CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Crystal structure of (4-hydroxypiperidin-1-yl)(4-methylphenyl)methanone

B. K. Revathi, ${ }^{\text {a }}$ D. Reuben Jonathan, ${ }^{\text {b }}$ K. Kalai Sevi, ${ }^{\text {c }}$
K. Dhanalakshmi ${ }^{\text {d }}$ and G. Usha ${ }^{\mathrm{a} *}$
${ }^{\text {a }}$ PG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, ${ }^{\mathbf{b}}$ Department of Chemistry, Madras Christian College, Chennai-59, India, ${ }^{\text {c }}$ SCRI, Anna Hospital Campus, Chennai-106, Tamilnadu, India, and ${ }^{\text {d }}$ Anna Siddha Medical College, Chennai-106, Tamilnadu, India. *Correspondence e-mail: guqmc@yahoo.com

Received 28 August 2015; accepted 30 September 2015

Edited by G. Smith, Queensland University of Technology, Australia

In the title compound, $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}$, the dihedral angle between the planes of the piperidine and benzene rings is 51.7 (2) ${ }^{\circ}$. The bond-angle sum around the N atom [359.8 (3) ${ }^{\circ}$] indicates $s p^{2}$ hybridization of the atom. In the crystal, $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules, forming chains along [001].

Keywords: crystal structure; piperdine derivative; hydrogen bomding.

CCDC reference: 1428660

1. Related literature

For the biological activity of piperdine derivatives, see: Pissamitski et al. (2007); Katritzky et al. (1995); Dimmock et al. (2001); Watson et al. (2000); Thomas et al. (1998); Sambath et al. (2004). For related structures, see: Revathi et al. (2015); Prathebha et al. (2015). For the synthesis, see: Revathi et al. (2015).

2. Experimental

2.1. Crystal data
$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}$
$V=1216.3(4) \AA^{3}$
$M_{r}=219.28$
Orthorhombic, $\mathrm{Pca2}_{1}$
$Z=4$
$a=23.933$ (5) \AA
$b=6.3317$ (12) \AA
$c=8.0269(14) \AA$
Mo $K \alpha$ radiation
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.24 \times 0.22 \times 0.22 \mathrm{~mm}$

2.2. Data collection

Bruker Kappa APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2004)
$T_{\text {min }}=0.981, T_{\text {max }}=0.985$
10595 measured reflections 3454 independent reflections 1668 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.039$

2.3. Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066$
$w R\left(F^{2}\right)=0.208$
$S=1.04$
3454 reflections
145 parameters

1 restraint
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.28 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.22 \mathrm{e} \AA^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.82	1.97	$2.741(4)$	156

Symmetry code: (i) $x, y, z-1$.
Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97.

Acknowledgements

The authors thank the SAIF, IIT, Madras, for providing the X-ray data collection facility.

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZS2344).

References

Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balzarini, J., De Clercq, E. \& Manavathu, E. K. (2001). J. Med. Chem. 44, 586-593.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Katritzky, A. R. (1995). In Comprehensive Heterocyclic Chemistry, Vol. 5, pp. 20-24. Academic. Press: New York.
Pissarnitski, D. A., Asberom, T., Bara, T. A., Buevich, A. V., Clader, J. W., Greenlee, W. J., Guzik, H. S., Josien, H. B., Li, W., McEwan, M., McKittrick, B. A., Nechuta, T. L., Parker, E. M., Sinning, L., Smith, E. M., Song, L., Vaccaro, H. A., Voigt, J. H., Zhang, L., Zhang, Q. \& Zhao, Z. (2007). Bioorg. Med. Chem. Lett. 17, 57-62.

data reports

Prathebha, K., Reuben Jonathan, D., Revathi, B. K., Sathya, S. \& Usha, G. (2015). Acta Cryst. E71, o39-o40.

Revathi, B. K., Reuben Jonathan, D., Sathya, S., Prathebha, K. \& Usha, G. (2015). Acta Cryst. E71, o359-o360.

