data reports

CRYSTALLOGRAPHIC

OPEN access

Crystal structure of N'-[(E)-3,5-dichloro-2-hydroxybenzylidene]-4-nitrobenzohydrazide dimethylformamide monosolvate

Bibitha Joseph,^a N. R. Sajitha,^a M. Sithambaresan,^b* E. B. Seena^c and M. R. Prathapachandra Kurup^a

^aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, ^bDepartment of Chemistry, Faculty of Science, Eastern University, Chenkalady, Sri Lanka, and CDepartment of Chemistry, TMJM Govt. College, Manimalakkunnu, India. *Correspondence e-mail: msithambaresan@gmail.com

Received 29 August 2015; accepted 30 September 2015

Edited by A. V. Yatsenko, Moscow State University, Russia

In the title compound, $C_{14}H_9Cl_2N_3O_4\cdot C_3H_7NO$, the hydrazone molecule adopts an E conformation with respect to azomethine bond, and the dihedral angle between the two aromatic rings [8.96 $(11)^{\circ}$] shows that the rings are almost coplanar. The planar conformation of the molecule is stabilized by the intramolecular $O-H \cdots N$ hydrogen bond involving the OH group and azomethine N atom. The azomethine and keto bond distances [1.269 (2) and 1.210 (2) Å, respectively] are very close to the formal C=N and C=O bond lengths. The dimethylformamide solvent molecule is connected to the hydrazone NH group *via* an $N-H \cdots O$ hydrogen bond. In the crystal, non-classical $C-H\cdots O$ and $C-H\cdots Cl$ hydrogen bonds link the molecules into chains along [322]. A supramolecular three-dimensional architecture is created by weak $C-Cl\cdots\pi$ [4.163 (3) Å, 83.26 (9)°] and $\pi-\pi$ [centroidcentroid distance = 4.0395 (14) Å] interactions.

Keywords: crystal structure; aroyl hydrazone; hydrogen bonding.

CCDC reference: 1428612

1. Related literature

For applications of hydrazones in supramolecular chemistry, see: Su & Aprahamian (2014). For biological applications of hydrazones and derivatives, see: Nair et al. (2014); Prasanna & Kumar (2013); Holló et al. (2014). For the synthesis of related compounds, see: Bessy et al. (2006).

 $\gamma = 98.939 \ (5)^{\circ}$ V = 959.60 (17) Å³

Mo $K\alpha$ radiation

 $0.40 \times 0.11 \times 0.09 \text{ mm}$

7569 measured reflections

4660 independent reflections

3000 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 0.38 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.019$

refinement

 $\Delta \rho_{\text{max}} = 0.23 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$

Z = 2

- 2. Experimental
- 2.1. Crystal data

C14H9Cl2N3O4·C3H7NO $M_{\rm m} = 427.24$ Triclinic, P1 a = 7.8853 (6) Å b = 11.9445 (10) Å c = 11.9521 (15) Å $\alpha = 114.408(6)^{\circ}$ $\beta = 102.895 (7)^{\circ}$

2.2. Data collection

Bruker Kappa APEXII CCD Diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{\min} = 0.834, T_{\max} = 0.929$

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.159$ S = 0.954660 reflections 263 parameters 2 restraints

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1-H1···N1	0.84 (1)	1.82 (2)	2.581 (2)	151 (3)
$N2-H2\cdots O5^{i}$	0.87(1)	1.90(1)	2.757 (2)	169 (3)
C3-H3···Cl1 ⁱⁱ	0.93	2.92	3.836 (2)	169
C7-H7···O5 ⁱ	0.93	2.38	3.145 (3)	139
$C13-H13\cdots O4^{iii}$	0.93	2.42	3.231 (3)	146
Symmetry codes: (i) $-x + 1, -y +$	-2, -z+1; (ii)	-x+3, -y+3	3, -z + 3; (iii)

-x, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: publCIF (Westrip, 2010).

Acknowledgements

BJ and SNR are grateful to the Council for Scientific and Industrial Research, New Delhi, India, for the award of Senior Research Fellowships. MRPK is grateful to the UGC, New Delhi, India, for a UGC–BSR one-time grant to Faculty. EBS thanks the UGC, Bangalore, India, for financial assistance in the form of a minor research project. We thank the Sophisticated Analytical Instruments Facility, Cochin University of S & T, Kochi-22, India, for the diffraction measurements.

