CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 3 November 2015
Accepted 9 November 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; bis(iodomethyl)benzene derivatives; $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonds; $\mathrm{C}-\mathrm{H} \cdots \pi$ (ring) contacts; $\pi-\pi$ contacts; I...I halogen bonds

CCDC references: 1436014; 1436013
Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structures of two bis(iodomethyl)benzene derivatives: similarities and differences in the crystal packing

C. John McAdam,* Lyall R. Hanton, Stephen C. Moratti and Jim Simpson

Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand. *Correspondence e-mail: mcadamj@chemistry.otago.ac.nz

The isomeric derivatives 1,2-bis(iodomethyl)benzene, (I), and 1,3-bis(iodomethyl)benzene (II), both $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{I}_{2}$, were prepared by metathesis from their dibromo analogues. The ortho-derivative, (I), lies about a crystallographic twofold axis that bisects the $\mathrm{C}-\mathrm{C}$ bond between the two iodomethyl substituents. The packing in (I) relies solely on $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonds supported by weak parallel slipped $\pi-\pi$ stacking interactions [inter-centroid distance $=4.0569(11) \AA$, inter-planar distance $=3.3789(8) \AA$ and slippage $=$ $2.245 \AA$ A. While $\mathrm{C}-\mathrm{H} \cdots$. I hydrogen bonds are also found in the packing of (II), type II, I \cdots I halogen bonds $[\mathrm{I} \cdots \mathrm{I}=3.8662(2) \AA]$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ contacts feature prominently in stabilizing the three-dimensional structure.

1. Chemical context

The isomeric xylene derivatives reported here, 1,2-bis(iodomethyl)benzene, (I), and 1,3-bis(iodomethyl)benzene (II), are useful synthons for the preparation of a range of organic compounds. (I) is used particularly in the synthesis of polycyclic aromatic systems (see for example: Takahashi et al. 2006; Abreu et al., 2010; Wang et al., 2012). Similarly (II) has been used in polymer formation (Pandya \& Gibson, 1991), in the synthesis of metacyclophanes (Ramming \& Gleiter, 1997) and to provide aromatic spacers in organic synthesis (Kida et al., 2005). Our interest in such compounds is as components of ionene polymers. The compounds were readily prepared by metathesis from the bis(bromomethyl)benzene derivatives.

(I)

(II)

2. Structural commentary

The molecular structures of 1,2-bis(iodomethyl)benzene, (I), and 1,3-bis(iodomethyl)benzene, (II), are shown in Figs. 1 and 2 and are sufficiently similar to be discussed together. Each comprises a benzene ring with two iodomethyl substituents in the 1,2- and 1,3-positions for (I) and (II) respectively. The

Figure 1
The molecular structure of compound (I), with displacement ellipsoids drawn at the 50% probability level. The unlabelled atoms are related to labelled atoms by the symmetry operation $\left(-x+1, y,-z+\frac{3}{2}\right)$.

Figure 2
The molecular structure of compound (II), with displacement ellipsoids drawn at the 50% probability level.
molecule of (I) lies about a twofold axis that bisects the $\mathrm{C}-\mathrm{C}$ bond between the two iodomethyl substituents. For each molecule the $\mathrm{C}-\mathrm{I}$ bonds of the substituents point away from opposite faces of the benzene rings with the $\mathrm{C}-\mathrm{C}-\mathrm{I}$ planes almost orthogonal to the ring planes; dihedral angles $=$ $87.99(14)^{\circ}$ for (I) and 82.23 (14) and 83.61 (15) ${ }^{\circ}$ for (II). The $\mathrm{C} 1-\mathrm{C} 11$ and $\mathrm{C} 11-\mathrm{I} 1$ bond lengths in (I) and $\mathrm{C} 1-\mathrm{C} 11, \mathrm{C} 11-$ I1, C3-C31 and C31-I3 in (II) are reasonably self-consistent and also compare well with those found in the isomeric 1,4bis(iodomethyl)benzene (McAdam et al. 2009).