Sampath, N., Aravindhan, S., Ponnuswamy, M. N. \& Nethaji, M. (2004). Acta Cryst. E60, o2105-o2106.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Thomas, J. B., Fall, M. J., Cooper, J. B., Rothman, R. B., Mascarella, S. W., Xu, H., Partilla, J. S., Dersch, C. M., McCullough, K. B., Cantrell, B. E., Zimmerman, D. M. \& Carroll, F. I. (1998). J. Med. Chem. 41, 5188-5197.
Watson, P. S., Jiang, B. \& Scott, B. (2000). Org. Lett. 2, 3679-3681.

supporting information

Acta Cryst. (2015). E71, o817-o818 [https://doi.org/10.1107/S2056989015018307]

Crystal structure of (4-hydroxypiperidin-1-yl)(4-methylphenyl)methanone

B. K. Revathi, D. Reuben Jonathan, K. Kalai Sevi, K. Dhanalakshmi and G. Usha

S1. Comment

The piperidine ring is one of the most recognizable structural entities among heterocyclic molecules (Katritzky, 1995). A piperidine series of gamma-secretase inhibitors have been evaluated for treatment of Alzheimer's disease (AD) (Pissamitski et al., 2007). Some piperidines were found to possess high profile biological activities, including cytotoxic and anticancer properties (Dimmock et al., 2001). The piperidine ring is a feature of oral anaesthetics and narcotic analgesics (Watson et al., 2000); Thomas et al., 1998). Piperidine derivatives are used clinically to prevent post-operative vomiting, to speed up gastric emptying before anaesthesia, to facilitate radiological investigations and to correct a variety of disturbances of gastrointestinal functions (Sambath et al., 2004).
The title compound, $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}$, has been synthesized and the structure (Fig. 1) is reported herein. In this compound, The $\mathrm{C}-\mathrm{C}$ distances in the piperidine ring and the benzene ring are in the range 1.497 (6)-1.515 (5) \AA and 1.357 (6)1.386 (5) \AA, respectively and are comparable with literature values. The $\mathrm{C}-\mathrm{N}$ distances in the piperidine ring are 1.455 (5) \AA and 1.462 (5) \AA] and are in good agreement with values in a similar reported structure (Revathi et al., 2015). The C7—O1 distance is 1.238 (5) \AA, indicating double bond character and is comparable with the value reported previously (Prathebha et al., 2015). The dihedral angle between piperidine and benzene rings is $51.7(2)^{\circ}$. The bond angle sum around the N 1 atom are $359.8(3)^{\circ}$ indicating an $s p^{2}$ hybridization of the atoms. The $\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 7-\mathrm{O} 1$ torsion angle $\left[-9.0(6)^{\circ}\right]$ indicates that the keto group is in a syn-periplanar $(-s p)$ orientation with respect to the piperidine ring which adopts a chair conformation, with puckering parameters of $\mathrm{q} 2=0.016(4) \AA, \varphi 2=168.41^{\circ} \mathrm{q} 3=-0.560(4) \AA, \mathrm{QT}=$ 0.561 (4) \AA and $\theta 2=178.38(4)^{\circ}$.

The crystal packing is stabilized by a single intermolecular $\mathrm{O} 2-\mathrm{H} \cdots \mathrm{O} 1^{i}$ hydrogen bond (Table 1), forming onedimensional chains which extend along [001] (Fig. 2). Present also in the structure is a short intramolecular C8-H $\cdots \mathrm{O} 1$ interaction [2.740 (5) \AA].

S2. Experimental

The title compound was synthesized using a published procedure (Revathi et al., 2015). In a 250 ml round-bottomed flask, 120 mL of ethyl methyl ketone was added to 4-hydroxypiperdine (0.02 mol) and stirred at room temperature. After 5 min , triethylamine (0.04 mol) was added and the mixture was stirred for 15 min . 4-Methyl benzoyl chloride (0.04 mol) was then added and the reaction mixture was stirred at room temperature for $c a .2 \mathrm{~h}$. A white precipitate of triethylammonium chloride was formed, which was removed by filtration and the filtrate was evaporated to give the crude product. This was recrystallized twice from ethyl methyl ketone giving colourless block-like crystals of the title compound (yield: 82\%).

