8.0461 (3), 8.0582 (3) 13.5323 (3), 4.5464 (1), 15.6269 (4)
� (�) 101.637 (2) 95.203 (1)
V (Å3) 923.89 (6) 957.46 (4)
Z 4 4
Radiation type Mo K� Mo K�
� (mm�1) 6.74 6.50
Crystal size (mm) 0.31 � 0.17 � 0.15 0.45 � 0.06 � 0.05

Data collection
Diffractometer Bruker APEXII CCD area detector Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2013) Multi-scan (SADABS; Bruker, 2013)
Tmin, Tmax 0.534, 1.000 0.569, 1.000
No. of measured, independent and observed

[I > 2�(I)] reflections
8422, 1667, 1552 16804, 3435, 2826

Rint 0.030 0.033
(sin �/�)max (Å�1) 0.775 0.775

Refinement
R[F 2 > 2�(F 2)], wR(F 2), S 0.018, 0.044, 1.15 0.024, 0.048, 1.06
No. of reflections 1667 3435
No. of parameters 46 91
H-atom treatment H-atom parameters constrained H-atom parameters constrained
�	max, �	min (e Å�3) 0.52, �1.23 1.24, �0.77

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), TITAN2000 (Hunter & Simpson, 1999), Mercury (Macrae et
al., 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009), WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).



the dibromo counterpart is found to be orthorhombic, Fdd2

(Jones & Kus, 2007).

5. Synthesis and crystallization

Preparation of the title compounds was based on literature

methods (Moore & Stupp, 1986; Kida et al., 2005). The

appropriate bis(bromomethyl)benzene (1.32 g, 5 mmol) was

refluxed for 7 h with sodium iodide (2.25 g, 15 mmol) in

acetone (25 ml). The solution was allowed to cool overnight,

the crystals that developed were rinsed gently with water to

remove sodium bromide and air dried. The product was

recrystallized a second time from acetone to give X-ray quality

crystals. Confirmation of the metathesised (iodo) product was

by microanalysis and mass spectroscopy. 13C NMR spectra of

the diiodo compounds are distinct from those of their

dibromo precursors.

Compound (I): Analysis calculated for C8H8I2: C, 26.84; H,

2.25%. Found: C, 26.86; H, 2.14%. 13C NMR (
 p.p.m.): 137.4,

130.8, 129.0, 1.8.

Compound (II): Analysis calculated for C8H8I2: C, 26.84; H,

2.25%. Found: C, 26.63; H, 2.19%. 13C NMR (
 p.p.m.): 140.0,

129.4, 129.0, 128.4, 4.9.

6. Refinement

Crystal data, data collection and structure refinement details

are summarized in Table 3. All H atoms were refined using a

riding model with d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for

aromatic and 0.99 Å, Uiso = 1.2Ueq(C) for CH2 H atoms. For

(I), a low-angle reflection with Fo << Fc, that may have been

affected by the beam-stop, was omitted from the final refine-

ment cycles.
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Crystal structures of two bis(iodomethyl)benzene derivatives: similarities and 

differences in the crystal packing

C. John McAdam, Lyall R. Hanton, Stephen C. Moratti and Jim Simpson

Computing details 

For both compounds, data collection: APEX2 (Bruker, 2013); cell refinement: APEX2 and SAINT (Bruker, 2013); data 

reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to 

refine structure: SHELXL2014 (Sheldrick, 2015b) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: 

Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b), 

enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

(I) 1,2-Bis(iodomethyl)benzene 

Crystal data 

C8H8I2

Mr = 357.94
Monoclinic, C2/c
a = 14.5485 (5) Å
b = 8.0461 (3) Å
c = 8.0582 (3) Å
β = 101.637 (2)°
V = 923.89 (6) Å3

Z = 4

F(000) = 648
Dx = 2.573 Mg m−3

Mo Kα radiation, λ = 0.71073 Å
Cell parameters from 5091 reflections
θ = 2.6–32.9°
µ = 6.74 mm−1