Supporting information for this paper is available from the IUCr electronic archives (Reference: YK2106).

References

- Bessy, R. B. N., Kurup, M. R. P. & Suresh, E. (2006). Struct. Chem. 17, 201–208.Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burnett, M. N. & Johnson, C. K. (1996). *ORTEPIII*. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Holló, B., Magyari, J., Živković-Radovanović, V., Vučković, G., Tomić, Z. D., Szilágyi, I. M., Pokol, G. & Mészáros Szécsényi, K. (2014). *Polyhedron*, 80, 142–150.
- Nair, R. S., Kuriakose, M., Somasundaram, V., Shenoi, V., Kurup, M. R. P. & Srinivas, P. (2014). Life Sci. 116, 90–97.
- Prasanna, M. K. & Kumar, K. P. (2013). Int. J. Pharm. Biomed. Sci. 4, 24–29. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Sheldrick, G. M. (2008). Acta Cryst. A04, 112– Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Su, X. & Aprahamian, I. (2014). Chem. Soc. Rev. 43, 1963-1981.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2015). E71, o826–o827 [https://doi.org/10.1107/S2056989015018290]

Crystal structure of *N'*-[(*E*)-3,5-dichloro-2-hydroxybenzylidene]-4-nitrobenzohydrazide dimethylformamide monosolvate

Bibitha Joseph, N. R. Sajitha, M. Sithambaresan, E. B. Seena and M. R. Prathapachandra Kurup

S1. Comment

Recent studies of hydrazones emphasis the importance of the hydrazone functional group in various fields ranging from organic synthesis and medicinal chemistry to supramolecular chemistry (Su & Aprahamian, 2014). They have growing importance because of their biological applications (Nair *et al.*, 2014; Prasanna & Kumar, 2013; Hollo *et al.*, 2014). Here we discuss the synthesis of N'-[(E)-(3,5-dichloro-2-hydroxyphenyl)methylidene]-4-nitrobenzohydrazide dimethyl-formamide monosolvate from 3,5-dichlorosalicylaldehyde and 4-nitrobenzoyl hydrazide. By this reaction, we obtained a novel dimethylformamide solvated aroylhydrazone in a simple condensation reaction.

The title compound, $C_{14}H_9C_{12}N_3O_4C_3H_7NO$, adopts an *E* configuration with respect to C7=N1 bond (Fig. 1). The two aromatic rings of the molecule are almost in a plane with a slight twist with a dihedral angle of 8.96 (11) °. The C7=N1 and C8=O2 bond distances [1.269 (3) and 1.210 (2) Å, respectively] are very close to the formal C=N and C=O bond lengths. An intramolecular hydrogen bond is found between N1 and the H atom of the phenolic group with a D…A distance of 2.581 (2) Å. Each hydrazone molecule forms one classical intermolecular N—H…O hydrogen bond (to dimethylformamide molecule) and three non-classical C-H…O intermolecular hydrogen bonds. The pairs of non-classical C13–H…O4 interactions with D…A distance of 3.232 (3) Å (Table 1) connect molecules into centrosymmetric dimers, and these dimers are connected by means of C–H…C1 interactions into chains along [3 2 2]. The packing diagram showing all hydrogen bonds and C—C1… π interactions viewed along *c* axis is presented in Fig. 2.

S2. Synthesis and crystallization

The title compound was prepared by adapting a reported procedure (Bessy *et al*, 2006) as described below. 3,5-Dichlorosalicylaldehyde (0.191 g, 1 mmol) and 4-nitrobenzoyl hydrazide (0.181 g, 1 mmol) were dissolved in 10 mL of DMF. The solution was heated to boiling for 15 min, cooled to room temperature and then poured to 40 mL of water containing crushed ice and 1 mL of concentrated sulfuric acid. The pale yellow colored solid product was separated, washed with DMF and dried over P_4O_{10} *in vacuo*. Single crystals of the title compound suitable for X-ray analysis were obtained by recrystallization from dimethylformamide.

S3. Refinement

All H atoms on C were placed in calculated positions, guided by difference map, with C—H bond distances of 0.93-0.96 Å. H atoms were assigned U_{iso} (H) values of 1.2Ueq(carrier). H atoms attached to N2 and O1 were located from a difference Fourier map and the bond distances are restrained to 0.88±0.01 and 0.84±0.01 Å, respectively. The reflections (0 0 1), (0 -1 1) and (0 1 0) were omitted owing to bad agreement.

