

Received 27 September 2015 Accepted 12 October 2015

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; polyoxidomolybdate; Anderson-type anion; organic-inorganic hybrid

CCDC reference: 1430684 **Supporting information**: this article has supporting information at journals.iucr.org/e

OPEN $\widehat{\bigcirc}$ ACCESS

Crystal structure of an organic-inorganic hybrid compound based on morpholinium cations and a β -type Anderson polyanion

Tamara J. Lukianova,* Vasyl Kinzhybalo and Adam Pietraszko

Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna str. 2, PO Box 1410, 50-950 Wroclaw, Poland. *Correspondence e-mail: t.lukianova@int.pan.wroc.pl

A new organic–inorganic hybrid compound, pentamorpholinium hexahydrogen hexamolybdoferrate(III) sulfate 3.5-hydrate, $(C_4H_{10}NO)_5[Fe^{III}(OH)_6Mo_6O_{18}]$ -(SO₄)·3.5H₂O, was obtained from an aqueous solution. The polyoxidomolybdate (POM) anion is of the Anderson β -type with a central Fe^{III} ion. Three of five crystallographically independent morpholinium cations are disordered over two sets of sites. An intricate network of intermolecular N–H···O and O–H···O interactions between cations, POMs, sulfate anions and non-coordinating water molecules creates a three-dimensional network structure.

1. Chemical context

Polyoxidometalates (POM) are attractive molecular building blocks used in the formation of multidimensional organicinorganic hybrid networks during self-organization processes (Pope & Müller, 2001; Müller et al., 1998; Long et al., 2007). POMs play an important role in the design of new classes of functionalized materials not only because of their topological versatility and high dimensional architectures, but also due to their rich diversity of remarkable properties. Several related compounds with Anderson-type polyoxidometalate anions and organic cations, such as (C₄H₁₂N₂)₅[Al(OH)₆Mo₆O₁₈]₂-(SO₄)₂·16H₂O (Yang et al., 2009), (C₄H₁₀NO)₃[Cr(OH)₆- Mo_6O_{18}]·4H₂O (Yang *et al.*, 2011), (C₆H₁₀N₃O₂)₂Na(H₂O)₂-[Al(OH)₆Mo₆O₁₈]·6H₂O (Thabet et al., 2012) and other compounds with an Fe^{III} central ion (Marcoux et al., 2003; Allain et al., 2008; Dessapt et al., 2011) have been reported. In β -type Anderson polyoxidoanions, which are characterized by a planar arrangement of the metal atoms, each Mo^{VI} atom has two terminal oxygen atoms, two bridging O atoms and two bridging OH functions which make it highly reactive and easily coordinated by varieties of transition metal atoms in the anion.

research communications

Figure 1

The molecular components in the structure of compound (I). Displacement ellipsoids are drawn at the 45% probability level. Hydrogen bonds are denoted by cyan dashed lines. Minor parts of the disordered cations are shown with dashed bonds.

Here we report synthesis and structure of the new organicinorganic hybrid compound $(C_4H_{10}NO)_5$ [Fe^{III}(OH)₆Mo₆O₁₈]-(SO₄)·3.5H₂O, (I).

Figure 2

The crystal packing of compound (I) in a projection along [100], shown in the polyhedral mode for the POM anion. Orange and green octahedra are $[FeO_6]$ and $[MoO_6]$, respectively. Hydrogen bonds are shown as cyan dashed lines. Minor components of disorder for the morpholinium cations are omitted for clarity.

Table 1Hydrogen-bond geometry (Å, °).

, , ,				
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O1W-H1WA\cdots O9$	0.84	1.94	2.781 (11)	178
$O1W - H1WB \cdots O10^{i}$	0.85	1.99	2.831 (11)	173
$O2W - H2WA \cdots O4W^{ii}$	0.85	1.80	2.619 (4)	161
$O2W - H2WB \cdots O2S^{ii}$	0.85	2.05	2.876 (4)	164
$O2W - H2WB \cdots O4S^{ii}$	0.85	2.48	3.129 (5)	133
$O3W-H3WA\cdots O1S^{ii}$	0.85	1.99	2.790 (5)	155
O3W−H3WB···O3	0.85	1.92	2.753 (4)	167
O4W−H4WA···O17 ⁱⁱⁱ	0.85	1.88	2.714 (4)	165
$O4W - H4WB \cdots O6$	0.85	1.94	2.761 (4)	161
$O1H-H1H\cdots O4S^{ii}$	1.00	1.69	2.673 (4)	165
$O2H - H2H \cdot \cdot \cdot O2W$	1.00	1.78	2.743 (4)	162
$O3H-H3H\cdots O3S^{ii}$	1.00	1.61	2.602 (4)	174
$O4H-H4H\cdots O2S$	1.00	2.13	2.911 (4)	133
$O5H-H5H\cdots O1S$	1.00	1.69	2.672 (4)	165
$O6H - H6H \cdot \cdot \cdot O2S$	1.00	1.83	2.691 (4)	142
$N4A - H4AA \cdots O4W^{ii}$	0.91	2.34	3.102 (5)	141
$N4A - H4AB \cdots O5$	0.91	1.86	2.760 (4)	169
$N4B - H4BA \cdots O4$	0.91	2.00	2.761 (4)	140
$N4B - H4BA \cdots O1A^{iv}$	0.91	2.26	2.840 (4)	121
$N4B - H4BB \cdots O15^{v}$	0.91	1.97	2.869 (4)	171
$N4C-H4CA\cdotsO1E^{vi}$	0.91	1.97	2.817 (7)	155
N41 C -H41 A ···O11 E ^{vi}	0.91	1.92	2.54 (5)	124
$N4E - H4EA \cdots O1$	0.91	1.91	2.780 (6)	160
$N41E - H41D \cdots O1$	0.91	1.52	2.35 (3)	150
$N4D - H4DA \cdots O1S$	0.91	1.99	2.866 (8)	162
$N4D - H4DB \cdots O2$	0.91	2.00	2.846 (9)	155
$N41D - H41E \cdots O2$	0.91	1.62	2.520 (19)	169

Symmetry codes: (i) -x, -y + 2, -z + 2; (ii) x + 1, y, z; (iii) -x, -y + 2, -z + 1; (iv) -x + 1, -y + 1, -z + 1; (v) -x, -y + 1, -z + 1; (vi) x - 1, y - 1, z.