Table 1
Hydrogen-bond geometry ($\left(\AA^{\circ}{ }^{\circ}\right.$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{I1}^{\mathrm{i}}$	0.95	3.38	$4.046(2)$	129
$\mathrm{C} 11-\mathrm{H} 112 \cdots \mathrm{I} 1^{\mathrm{ii}}$	0.99	3.33	$4.179(2)$	145
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{I1}^{\mathrm{ii}}$	0.95	3.36	$4.257(2)$	158

Symmetry codes: (i) $x,-y+1, z-\frac{1}{2}$; (ii) $-x+\frac{1}{2},-y+\frac{1}{2},-z+1$.

3. Supramolecular features

3.1. Crystal packing for (I)

In the crystal of (I), weak parallel slipped $\pi-\pi$ stacking interactions [inter-centroid distance $=4.0569(11) \AA$, interplanar distance $=3.3789$ (8) \AA, slippage $=2.245 \AA$], between the benzene rings of inversion-related molecules are supported by $\mathrm{C} 3-\mathrm{H} 3 \cdots$ I1 hydrogen bonds, Table 1, to link molecules in a head-to tail-fashion, stacking them along c, Fig. 3. In addition, the iodine atoms act as bifurcated acceptors, forming weak $\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{I} 1$ and $\mathrm{C} 11-\mathrm{H} 112 \cdots \mathrm{I} 1$ hydrogen bonds generating $R_{2}^{1}(6)$ ring motifs (Bernstein et al., 1995). These contacts link the molecules into zigzag chains along [101], Fig. 4. These contacts combine to link stacked columns of molecules through weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}$ hydrogen

Figure 3
$\pi-\pi$ stacking interactions (green dotted lines) supported by $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonds for (I). Hydrogen bonds in this and subsequent figures are drawn as blue dashed lines.

Figure 4
Chains of molecules of (I) in [101].

Figure 5
Overall packing for (I) viewed along the c-axis direction.
bonds and generate a three dimensional network structure, Fig. 5.

3.2. Crystal packing for (II)

In the crystal of (II), $\mathrm{C} 11-\mathrm{H} 11 B \cdots \mathrm{I} 1$ hydrogen bonds, Table 2, form a column supported by a series of C31$\mathrm{H} 31 B \cdots C g 1$ contacts. $\mathrm{C} 31-\mathrm{H} 31 A \cdots \mathrm{I} 3$ hydrogen bonds link these in an obverse fashion, forming double chains along b,

Figure 6
Double chains of molecules of (II) formed by a series of C31$\mathrm{H} 31 B \cdots C g 1$ contacts (green dotted lines) linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonds.

Table 2
Hydrogen-bond geometry ($\AA,^{\circ}$) for (II).
$C g$ is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11-\mathrm{H} 11 B \cdots \mathrm{I} 1^{\mathrm{i}}$	0.99	3.22	$4.060(3)$	144
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{I} 1^{\mathrm{ii}}$	0.95	3.25	$4.078(3)$	147
$\mathrm{C} 31-\mathrm{H} 31 A \cdots 3^{\text {iii }}$	0.99	3.27	$4.224(3)$	162
$\mathrm{C} 31-\mathrm{H} 31 A \cdots \mathrm{Cg}^{\text {iv }}$	0.99	2.84	$3.453(3)$	121

Symmetry codes: (i) $x, y-1, z$; (ii) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$; (iii) $-x+\frac{3}{2}, y+\frac{1}{2},-z+\frac{1}{2}$; (iv)
$x, y+1, z$.

Fig. 6. C5-H5...I1 hydrogen bonds, Fig. 7, link the double chains into sheets in the $a b$ plane. An extensive series of I1 $\cdots \mathrm{I} 3$ halogen bonds Fig. 8, I1 $\cdots \mathrm{I} 3^{\mathrm{vvi}}=3.8662(2) \AA$;

Figure 7
Sheets of molecules of (II) in the $a b$ plane formed by $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}$. hydrogen bonds.