Figure 1

ORTEP view of the title compound, drawn with 50% probability displacement ellipsoids for the non-H atoms.

Figure 2

Diagram showing molecular packing viewed along the c axis along with intermolecular interactions.

N'-[(*E*)-3,5-Dichloro-2-hydroxybenzylidene]-4-nitrobenzohydrazide dimethylformamide monosolvate

Crystal data

 $\begin{array}{l} {\rm C}_{14}{\rm H}_9{\rm C}{\rm l}_2{\rm N}_3{\rm O}_4{\rm \cdot C}_3{\rm H}_7{\rm NO}\\ M_r = 427.24\\ {\rm Triclinic}, \ P1\\ a = 7.8853\ (6)\ {\rm \mathring{A}}\\ b = 11.9445\ (10)\ {\rm \mathring{A}}\\ c = 11.9521\ (15)\ {\rm \mathring{A}}\\ a = 114.408\ (6)^{\circ}\\ \beta = 102.895\ (7)^{\circ}\\ \gamma = 98.939\ (5)^{\circ}\\ V = 959.60\ (17)\ {\rm \mathring{A}}^3 \end{array}$

Data collection

Bruker Kappa APEXII CCD Diffractometer Radiation source: fine-focus sealed tube ω and φ scan

Z = 2 F(000) = 440 $D_x = 1.479 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2537 reflections $\theta = 2.8-28.1^{\circ}$ $\mu = 0.38 \text{ mm}^{-1}$ T = 296 KNeedle, pale yellow $0.40 \times 0.11 \times 0.09 \text{ mm}$

Absorption correction: multi-scan (*SADABS*; Bruker, 2004) $T_{\min} = 0.834, T_{\max} = 0.929$

7569 measured reflections	$\theta_{\rm max} = 28.4^\circ, \ \theta_{\rm min} = 2.8^\circ$
4660 independent reflections	$h = -10 \rightarrow 9$
3000 reflections with $I > 2\sigma(I)$	$k = -15 \rightarrow 15$
$R_{\rm int} = 0.019$	$l = -15 \rightarrow 15$
Refinement	
Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.043$	and constrained refinement
$wR(F^2) = 0.159$	$w = 1/[\sigma^2(F_o^2) + (0.0998P)^2 + 0.0446P]$
S = 0.95	where $P = (F_0^2 + 2F_c^2)/3$
4660 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
263 parameters	$\Delta \rho_{\rm max} = 0.23 \text{ e } \text{\AA}^{-3}$
2 restraints	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$
C11	1.35723 (9)	1.29047 (6)	1.47197 (6)	0.0756 (2)
C12	1.23273 (9)	1.51632 (6)	1.17091 (7)	0.0756 (2)
O1	1.0508 (2)	1.08266 (15)	1.27329 (15)	0.0576 (4)
O2	0.6756 (2)	0.77509 (15)	1.08867 (15)	0.0652 (4)
O3	-0.0311 (3)	0.25861 (16)	0.6472 (2)	0.0864 (6)
O4	-0.0770 (3)	0.3439 (2)	0.5227 (2)	0.0989 (7)
O5	0.4796 (2)	1.06202 (17)	0.22900 (16)	0.0668 (4)
N1	0.78454 (19)	0.97794 (15)	1.05922 (16)	0.0457 (4)
N2	0.6378 (2)	0.87905 (15)	0.96978 (16)	0.0454 (4)
N3	0.0045 (2)	0.34550 (18)	0.6219 (2)	0.0619 (5)
N4	0.5894 (3)	0.96448 (18)	0.34168 (18)	0.0616 (5)
C1	1.0866 (2)	1.18037 (18)	1.24598 (19)	0.0441 (4)
C2	1.2306 (3)	1.2870 (2)	1.3331 (2)	0.0512 (5)
C3	1.2741 (3)	1.39056 (18)	1.3111 (2)	0.0529 (5)
Н3	1.3694	1.4622	1.3714	0.063*
C4	1.1756 (3)	1.38669 (19)	1.1995 (2)	0.0521 (5)
C5	1.0326 (2)	1.28330 (19)	1.1101 (2)	0.0489 (5)
Н5	0.9675	1.2824	1.0344	0.059*
C6	0.9853 (2)	1.17920 (17)	1.13350 (19)	0.0426 (4)
C7	0.8316 (2)	1.07285 (19)	1.03936 (19)	0.0464 (4)
H7	0.7673	1.0738	0.9645	0.056*
C8	0.5925 (2)	0.77882 (18)	0.99269 (18)	0.0428 (4)
С9	0.4325 (2)	0.67029 (17)	0.89195 (18)	0.0397 (4)
C10	0.3727 (3)	0.57541 (19)	0.9227 (2)	0.0496 (5)
H10	0.4276	0.5841	1.0044	0.060*
C11	0.2333 (3)	0.4681 (2)	0.8348 (2)	0.0548 (5)