S3. Refinement

H atoms were positioned geometrically and treated as riding on their parent atoms and refined with $\mathrm{C}-\mathrm{H}$ distances of $0.93-0.98 \AA$ and an $\mathrm{O}-\mathrm{H}$ distance of $0.82 \AA$, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C}-m e t h y l$ and O$), U_{\text {iso }}(\mathrm{H})=1.2 U \mathrm{eq}(\mathrm{C}, \mathrm{O})$ for other H atoms. One reflection (200) was considered to be affected by the beamstop and was omitted. The value of the absolute structure factor (Flack, 1983), although not of particular relevance but meaningless in this structure, was determined as $0(3)$ for 1610 Friedel pairs.

Figure 1
The molecular structure and atom numbering scheme for the title compound, with displacement ellipsoids drawn at the 30% probability level.

Figure 2
The crystal packing in the unit cell viewed along b. The dashed lines indicate hydrogen bonds.
(4-Hydroxypiperidin-1-yl)(4-methylphenyl)methanone
Crystal data
$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}$
$M_{r}=219.28$
Orthorhombic, $\mathrm{Pca2}_{1}$
Hall symbol: P 2c -2ac
$a=23.933$ (5) \AA
$b=6.3317$ (12) \AA
$c=8.0269(14) \AA$
$V=1216.3(4) \AA^{3}$
$Z=4$
$F(000)=472$
$D_{\mathrm{x}}=1.197 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
$\theta=1.7-29.8^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colourless
$0.24 \times 0.22 \times 0.22 \mathrm{~mm}$

Data collection

Bruker Kappa APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω and φ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
$T_{\min }=0.981, T_{\max }=0.985$

> 10595 measured reflections
> 3454 independent reflections
> 1668 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.039$
> $\theta_{\max }=29.8^{\circ}, \theta_{\min }=3.1^{\circ}$
> $h=-33 \rightarrow 30$
> $k=-8 \rightarrow 8$
> $l=-10 \rightarrow 11$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066$
$w R\left(F^{2}\right)=0.208$
$S=1.04$
3454 reflections
145 parameters
1 restraint
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O2	$0.42250(13)$	$0.9019(5)$	$0.2011(4)$	$0.0766(9)$
H2A	0.4137	0.8390	0.1158	0.115^{*}
N1	$0.43269(12)$	$0.5768(5)$	$0.6446(4)$	$0.0502(8)$
O1	$0.42609(13)$	$0.6719(6)$	$0.9120(3)$	$0.0885(11)$
C10	$0.44267(16)$	$0.7574(6)$	$0.3187(5)$	$0.0533(9)$
H10	0.4759	0.6870	0.2737	0.064^{*}
C4	$0.35949(13)$	$0.4254(6)$	$0.8163(4)$	$0.0482(8)$
C1	$0.26666(15)$	$0.1641(8)$	$0.8753(5)$	$0.0628(11)$
C12	$0.41754(16)$	$0.4528(6)$	$0.4989(5)$	$0.0545(9)$
H12A	0.3877	0.3558	0.5279	0.065^{*}
H12B	0.4495	0.3701	0.4632	0.065^{*}
C7	$0.40802(15)$	$0.5691(6)$	$0.7925(4)$	$0.0505(9)$
C11	$0.39864(16)$	$0.5930(6)$	$0.3578(4)$	$0.0524(9)$
H11A	0.3640	0.6627	0.3883	0.063^{*}
H11B	0.3916	0.5077	0.2596	0.063^{*}
C6	$0.26126(15)$	$0.3547(9)$	$0.7954(6)$	$0.0758(13)$