Figure 8
Sheets of molecules of (II) in the (101) plane formed by I \cdots I halogen bonds, blue dashed lines, supported by $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonds.
symmetry codes: $(\mathrm{v})=-\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z ;(\mathrm{vi})=\frac{1}{2}+x, \frac{1}{2}-y$, $-\frac{1}{2}+z$ (Desiraju et al., 2013; Metrangolo et al., 2008), extend the structure in the third dimension, Fig. 9. The angles C11$\mathrm{I} 1-\mathrm{I} 3=117^{\circ}$ and $\mathrm{C} 31-\mathrm{I} 3-\mathrm{I} 1=165^{\circ}$ characterize this halogen bond as type II (Pedireddi et al., 1994).

4. Database survey

A search of the Cambridge Structural Database (Version 5.36 with three updates; Groom \& Allen, 2014) for molecules incorporating a $\mathrm{C}_{6} \mathrm{CH}_{2} \mathrm{I}$ fragment surprisingly generated only five hits for iodomethylbenzene derivatives. One of these is the isomeric 1,4-bis(iodomethyl)benzene reported by us previously (McAdam et al., 2009), while two others are the organic compounds 2-(iodomethyl)-1,3,5-trimethylbenzene (Bats, 2014) and 3^{\prime}-iodo- 5^{\prime}-(iodomethyl)biphenyl-4-carbonitrile (He et al., 2013). The other two entries are metal complexes (Martínez-García et al., 2010; Rivada-Wheelaghan et al., 2012). In one of these, the iodine atom of the iodomethyl unit was found to act as a ligand to a platinum(II) nucleus (Rivada-Wheelaghan et al., 2012). The structures of both the chloro- and bromo-analogues of 1,2-bis(iodomethyl)benzene (Basaran et al., 1992; Jones \& Kus, 2007) and 1,3-bis(iodomethyl)benzene (Sanders et al., 2013; Li et al., 2006; Jones \& Kus, 2007) have also been reported. Interestingly, 1,3-bis(bromomethyl)benzene is isostructural with (II) and the packing features for the two compounds are identical, apart from somewhat increased distances for the iodo compound.

Figure 9
Overall packing for (II) viewed along the b-axis direction.

For example $\mathrm{I} 1 \cdots \mathrm{I} 3=3.8662$ (2) \AA for (II) but the equivalent $\mathrm{Br} \cdots \mathrm{Br}$ distance is 3.6742 (3) \AA for the meta-dibromo analogue (Jones \& Kus, 2007). Similar isostructural behaviour is observed for para-bis(iodomethyl)benzene (McAdam et al., 2009) and its dibromo analogue (Jones \& Kus, 2007). However, in contrast, despite (I) and the ortho-dibromo analogue both displaying twofold symmetry, compound (I) crystallizes in the monoclinic space group $C 2 / c$ while that for

Table 3
Experimental details.

	(I)	(II)
Crystal data		
Chemical formula	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{I}_{2}$	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{I}_{2}$
$M_{\text {r }}$	357.94	357.94
Crystal system, space group	Monoclinic, C2/c	Monoclinic, $P 2_{1} / n$
Temperature (K)	90	90
$a, b, c(\AA)$	14.5485 (5), 8.0461 (3), 8.0582 (3)	13.5323 (3), 4.5464 (1), 15.6269 (4)
$\beta\left({ }^{\circ}\right.$)	101.637 (2)	95.203 (1)
$V\left(\AA^{3}\right)$	923.89 (6)	957.46 (4)
Z	4	4
Radiation type	Mo $K \alpha$	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	6.74	6.50
Crystal size (mm)	$0.31 \times 0.17 \times 0.15$	$0.45 \times 0.06 \times 0.05$
Data collection		
Diffractometer	Bruker APEXII CCD area detector	Bruker APEXII CCD area detector
Absorption correction	Multi-scan (SADABS; Bruker, 2013)	Multi-scan (SADABS; Bruker, 2013)
$T_{\text {min }}, T_{\text {max }}$	0.534, 1.000	0.569, 1.000
No. of measured, independent and observed [$I>2 \sigma(I)$] reflections	8422, 1667, 1552	16804, 3435, 2826
$R_{\text {int }}$	0.030	0.033
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$	0.775	0.775
Refinement		
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.018, 0.044, 1.15	0.024, 0.048, 1.06
No. of reflections	1667	3435
No. of parameters	46	91
H -atom treatment	H -atom parameters constrained	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	$0.52,-1.23$	$1.24,-0.77$

[^0]the dibromo counterpart is found to be orthorhombic, Fdd2 (Jones \& Kus, 2007).