supporting information

H11	0.1944	0.4034	0.8551	0.066*
C12	0.1536 (2)	0.45939 (18)	0.7164 (2)	0.0470 (4)
C13	0.2077 (3)	0.5529 (2)	0.6837 (2)	0.0507 (5)
H13	0.1497	0.5449	0.6029	0.061*
C14	0.3485 (2)	0.65882 (19)	0.77184 (19)	0.0456 (4)
H14	0.3873	0.7228	0.7506	0.055*
C15	0.4196 (5)	0.8698 (3)	0.2961 (4)	0.1047 (11)
H15A	0.3223	0.9022	0.2699	0.157*
H15B	0.4052	0.8506	0.3645	0.157*
H15C	0.4177	0.7934	0.2236	0.157*
C16	0.7510 (5)	0.9501 (3)	0.4148 (3)	0.0998 (10)
H16A	0.7692	0.8691	0.3641	0.150*
H16B	0.7365	0.9538	0.4938	0.150*
H16C	0.8541	1.0179	0.4349	0.150*
C17	0.6030 (3)	1.0510 (2)	0.3016 (2)	0.0531 (5)
H17	0.7162	1.1087	0.3310	0.064*
H2	0.589 (3)	0.888 (2)	0.9019 (17)	0.072 (8)*
H1	0.962 (3)	1.028 (2)	1.2106 (19)	0.090 (9)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Cl1	0.0735 (4)	0.0650 (4)	0.0560 (3)	-0.0053 (3)	-0.0032 (3)	0.0191 (3)
C12	0.0772 (4)	0.0489 (3)	0.1074 (5)	0.0066 (3)	0.0394 (4)	0.0413 (4)
01	0.0540 (8)	0.0471 (9)	0.0590 (9)	-0.0035 (7)	0.0066 (7)	0.0249 (8)
O2	0.0644 (9)	0.0599 (10)	0.0530 (9)	-0.0038 (7)	-0.0047 (7)	0.0286 (8)
O3	0.0830 (12)	0.0449 (10)	0.1029 (15)	-0.0120 (8)	0.0080 (11)	0.0295 (10)
O4	0.0887 (13)	0.0704 (12)	0.0839 (13)	-0.0243 (10)	-0.0282 (10)	0.0310 (11)
O5	0.0629 (9)	0.0687 (11)	0.0651 (10)	0.0103 (8)	0.0063 (8)	0.0375 (9)
N1	0.0368 (8)	0.0370 (8)	0.0492 (9)	0.0012 (6)	0.0089 (7)	0.0128 (7)
N2	0.0367 (8)	0.0378 (8)	0.0467 (9)	-0.0013 (6)	0.0027 (7)	0.0152 (8)
N3	0.0514 (10)	0.0408 (10)	0.0705 (13)	-0.0025 (8)	0.0058 (9)	0.0171 (9)
N4	0.0783 (12)	0.0453 (10)	0.0564 (11)	0.0101 (9)	0.0138 (9)	0.0257 (9)
C1	0.0418 (9)	0.0370 (10)	0.0489 (11)	0.0042 (7)	0.0173 (8)	0.0169 (9)
C2	0.0449 (10)	0.0446 (11)	0.0487 (11)	0.0018 (8)	0.0140 (9)	0.0119 (9)
C3	0.0440 (10)	0.0368 (11)	0.0579 (12)	-0.0015 (8)	0.0172 (9)	0.0078 (10)
C4	0.0468 (10)	0.0365 (10)	0.0702 (14)	0.0055 (8)	0.0282 (10)	0.0197 (10)
C5	0.0441 (10)	0.0433 (11)	0.0584 (12)	0.0096 (8)	0.0187 (9)	0.0228 (10)
C6	0.0363 (8)	0.0342 (9)	0.0487 (10)	0.0052 (7)	0.0155 (8)	0.0122 (8)
C7	0.0389 (9)	0.0423 (11)	0.0495 (11)	0.0074 (8)	0.0094 (8)	0.0174 (9)
C8	0.0372 (9)	0.0391 (10)	0.0424 (10)	0.0035 (7)	0.0080 (7)	0.0150 (8)
C9	0.0349 (8)	0.0351 (9)	0.0441 (9)	0.0061 (7)	0.0098 (7)	0.0165 (8)
C10	0.0497 (10)	0.0467 (11)	0.0499 (11)	0.0057 (8)	0.0082 (9)	0.0267 (10)
C11	0.0526 (11)	0.0412 (11)	0.0673 (13)	0.0016 (8)	0.0121 (10)	0.0298 (11)
C12	0.0399 (9)	0.0345 (10)	0.0540 (11)	0.0019 (7)	0.0092 (8)	0.0149 (9)
C13	0.0478 (10)	0.0463 (11)	0.0484 (11)	0.0042 (8)	0.0053 (9)	0.0214 (9)
C14	0.0424 (9)	0.0399 (10)	0.0507 (11)	0.0031 (8)	0.0093 (8)	0.0232 (9)
C15	0.121 (3)	0.072 (2)	0.111 (2)	-0.0127 (17)	0.039 (2)	0.0468 (19)