T = 90 K
Block, colourless
0.31 × 0.17 × 0.15 mm

Data collection 

Bruker APEXII CCD area-detector 
diffractometer

Radiation source: fine-focus sealed tube
ω scans
Absorption correction: multi-scan 

(SADABS; Bruker, 2013)
Tmin = 0.534, Tmax = 1.000
8422 measured reflections

1667 independent reflections
1552 reflections with I > 2σ(I)
Rint = 0.030
θmax = 33.4°, θmin = 2.9°
h = −21→21
k = −11→12
l = −12→10

Refinement 

Refinement on F2

Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.018
wR(F2) = 0.044
S = 1.15
1667 reflections
46 parameters
0 restraints

Hydrogen site location: inferred from 
neighbouring sites

H-atom parameters constrained
w = 1/[σ2(Fo

2) + (0.0175P)2 + 1.2212P] 
where P = (Fo

2 + 2Fc
2)/3

(Δ/σ)max = 0.002
Δρmax = 0.52 e Å−3

Δρmin = −1.23 e Å−3
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Special details 

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full 
covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and 
torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. 
An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. One low angle reflection with Fo << Fc was omitted from the final refinement cycles.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 

x y z Uiso*/Ueq

I1 0.31503 (2) 0.11885 (2) 0.75250 (2) 0.01529 (5)
C11 0.41526 (13) 0.2215 (2) 0.6102 (3) 0.0142 (3)
H111 0.4651 0.1386 0.6070 0.017*
H112 0.3826 0.2433 0.4921 0.017*
C1 0.45886 (13) 0.3782 (2) 0.6864 (2) 0.0111 (3)
C2 0.41839 (13) 0.5301 (2) 0.6268 (3) 0.0136 (3)
H2 0.3623 0.5307 0.5427 0.016*
C3 0.45882 (14) 0.6802 (2) 0.6886 (3) 0.0156 (4)
H3 0.4304 0.7823 0.6470 0.019*

Atomic displacement parameters (Å2) 

U11 U22 U33 U12 U13 U23

I1 0.01370 (7) 0.01474 (7) 0.01747 (8) −0.00335 (4) 0.00325 (5) 0.00078 (4)
C11 0.0139 (8) 0.0163 (8) 0.0132 (9) −0.0016 (6) 0.0044 (7) −0.0027 (7)
C1 0.0115 (8) 0.0123 (8) 0.0102 (8) −0.0008 (5) 0.0039 (6) −0.0001 (6)
C2 0.0131 (8) 0.0158 (8) 0.0122 (9) 0.0026 (6) 0.0035 (7) 0.0011 (7)
C3 0.0212 (9) 0.0122 (8) 0.0153 (9) 0.0026 (7) 0.0085 (7) 0.0031 (7)

Geometric parameters (Å, º) 

I1—C11 2.1902 (19) C1—C1i 1.410 (4)
C11—C1 1.487 (3) C2—C3 1.391 (3)
C11—H111 0.9900 C2—H2 0.9500
C11—H112 0.9900 C3—C3i 1.392 (4)
C1—C2 1.399 (3) C3—H3 0.9500

C1—C11—I1 112.15 (13) C1i—C1—C11 121.93 (11)
C1—C11—H111 109.2 C3—C2—C1 121.16 (18)
I1—C11—H111 109.2 C3—C2—H2 119.4
C1—C11—H112 109.2 C1—C2—H2 119.4
I1—C11—H112 109.2 C2—C3—C3i 119.72 (12)
H111—C11—H112 107.9 C2—C3—H3 120.1
C2—C1—C1i 119.10 (11) C3i—C3—H3 120.1
C2—C1—C11 118.94 (18)

I1—C11—C1—C2 −93.41 (19) C11—C1—C2—C3 −177.12 (17)
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I1—C11—C1—C1i 88.3 (2) C1—C2—C3—C3i 0.2 (3)
C1i—C1—C2—C3 1.2 (3)

Symmetry code: (i) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, º) 

D—H···A D—H H···A D···A D—H···A

C3—H3···I1ii 0.95 3.38 4.046 (2) 129
C11—H112···I1iii 0.99 3.33 4.179 (2) 145
C2—H2···I1iii 0.95 3.36 4.257 (2) 158

Symmetry codes: (ii) x, −y+1, z−1/2; (iii) −x+1/2, −y+1/2, −z+1.