5. Synthesis and crystallization

Preparation of the title compounds was based on literature methods (Moore \& Stupp, 1986; Kida et al., 2005). The appropriate bis(bromomethyl)benzene $(1.32 \mathrm{~g}, 5 \mathrm{mmol})$ was refluxed for 7 h with sodium iodide ($2.25 \mathrm{~g}, 15 \mathrm{mmol}$) in acetone $(25 \mathrm{ml})$. The solution was allowed to cool overnight, the crystals that developed were rinsed gently with water to remove sodium bromide and air dried. The product was recrystallized a second time from acetone to give X-ray quality crystals. Confirmation of the metathesised (iodo) product was by microanalysis and mass spectroscopy. ${ }^{13} \mathrm{C}$ NMR spectra of the diiodo compounds are distinct from those of their dibromo precursors.

Compound (I): Analysis calculated for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{I}_{2}$: C, 26.84; H, 2.25%. Found: C, $26.86 ; \mathrm{H}, 2.14 \% .{ }^{13} \mathrm{C}$ NMR (δ p.p.m.): 137.4 , 130.8, 129.0, 1.8.

Compound (II): Analysis calculated for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{I}_{2}$: C, $26.84 ; \mathrm{H}$, 2.25%. Found: C, 26.63 ; H, $2.19 \% .{ }^{13} \mathrm{C}$ NMR (δ p.p.m.): 140.0 , 129.4, 129.0, 128.4, 4.9.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were refined using a riding model with $d(\mathrm{C}-\mathrm{H})=0.95 \AA, U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic and $0.99 \AA, U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C})$ for $\mathrm{CH}_{2} \mathrm{H}$ atoms. For (I), a low-angle reflection with $F_{\mathrm{o}} \ll F_{\mathrm{c}}$, that may have been affected by the beam-stop, was omitted from the final refinement cycles.

Acknowledgements

We thank the NZ Ministry of Business, Innovation and Employment Science Investment Fund (grant No. UOOX1206), for support of this work and the University of Otago for the purchase of the diffractometer. JS thanks the Department of Chemistry, University of Otago, for support of his work.

References

[^1]Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.

Basaran, R., Dou, S.-Q. \& Weiss, A. (1992). Ber. Bunsenges. Phys. Chem. 96, 1688-1698.
Bats, J. W. (2014). Private Communication (deposition number 1000209). CCDC Union Road, Cambridge, England.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Desiraju, G. R., Ho, P. S., Kloo, L., Legon, A. C., Marquardt, R., Metrangolo, P., Politzer, P., Resnati, G. \& Rissanen, K. (2013). Pure Appl. Chem. 85, 1711-1713.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Groom, C. R. \& Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662671.

He, Y., Zhang, X.-Y., Cui, L.-Y. \& Fan, X.-S. (2013). Chem. Asian J. 8, 717-722.
Hunter, K. A. \& Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.
Jones, P. G. \& Kus, P. (2007). Z. Naturforsch. Teil B, 62, 725-731.
Kida, T., Kikuzawa, A., Higashimoto, H., Nakatsuji, Y. \& Akashi, M. (2005). Tetrahedron, 61, 5763-5768.

Li, Q.-X., Cai, L., Wang, X.-F. \& Shen, Y.-J. (2006). Acta Cryst. E62, o5726-o5727.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
Martínez-García, H., Morales, D., Pérez, J., Puerto, M. \& Miguel, D. (2010). Inorg. Chem. 49, 6974-6985.