supporting information

C16	0.128 (3)	0.086 (2)	0.0810 (19)	0.041 (2)	0.0054 (18)	0.0460 (18)
C17	0.0537 (11)	0.0449 (11)	0.0524 (12)	0.0040 (9)	0.0108 (9)	0.0216 (10)

Geometric parameters (Å, °)

· · · · ·			
Cl1—C2	1.716 (2)	C5—C6	1.397 (3)
Cl2—C4	1.734 (2)	С5—Н5	0.9300
O1—C1	1.342 (2)	C6—C7	1.442 (3)
O1—H1	0.835 (10)	С7—Н7	0.9300
O2—C8	1.210 (2)	C8—C9	1.498 (2)
O3—N3	1.206 (2)	C9—C10	1.378 (3)
O4—N3	1.207 (3)	C9—C14	1.380 (3)
O5—C17	1.214 (2)	C10—C11	1.375 (3)
N1—C7	1.269 (2)	C10—H10	0.9300
N1—N2	1.363 (2)	C11—C12	1.367 (3)
N2—C8	1.348 (2)	C11—H11	0.9300
N2—H2	0.872 (10)	C12—C13	1.367 (3)
N3—C12	1.466 (3)	C13—C14	1.372 (3)
N4—C17	1.306 (3)	C13—H13	0.9300
N4—C15	1.437 (3)	C14—H14	0.9300
N4—C16	1.454 (3)	C15—H15A	0.9600
C1—C2	1.386 (3)	C15—H15B	0.9600
C1—C6	1.396 (3)	C15—H15C	0.9600
C2—C3	1.376 (3)	C16—H16A	0.9600
C3—C4	1.363 (3)	C16—H16B	0.9600
С3—Н3	0.9300	C16—H16C	0.9600
C4—C5	1.370 (3)	C17—H17	0.9300
C1	105 (2)	N2—C8—C9	116.40 (16)
C7—N1—N2	118.71 (16)	C10—C9—C14	119.48 (17)
C8—N2—N1	117.36 (15)	C10—C9—C8	116.28 (16)
C8—N2—H2	128.4 (18)	C14—C9—C8	124.20 (16)
N1—N2—H2	114.1 (18)	С11—С10—С9	121.12 (18)
O3—N3—O4	123.3 (2)	C11-C10-H10	119.4
O3—N3—C12	118.6 (2)	C9—C10—H10	119.4
O4—N3—C12	118.07 (19)	C12—C11—C10	117.92 (18)
C17—N4—C15	120.0 (2)	C12—C11—H11	121.0
C17—N4—C16	120.2 (2)	C10-C11-H11	121.0
C15—N4—C16	119.0 (2)	C13—C12—C11	122.36 (18)
O1—C1—C2	118.66 (18)	C13—C12—N3	119.26 (19)
O1—C1—C6	122.82 (16)	C11—C12—N3	118.38 (18)
C2C1C6	118.52 (17)	C12—C13—C14	119.15 (18)
C3—C2—C1	121.57 (19)	C12—C13—H13	120.4
C3—C2—Cl1	119.12 (16)	C14—C13—H13	120.4
C1—C2—Cl1	119.31 (16)	C13—C14—C9	119.95 (17)
C4—C3—C2	119.06 (18)	C13—C14—H14	120.0
С4—С3—Н3	120.5	C9—C14—H14	120.0
С2—С3—Н3	120.5	N4—C15—H15A	109.5