(II) 1,3-Bis(iodomethyl)benzene 

Crystal data 

C8H8I2

Mr = 357.94
Monoclinic, P21/n
a = 13.5323 (3) Å
b = 4.5464 (1) Å
c = 15.6269 (4) Å
β = 95.203 (1)°
V = 957.46 (4) Å3

Z = 4

F(000) = 648
Dx = 2.483 Mg m−3

Mo Kα radiation, λ = 0.71073 Å
θ = 2.6–33.0°
µ = 6.50 mm−1

T = 90 K
Needle, colourless
0.45 × 0.06 × 0.05 mm

Data collection 

Bruker APEXII CCD area-detector 
diffractometer

Radiation source: fine-focus sealed tube
ω scans
Absorption correction: multi-scan 

(SADABS; Bruker, 2013)
Tmin = 0.569, Tmax = 1.000
16804 measured reflections

3435 independent reflections
2826 reflections with I > 2σ(I)
Rint = 0.033
θmax = 33.4°, θmin = 3.0°
h = −20→20
k = −6→5
l = −23→24

Refinement 

Refinement on F2

Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.024
wR(F2) = 0.048
S = 1.06
3435 reflections
91 parameters
0 restraints

Hydrogen site location: inferred from 
neighbouring sites

H-atom parameters constrained
w = 1/[σ2(Fo

2) + (0.0109P)2 + 1.4343P] 
where P = (Fo

2 + 2Fc
2)/3

(Δ/σ)max = 0.002
Δρmax = 1.24 e Å−3

Δρmin = −0.77 e Å−3

Special details 

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full 
covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and 
torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. 
An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
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Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 

x y z Uiso*/Ueq

I1 0.35561 (2) 0.36401 (4) 0.46514 (2) 0.01445 (4)
C11 0.4498 (2) 0.1469 (6) 0.37746 (17) 0.0197 (5)
H11A 0.5193 0.1461 0.4034 0.024*
H11B 0.4282 −0.0599 0.3690 0.024*
C1 0.44471 (19) 0.2984 (6) 0.29275 (16) 0.0152 (5)
C2 0.51858 (18) 0.4993 (5) 0.27547 (16) 0.0138 (5)
H2 0.5707 0.5419 0.3185 0.017*
C3 0.51650 (18) 0.6379 (5) 0.19574 (16) 0.0128 (4)
C31 0.59593 (19) 0.8514 (6) 0.17788 (17) 0.0175 (5)
H31A 0.6261 0.9352 0.2326 0.021*
H31B 0.5667 1.0148 0.1421 0.021*
I3 0.71036 (2) 0.63230 (4) 0.11079 (2) 0.01692 (5)
C4 0.43920 (19) 0.5755 (6) 0.13244 (16) 0.0171 (5)
H4 0.4369 0.6696 0.0780 0.021*
C5 0.36591 (19) 0.3753 (6) 0.14961 (17) 0.0179 (5)
H5 0.3138 0.3322 0.1066 0.022*
C6 0.36832 (19) 0.2379 (6) 0.22919 (18) 0.0178 (5)
H6 0.3177 0.1021 0.2404 0.021*

Atomic displacement parameters (Å2) 