McAdam, C. J., Hanton, L. R., Moratti, S. C. \& Simpson, J. (2009). Acta Cryst. E65, o1573-o1574.
Metrangolo, P., Resnati, G., Pilati, T. \& Biella, S. (2008). In Halogen Bonding: Fundamentals and Applications, edited by P. Metrangolo, \& G. Resnati. Berlin: Springer-Verlag.
Moore, J. S. \& Stupp, S. I. (1986). Macromolecules, 19, 1815-1824.
Pandya, A. \& Gibson, H. W. (1991). Polym. Bull. 25, 17-24.
Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. \& Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 23532360.

Ramming, M. \& Gleiter, R. (1997). J. Org. Chem. 62, 5821-5829.
Rivada-Wheelaghan, O., Ortuño, M. A., Díez, J., García-Garrido, S. E., Maya, C., Lledós, A. \& Conejero, S. (2012). J. Am. Chem. Soc. 134, 15261-15264.
Sanders, M. B., Leon, D., Ndichie, E. I. \& Chan, B. C. (2013). Acta Cryst. E69, o1150.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Takahashi, T., Li, S., Huang, W., Kong, F., Nakajima, K., Shen, B., Ohe, T. \& Kanno, K. (2006). J. Org. Chem. 71, 7967-7977.
Wang, J.-G., Wang, M., Xiang, J.-C., Zhu, Y.-P., Xue, W.-J. \& Wu, A.-X. (2012). Org. Lett. 14, 6060-6063.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2015). E71, 1505-1509 [https://doi.org/10.1107/S2056989015021295]

Crystal structures of two bis(iodomethyl)benzene derivatives: similarities and differences in the crystal packing

C. John McAdam, Lyall R. Hanton, Stephen C. Moratti and Jim Simpson

Computing details

For both compounds, data collection: APEX2 (Bruker, 2013); cell refinement: APEX2 and SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b) and TITAN2000 (Hunter \& Simpson, 1999); molecular graphics:
Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b), enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).
(I) 1,2-Bis(iodomethyl)benzene

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{I}_{2}$
$M_{r}=357.94$
Monoclinic, $C 2 / c$
$a=14.5485$ (5) \AA
$b=8.0461$ (3) A
$c=8.0582(3) \AA$
$\beta=101.637$ (2) ${ }^{\circ}$
$V=923.89(6) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
$T_{\min }=0.534, T_{\max }=1.000$
8422 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.018$
$w R\left(F^{2}\right)=0.044$
$S=1.15$
1667 reflections
46 parameters
0 restraints
$F(000)=648$
$D_{\mathrm{x}}=2.573 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5091 reflections
$\theta=2.6-32.9^{\circ}$
$\mu=6.74 \mathrm{~mm}^{-1}$
$T=90 \mathrm{~K}$
Block, colourless
$0.31 \times 0.17 \times 0.15 \mathrm{~mm}$

1667 independent reflections
1552 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=33.4^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-21 \rightarrow 21$
$k=-11 \rightarrow 12$
$l=-12 \rightarrow 10$

```
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
\(w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0175 P)^{2}+1.2212 P\right]\)
where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}=0.002\)
\(\Delta \rho_{\text {max }}=0.52\) e \(\AA^{-3}\)
\(\Delta \rho_{\text {min }}=-1.23\) e \(\AA^{-3}\)
```


Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. One low angle reflection with $F_{o} \ll \mathrm{Fc}$ was omitted from the final refinement cycles.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
I1	$0.31503(2)$	$0.11885(2)$	$0.75250(2)$	$0.01529(5)$
C11	$0.41526(13)$	$0.2215(2)$	$0.6102(3)$	$0.0142(3)$
H111	0.4651	0.1386	0.6070	0.017^{*}
H112	0.3826	0.2433	0.4921	0.017^{*}
C1	$0.45886(13)$	$0.3782(2)$	$0.6864(2)$	$0.0111(3)$
C2	$0.41839(13)$	$0.5301(2)$	$0.6268(3)$	$0.0136(3)$
H2	0.3623	0.5307	0.5427	0.016^{*}
C3	$0.45882(14)$	$0.6802(2)$	$0.6886(3)$	$0.0156(4)$
H3	0.4304	0.7823	0.6470	0.019^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	$0.01370(7)$	$0.01474(7)$	$0.01747(8)$	$-0.00335(4)$	$0.00325(5)$	$0.00078(4)$
C11	$0.0139(8)$	$0.0163(8)$	$0.0132(9)$	$-0.0016(6)$	$0.0044(7)$	$-0.0027(7)$
C1	$0.0115(8)$	$0.0123(8)$	$0.0102(8)$	$-0.0008(5)$	$0.0039(6)$	$-0.0001(6)$
C2	$0.0131(8)$	$0.0158(8)$	$0.0122(9)$	$0.0026(6)$	$0.0035(7)$	$0.0011(7)$
C3	$0.0212(9)$	$0.0122(8)$	$0.0153(9)$	$0.0026(7)$	$0.0085(7)$	$0.0031(7)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{I} 1-\mathrm{C} 11$	$2.1902(19)$	$\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$1.410(4)$
$\mathrm{C} 11-\mathrm{C} 1$	$1.487(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.391(3)$
$\mathrm{C} 11-\mathrm{H} 111$	0.9900	$\mathrm{C} 2-\mathrm{H} 2$	0.9500
$\mathrm{C} 11-\mathrm{H} 112$	0.9900	$\mathrm{C} 3-\mathrm{C} 3^{\mathrm{i}}$	$1.392(4)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.399(3)$	$\mathrm{C} 3-\mathrm{H} 3$	0.9500
		$121.93(11)$	
$\mathrm{C} 1-\mathrm{C} 11-\mathrm{I} 1$	$112.15(13)$	$\mathrm{C} 1^{\mathrm{i}}-\mathrm{C} 1-\mathrm{C} 11$	$121.16(18)$
$\mathrm{C} 1-\mathrm{C} 11-\mathrm{H} 111$	109.2	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	119.4
$\mathrm{I} 1-\mathrm{C} 11-\mathrm{H} 111$	109.2	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.4
$\mathrm{C} 1-\mathrm{C} 11-\mathrm{H} 112$	109.2	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	$119.72(12)$
$\mathrm{I} 1-\mathrm{C} 11-\mathrm{H} 112$	109.2	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 3-\mathrm{H} 3$	120.1
$\mathrm{H} 111-\mathrm{C} 11-\mathrm{H} 112$	107.9	$\mathrm{C} 3-\mathrm{C} 3-\mathrm{H} 3$	120.1
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$119.10(11)$	$\mathrm{C} 11-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 11$	$118.94(18)$		$-177.12(17)$

$\mathrm{I} 1-\mathrm{C} 11-\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$88.3(2)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 3^{\mathrm{i}}$	$0.2(3)$
$\mathrm{C} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$1.2(3)$		

Symmetry code: (i) $-x+1, y,-z+3 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{II} 1^{\mathrm{ii}}$	0.95	3.38	$4.046(2)$	129
$\mathrm{C} 11 — \mathrm{H} 112 \cdots \mathrm{I} 1^{\mathrm{iii}}$	0.99	3.33	$4.179(2)$	145
$\mathrm{C} 2 — \mathrm{H} 2 \cdots \mathrm{I} 1^{\mathrm{ii}}$	0.95	3.36	$4.257(2)$	158

Symmetry codes: (ii) $x,-y+1, z-1 / 2$; (iii) $-x+1 / 2,-y+1 / 2,-z+1$.

(II) 1,3-Bis(iodomethyl)benzene

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{I}_{2}$
$M_{r}=357.94$
Monoclinic, $P 2{ }_{1} / n$
$a=13.5323$ (3) \AA
$b=4.5464$ (1) \AA
$c=15.6269(4) \AA$
$\beta=95.203(1)^{\circ}$
$V=957.46(4) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
$T_{\min }=0.569, T_{\text {max }}=1.000$
16804 measured reflections
$F(000)=648$
$D_{\mathrm{x}}=2.483 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
$\theta=2.6-33.0^{\circ}$
$\mu=6.50 \mathrm{~mm}^{-1}$
$T=90 \mathrm{~K}$
Needle, colourless
$0.45 \times 0.06 \times 0.05 \mathrm{~mm}$