C3—C4—C5	121.61 (19)	N4—C15—H15B	109.5
C3—C4—Cl2	119.00 (16)	H15A—C15—H15B	109.5
C5—C4—Cl2	119.39 (18)	N4—C15—H15C	109.5
C4—C5—C6	119.5 (2)	H15A—C15—H15C	109.5
C4—C5—H5	120.2	H15B—C15—H15C	109.5
С6—С5—Н5	120.2	N4—C16—H16A	109.5
C1—C6—C5	119.70 (17)	N4	109.5
C1—C6—C7	121.85 (16)	H16A—C16—H16B	109.5
C5—C6—C7	118.44 (18)	N4—C16—H16C	109.5
N1—C7—C6	119.61 (18)	H16A—C16—H16C	109.5
N1—C7—H7	120.2	H16B—C16—H16C	109.5
С6—С7—Н7	120.2	O5—C17—N4	125.3 (2)
O2—C8—N2	122.52 (17)	O5—C17—H17	117.4
O2—C8—C9	121.07 (17)	N4—C17—H17	117.4
C7—N1—N2—C8	179.15 (17)	N1—N2—C8—C9	-179.03 (15)
O1—C1—C2—C3	-179.80 (17)	O2-C8-C9-C10	8.0 (3)
C6—C1—C2—C3	0.3 (3)	N2-C8-C9-C10	-172.24 (16)
O1—C1—C2—Cl1	0.0 (3)	O2—C8—C9—C14	-169.75 (19)
C6-C1-C2-Cl1	-179.94 (14)	N2	10.0 (3)
C1—C2—C3—C4	-1.5 (3)	C14—C9—C10—C11	1.4 (3)
Cl1—C2—C3—C4	178.75 (15)	C8—C9—C10—C11	-176.44 (18)
C2—C3—C4—C5	1.2 (3)	C9-C10-C11-C12	-1.1 (3)
C2—C3—C4—Cl2	-179.09 (15)	C10-C11-C12-C13	-0.1 (3)
C3—C4—C5—C6	0.3 (3)	C10-C11-C12-N3	-179.89 (18)
Cl2—C4—C5—C6	-179.43 (13)	O3—N3—C12—C13	173.37 (19)
O1—C1—C6—C5	-178.71 (16)	O4—N3—C12—C13	-7.0 (3)
C2—C1—C6—C5	1.2 (3)	O3—N3—C12—C11	-6.8 (3)
O1—C1—C6—C7	1.2 (3)	O4—N3—C12—C11	172.8 (2)
C2-C1-C6-C7	-178.87 (18)	C11—C12—C13—C14	0.9 (3)
C4—C5—C6—C1	-1.5 (3)	N3-C12-C13-C14	-179.30 (18)
C4—C5—C6—C7	178.56 (17)	C12—C13—C14—C9	-0.5 (3)
N2—N1—C7—C6	179.29 (15)	C10-C9-C14-C13	-0.6 (3)
C1—C6—C7—N1	1.0 (3)	C8—C9—C14—C13	177.11 (18)
C5-C6-C7-N1	-179.11 (16)	C15—N4—C17—O5	2.2 (4)
N1—N2—C8—O2	0.7 (3)	C16—N4—C17—O5	172.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···· A	<i>D</i> —H··· <i>A</i>
N2—H2···O5 ⁱ	0.87(1)	1.90(1)	2.757 (2)	169 (3)
C3—H3····Cl1 ⁱⁱ	0.93	2.92	3.836 (2)	169
C7—H7····O5 ⁱ	0.93	2.38	3.145 (3)	139
C13—H13…O4 ⁱⁱⁱ	0.93	2.42	3.231 (3)	146
O1—H1…N1	0.84 (1)	1.82 (2)	2.581 (2)	151 (3)

Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+3, -y+3, -z+3; (iii) -x, -y+1, -z+1.