U11 U22 U33 U12 U13 U23

I1 0.01484 (7) 0.01475 (9) 0.01451 (8) 0.00033 (6) 0.00534 (5) 0.00083 (6)
C11 0.0223 (12) 0.0167 (13) 0.0216 (12) 0.0064 (11) 0.0091 (10) 0.0020 (11)
C1 0.0174 (11) 0.0125 (12) 0.0167 (11) 0.0032 (10) 0.0065 (9) 0.0003 (9)
C2 0.0149 (11) 0.0112 (12) 0.0155 (11) 0.0011 (9) 0.0035 (9) −0.0025 (9)
C3 0.0139 (10) 0.0097 (11) 0.0153 (10) 0.0010 (9) 0.0044 (8) −0.0013 (9)
C31 0.0191 (12) 0.0131 (13) 0.0215 (12) −0.0020 (10) 0.0083 (10) −0.0037 (10)
I3 0.01582 (8) 0.01765 (9) 0.01833 (8) −0.00134 (6) 0.00728 (6) −0.00027 (6)
C4 0.0184 (11) 0.0182 (13) 0.0148 (11) 0.0024 (10) 0.0016 (9) 0.0005 (10)
C5 0.0152 (11) 0.0191 (13) 0.0190 (12) 0.0004 (10) −0.0012 (9) −0.0044 (10)
C6 0.0153 (11) 0.0147 (13) 0.0243 (13) −0.0029 (10) 0.0057 (10) −0.0010 (11)

Geometric parameters (Å, º) 

I1—C11 2.189 (3) C3—C31 1.493 (3)
I1—I3i 3.8662 (2) C31—I3 2.187 (2)
C11—C1 1.488 (4) C31—H31A 0.9900
C11—H11A 0.9900 C31—H31B 0.9900
C11—H11B 0.9900 C4—C5 1.390 (4)
C1—C6 1.394 (4) C4—H4 0.9500
C1—C2 1.399 (3) C5—C6 1.390 (4)
C2—C3 1.394 (3) C5—H5 0.9500
C2—H2 0.9500 C6—H6 0.9500
C3—C4 1.402 (3)
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C11—I1—I3i 117.47 (7) C3—C31—I3 110.27 (16)
C1—C11—I1 111.45 (17) C3—C31—H31A 109.6
C1—C11—H11A 109.3 I3—C31—H31A 109.6
I1—C11—H11A 109.3 C3—C31—H31B 109.6
C1—C11—H11B 109.3 I3—C31—H31B 109.6
I1—C11—H11B 109.3 H31A—C31—H31B 108.1
H11A—C11—H11B 108.0 C5—C4—C3 119.7 (2)
C6—C1—C2 119.2 (2) C5—C4—H4 120.1
C6—C1—C11 120.9 (2) C3—C4—H4 120.1
C2—C1—C11 119.9 (2) C6—C5—C4 120.5 (2)
C3—C2—C1 120.7 (2) C6—C5—H5 119.7
C3—C2—H2 119.6 C4—C5—H5 119.7
C1—C2—H2 119.6 C5—C6—C1 120.3 (2)
C2—C3—C4 119.5 (2) C5—C6—H6 119.9
C2—C3—C31 120.3 (2) C1—C6—H6 119.9
C4—C3—C31 120.2 (2)

I1—C11—C1—C6 −83.6 (3) C4—C3—C31—I3 −83.7 (3)
I1—C11—C1—C2 97.9 (2) C2—C3—C4—C5 −0.3 (4)
C6—C1—C2—C3 −0.1 (4) C31—C3—C4—C5 179.7 (2)
C11—C1—C2—C3 178.4 (2) C3—C4—C5—C6 0.4 (4)
C1—C2—C3—C4 0.2 (4) C4—C5—C6—C1 −0.3 (4)
C1—C2—C3—C31 −179.8 (2) C2—C1—C6—C5 0.2 (4)
C2—C3—C31—I3 96.4 (2) C11—C1—C6—C5 −178.4 (2)

Symmetry code: (i) x−1/2, −y+1/2, z+1/2.

Hydrogen-bond geometry (Å, º) 

Cg is the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A

C11—H11B···I1ii 0.99 3.22 4.060 (3) 144
C5—H5···I1iii 0.95 3.25 4.078 (3) 147
C31—H31A···I3iv 0.99 3.27 4.224 (3) 162
C31—H31A···Cgv 0.99 2.84 3.453 (3) 121

Symmetry codes: (ii) x, y−1, z; (iii) −x+1/2, y−1/2, −z+1/2; (iv) −x+3/2, y+1/2, −z+1/2; (v) x, y+1, z.