3435 independent reflections
2826 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=33.4^{\circ}, \theta_{\text {min }}=3.0^{\circ}$
$h=-20 \rightarrow 20$
$k=-6 \rightarrow 5$
$l=-23 \rightarrow 24$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0109 P)^{2}+1.4343 P\right]$
where $P=\left(F_{0}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\max }=1.24 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.77 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
I1	$0.35561(2)$	$0.36401(4)$	$0.46514(2)$	$0.01445(4)$
C11	$0.4498(2)$	$0.1469(6)$	$0.37746(17)$	$0.0197(5)$
H11A	0.5193	0.1461	0.4034	0.024^{*}
H11B	0.4282	-0.0599	0.3690	0.024^{*}
C1	$0.44471(19)$	$0.2984(6)$	$0.29275(16)$	$0.0152(5)$
C2	$0.51858(18)$	$0.4993(5)$	$0.27547(16)$	$0.0138(5)$
H2	0.5707	0.5419	0.3185	0.017^{*}
C3	$0.51650(18)$	$0.6379(5)$	$0.19574(16)$	$0.0128(4)$
C31	$0.59593(19)$	$0.8514(6)$	$0.17788(17)$	$0.0175(5)$
H31A	0.6261	0.9352	0.2326	0.021^{*}
H31B	0.5667	1.0148	0.1421	0.021^{*}
I3	$0.71036(2)$	$0.63230(4)$	$0.11079(2)$	$0.01692(5)$
C4	$0.43920(19)$	$0.5755(6)$	$0.13244(16)$	$0.0171(5)$
H4	0.4369	0.6696	0.0780	0.021^{*}
C5	$0.36591(19)$	$0.3753(6)$	$0.14961(17)$	$0.0179(5)$
H5	0.3138	0.3322	0.1066	0.022^{*}
C6	$0.36832(19)$	$0.2379(6)$	$0.22919(18)$	$0.0178(5)$
H6	0.3177	0.1021	0.2404	0.021^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	$0.01484(7)$	$0.01475(9)$	$0.01451(8)$	$0.00033(6)$	$0.00534(5)$	$0.00083(6)$
C11	$0.0223(12)$	$0.0167(13)$	$0.0216(12)$	$0.0064(11)$	$0.0091(10)$	$0.0020(11)$
C1	$0.0174(11)$	$0.0125(12)$	$0.0167(11)$	$0.0032(10)$	$0.0065(9)$	$0.0003(9)$
C2	$0.0149(11)$	$0.0112(12)$	$0.0155(11)$	$0.0011(9)$	$0.0035(9)$	$-0.0025(9)$
C3	$0.0139(10)$	$0.0097(11)$	$0.0153(10)$	$0.0010(9)$	$0.0044(8)$	$-0.0013(9)$
C31	$0.0191(12)$	$0.0131(13)$	$0.0215(12)$	$-0.0020(10)$	$0.0083(10)$	$-0.0037(10)$
I3	$0.01582(8)$	$0.01765(9)$	$0.01833(8)$	$-0.00134(6)$	$0.00728(6)$	$-0.00027(6)$
C4	$0.0184(11)$	$0.0182(13)$	$0.0148(11)$	$0.0024(10)$	$0.0016(9)$	$0.0005(10)$
C5	$0.0152(11)$	$0.0191(13)$	$0.0190(12)$	$0.0004(10)$	$-0.0012(9)$	$-0.0044(10)$
C6	$0.0153(11)$	$0.0147(13)$	$0.0243(13)$	$-0.0029(10)$	$0.0057(10)$	$-0.0010(11)$