H6	0.2261	0.3976	0.7599	0.091^{*}
C5	$0.30623(16)$	$0.4839(7)$	$0.7665(6)$	$0.0669(11)$
H5	0.3009	0.6125	0.7128	0.080^{*}
C2	$0.31909(18)$	$0.1055(7)$	$0.9206(6)$	$0.0742(13)$
H2	0.3245	-0.0261	0.9694	0.089^{*}
C8	$0.47699(16)$	$0.7294(7)$	$0.6096(5)$	$0.0598(10)$
H8A	0.5107	0.6557	0.5758	0.072^{*}
H8B	0.4853	0.8099	0.7094	0.072^{*}
C3	$0.36470(16)$	$0.2363(7)$	$0.8960(6)$	$0.0679(12)$
H3	0.3996	0.1943	0.9346	0.082^{*}
C9	$0.45847(17)$	$0.8752(5)$	$0.4737(5)$	$0.0527(9)$
H9A	0.4884	0.9732	0.4482	0.063^{*}
H9B	0.4266	0.9566	0.5121	0.063^{*}
C13	$0.2170(2)$	$0.0223(10)$	$0.9085(8)$	$0.0951(16)$
H13A	0.1836	0.0885	0.8674	0.143^{*}
H13B	0.2135	-0.0011	1.0262	0.143^{*}
H13C	0.2223	-0.1105	0.8530	0.143^{*}

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
O2	$0.097(2)$	$0.0792(19)$	$0.0541(17)$	$0.0001(17)$	$-0.0073(14)$	$0.0175(16)$
N1	$0.0614(17)$	$0.0478(18)$	$0.0413(15)$	$-0.0129(14)$	$0.0013(12)$	$0.0037(14)$
O1	$0.105(2)$	$0.117(3)$	$0.0441(16)$	$-0.045(2)$	$-0.0064(15)$	$-0.0106(18)$
C10	$0.0621(19)$	$0.056(2)$	$0.0418(18)$	$-0.0096(18)$	$0.0032(15)$	$0.0054(18)$
C4	$0.056(2)$	$0.056(2)$	$0.0323(15)$	$0.0001(16)$	$-0.0009(13)$	$0.0075(17)$
C1	$0.062(2)$	$0.079(3)$	$0.0472(19)$	$-0.016(2)$	$0.0102(17)$	$0.005(2)$
C12	$0.061(2)$	$0.046(2)$	$0.056(2)$	$-0.0113(17)$	$0.0065(16)$	$-0.002(2)$
C7	$0.0619(19)$	$0.050(2)$	$0.0396(18)$	$-0.0035(16)$	$-0.0048(16)$	$0.0088(17)$
C11	$0.061(2)$	$0.055(2)$	$0.0422(17)$	$-0.0058(17)$	$-0.0002(14)$	$-0.0092(18)$
C6	$0.0438(19)$	$0.100(3)$	$0.084(3)$	$0.006(2)$	$0.003(2)$	$0.005(3)$
C5	$0.064(2)$	$0.060(2)$	$0.077(3)$	$0.0036(19)$	$0.003(2)$	$0.021(2)$
C2	$0.075(3)$	$0.064(3)$	$0.083(3)$	$-0.020(2)$	$-0.012(2)$	$0.032(3)$
C8	$0.064(2)$	$0.067(3)$	$0.048(2)$	$-0.0260(19)$	$-0.0126(16)$	$0.010(2)$
C3	$0.059(2)$	$0.061(3)$	$0.084(3)$	$-0.0081(19)$	$-0.019(2)$	$0.028(2)$
C9	$0.076(2)$	$0.0356(18)$	$0.0470(18)$	$-0.0178(18)$	$-0.0010(16)$	$0.0040(18)$
C13	$0.078(3)$	$0.121(4)$	$0.087(3)$	$-0.041(3)$	$0.016(3)$	$-0.019(3)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{O} 2-\mathrm{C} 10$	$1.401(5)$	$\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	0.9700
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A}$	0.8200	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	0.9700
$\mathrm{~N} 1-\mathrm{C} 7$	$1.327(5)$	$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	0.9700
$\mathrm{~N} 1-\mathrm{C} 12$	$1.454(5)$	$\mathrm{C} 6-\mathrm{C} 5$	$1.372(6)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.462(4)$	$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{O} 1-\mathrm{C} 7$	$1.237(5)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{C} 10-\mathrm{C} 9$	$1.500(5)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.385(5)$
$\mathrm{C} 10-\mathrm{C} 11$	$1.514(5)$	$\mathrm{C} 2-\mathrm{H} 2$	0.9300