Geometric parameters $\left(\stackrel{A}{A},{ }^{\circ}\right)$

$\mathrm{I} 1-\mathrm{C} 11$	$2.189(3)$	$\mathrm{C} 3-\mathrm{C} 31$	$1.493(3)$
$\mathrm{I} 1-\mathrm{I} 3^{\mathrm{i}}$	$3.8662(2)$	$\mathrm{C} 31-\mathrm{I} 3$	$2.187(2)$
$\mathrm{C} 11-\mathrm{C} 1$	$1.488(4)$	$\mathrm{C} 31-\mathrm{H} 31 \mathrm{~A}$	0.9900
$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	0.9900	$\mathrm{C} 31-\mathrm{H} 31 \mathrm{~B}$	0.9900
$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	0.9900	$\mathrm{C} 4-\mathrm{C} 5$	$1.390(4)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.394(4)$	$\mathrm{C} 4-\mathrm{H} 4$	0.9500
$\mathrm{C} 1-\mathrm{C} 2$	$1.399(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.390(4)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.394(3)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9500
$\mathrm{C} 2-\mathrm{H} 2$	0.9500	$\mathrm{C} 6-\mathrm{H} 6$	0.9500
$\mathrm{C} 3-\mathrm{C} 4$	$1.402(3)$		

C11-I1-I3 ${ }^{\text {i }}$	117.47 (7)	C3-C31-I3	110.27 (16)
C1-C11-I1	111.45 (17)	C3-C31-H31A	109.6
$\mathrm{C} 1-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	109.3	I3-C31-H31A	109.6
$\mathrm{I} 1-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	109.3	C3-C31-H31B	109.6
C1-C11-H11B	109.3	I3-C31-H31B	109.6
I1-C11-H11B	109.3	H31A-C31-H31B	108.1
H11A-C11-H11B	108.0	C5-C4-C3	119.7 (2)
C6-C1-C2	119.2 (2)	C5-C4-H4	120.1
C6-C1-C11	120.9 (2)	C3-C4-H4	120.1
C2-C1-C11	119.9 (2)	C6-C5-C4	120.5 (2)
C3-C2-C1	120.7 (2)	C6-C5-H5	119.7
C3-C2-H2	119.6	C4-C5-H5	119.7
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.6	C5-C6-C1	120.3 (2)
C2-C3-C4	119.5 (2)	C5-C6-H6	119.9
C2-C3-C31	120.3 (2)	C1-C6-H6	119.9
C4-C3-C31	120.2 (2)		
I1- $\mathrm{C} 11-\mathrm{C} 1-\mathrm{C} 6$	-83.6 (3)	C4-C3-C31-I3	-83.7 (3)
I1-C11-C1-C2	97.9 (2)	C2-C3-C4-C5	-0.3 (4)
C6- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-0.1 (4)	C31-C3-C4-C5	179.7 (2)
C11-C1-C2-C3	178.4 (2)	C3-C4-C5-C6	0.4 (4)
C1-C2-C3-C4	0.2 (4)	C4-C5-C6-C1	-0.3 (4)
C1-C2-C3-C31	-179.8 (2)	C2- $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	0.2 (4)
C2-C3-C31-I3	96.4 (2)	C11-C1-C6-C5	-178.4 (2)

Symmetry code: (i) $x-1 / 2,-y+1 / 2, z+1 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)
$C g$ is the centroid of the C1-C6 ring.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11 — \mathrm{H} 11 B^{\cdots} \mathrm{I} 1^{\mathrm{ii}}$	0.99	3.22	$4.060(3)$	144
C5—H5 $\cdots \mathrm{I} 1^{\mathrm{iii}}$	0.95	3.25	$4.078(3)$	147
$\mathrm{C} 31 — \mathrm{H} 31 A \cdots \mathrm{I}^{\mathrm{iv}}$	0.99	3.27	$4.224(3)$	162
$\mathrm{C} 31 — \mathrm{H} 31 A \cdots C g^{v}$	0.99	2.84	$3.453(3)$	121

Symmetry codes: (ii) $x, y-1, z$; (iii) $-x+1 / 2, y-1 / 2,-z+1 / 2$; (iv) $-x+3 / 2, y+1 / 2,-z+1 / 2$; (v) $x, y+1, z$.

[^0]: Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), TITAN2000 (Hunter \& Simpson, 1999), Mercury (Macrae et al., 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009), WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

[^1]: Abreu, A. R., Pereira, M. M. \& Bayón, J. C. (2010). Tetrahedron, 66, 743-749.