C10-H10	0.9800
C4-C3	1.363 (6)
C4-C5	1.386 (5)
C4-C7	1.487 (5)
C1-C2	1.358 (6)
C1-C6	1.373 (7)
C1-C13	1.514 (6)
C12-C11	1.509 (5)
C12-H12A	0.9700
C10-O2-H2A	109.5
C7-N1-C12	126.1 (3)
C7-N1-C8	121.3 (3)
C12-N1-C8	112.6 (3)
$\mathrm{O} 2-\mathrm{C} 10-\mathrm{C} 9$	108.7 (3)
O2-C10-C11	110.4 (3)
C9-C10-C11	110.2 (3)
O2-C10-H10	109.1
C9-C10-H10	109.1
C11-C10-H10	109.1
C3-C4-C5	117.0 (3)
C3-C4-C7	121.7 (3)
C5-C4-C7	121.2 (3)
C2-C1-C6	116.9 (3)
C2-C1-C13	121.1 (4)
C6-C1-C13	122.0 (4)
N1-C12-C11	111.1 (3)
N1-C12-H12A	109.4
C11-C12-H12A	109.4
N1-C12-H12B	109.4
C11-C12-H12B	109.4
$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$	108.0
O1-C7-N1	121.2 (3)
O1-C7-C4	119.7 (3)
N1-C7-C4	119.0 (3)
C12-C11-C10	110.6 (3)
C12-C11-H11A	109.5
C10-C11-H11A	109.5
C12-C11-H11B	109.5
C10-C11-H11B	109.5
H11A-C11-H11B	108.1
C7-N1-C12-C11	117.5 (4)
C8-N1-C12-C11	-58.2 (4)
C12-N1-C7-O1	175.6 (4)
C8-N1-C7-O1	-9.0 (6)
C12-N1-C7-C4	-1.3 (6)
C8-N1-C7-C4	174.1 (3)

$\mathrm{C} 8-\mathrm{C} 9$	$1.496(5)$
$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9700
$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9700
$\mathrm{C} 3-\mathrm{H} 3$	0.9300
C9—H9A	0.9700
C9—H9B	0.9700
C13-H13A	0.9600
C13-H13B	0.9600
C13-H13C	0.9600

122.0 (4)
119.0
119.0
120.9 (4)
119.6
119.6
121.8 (4)
119.1
119.1
109.4 (3)
109.8
109.8
109.8
109.8
108.2
121.3 (4)
119.3
119.3
111.9 (3)
109.2
109.2
109.2
109.2
107.9
109.5
109.5
109.5
109.5
109.5
109.5
179.5 (5)

C13-C1-C6-C5
0.5 (7)
-0.6(6)
-177.1 (4)
3.5 (7)
$-177.9(5)$
supporting information

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 7-\mathrm{O} 1$	$-74.8(5)$	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	$-117.4(4)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 7-\mathrm{O} 1$	$101.5(5)$	$\mathrm{C} 12-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	$58.6(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 7-\mathrm{N} 1$	$102.2(4)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$2.2(7)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 7-\mathrm{N} 1$	$\mathrm{C} 7-\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$178.7(4)$	
$\mathrm{N} 1-\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 10$	$54.7(4)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-3.8(8)$
$\mathrm{O} 2-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$\mathrm{~N} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-57.0(4)$	
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$\mathrm{O} 2-\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8$	$176.3(3)$	
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-53.1(4)$	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 8$	$55.1(5)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 2 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.82	1.97	$2.741(4)$	156
$\mathrm{C} 8 — \mathrm{H} 8 B \cdots \mathrm{O} 1$	0.97	2.33	$2.740(5)$	105

Symmetry code: (i) $x, y, z-1$.