2. Structural commentary

The asymmetric unit of compound (I) is made up of one Anderson β -type polyoxidoanion, $[Fe(OH)_6Mo_6O_{18}]^{3-}$, abbreviated in the following as $\{FeMo_6\}$, five morpholinium cations $(C_4H_{10}NO)^+$, one sulfate anion and four non-coordinating water molecules (Fig. 1). Three of the morpholinium cations are disordered over two sets of sites and one water molecule (O1W) shows half-occupancy. The $\{FeMo_6\}$ anion is formed by six edge-sharing $[MoO_6]$ octahedra, which are arranged hexagonally around the central $[Fe(OH)_6]$ octahedron with bond lengths and angles that are within the expected ranges for this type of POM anion (Cao *et al.*, 2007). The six hydroxyl groups of the Anderson-type polyoxoanion are involved as donor groups in hydrogen-bond formation with O atoms of the sulfate anions and the non-coordinating water molecules.

3. Supramolecular features

In the crystal structure of compound (I), hydrogen-bonding interactions between morpholinium cations, polyoxidoanions, sulfate anions and non-coordinating water molecules are of the types $O-H\cdots O$ and $N-H\cdots O$ (Table 1) and connect the discrete units into a three-dimensional supramolecular network. Hydrogen bonding is the dominating intermolecular interaction involved in the construction of this architecture and gives sufficient stabilization of its crystal structure. Figs. 2

research communications

Figure 3 The crystal packing of compound (I) in a projection along [001].

and 3 shows the crystal packing with hydrogen-bonding interactions.

4. Synthesis and crystallization

The title compound was synthesized by the following procedure: 0.320 g (0.8 mmol) of iron(III) sulfate was dissolved in 10 ml of double-distilled water. To this solution 4 ml (5 mmol) of morpholine and 0.309 g (1.5 mmol) of Na₂MoO₄ were added during constant stirring. By the addition of $30\%_{wt}$ sulfuric acid, the pH was adjusted to 2.5. The resultant solution was filtered and the filtrate kept at room temperature. After few weeks, light-brown crystals were obtained.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Three of the five crystallographically independent morpholinium cations are disordered, for which all atoms are distributed between two positions. The refined site occupation factor ratios are as follows: 0.857 (6):0.143 (6), 0.703 (9):0.297 (9) and 0.857 (6): 0.143 (6) for O1C-C6C/O11C-C61C, O1D-C6D/O11D-C61D and O1E-C6E/O11E-C61E, respectively. All non-hydrogen atoms were refined anisotropically, except for the minor parts of the disordered morpholinium cations. The positions of the H atoms were initially located in difference Fourier maps. All H atoms were fixed at ideal positions, with $U_{iso}(H) = 1.2U_{eq}$ of the parent atom $(1.5U_{eq}$ for water H atoms). In the final refinement cycles, H atoms of the O1W water molecule were allowed to ride on the parent O atom (AFIX 3 in SHELXL2014; Sheldrick, 2015), H atoms of the other water molecules were fixed with the AFIX 6 instruction. For the

Experimental details.	
Crystal data	
Chemical formula	(C ₄ H ₁₀ NO) ₅ [Fe(OH) ₆ Mo ₆ O ₁₈]- (SO ₄)·3.5H ₂ O
M _r	1621.30
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	100
a, b, c (Å)	8.900 (3), 13.143 (4), 20.778 (6)
α, β, γ (°)	84.92 (3), 85.37 (3), 83.70 (3)
$V(Å^3)$	2400.1 (13)
Ζ	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	1.97
Crystal size (mm)	$0.27 \times 0.20 \times 0.12$
Data collection	
Diffractometer	Rigaku Oxford Diffraction Xcalibur Atlas
Absorption correction	Analytical (<i>CrysAlis PRO</i> ; Rigaku Oxford Diffraction, 2015)
T_{\min}, T_{\max}	0.708, 0.819
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	37127, 11708, 9288
R _{int}	0.038
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.695
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.042, 0.112, 1.02
No. of reflections	11708
No. of parameters	714
No. of restraints	12
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	1.98, -1.29

Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg, 1997) and OLEX2 (Dolomanov et al., 2009).

minor component of disorder for morpholinium cation (O11C > C61C) the SAME instruction was used. Pairs of morpholinium cations (labelled C and E) were initially refined with individual occupation factor variables which turned out to refine to the same value (taking into account standard uncertainties). As a result of the fact that disordered parts of these two cations are connected by hydrogen-bonding interactions, disorder was restrained with a common occupation factor variable in the final refinement. One of the O atom of a water molecule (O1W) is characterized by a significantly elongated displacement parameter. The occupation factor of this molecule was arbitrarily fixed at 50%.

Acknowledgements

This research was supported by an ILT&SR PAS grant for young scientists and PhD students funded by the Ministry of Science and Higher Education of Poland.

References

Table 2

●M ●O ●H ●Fe ●S ●C

- Allain, C., Favette, S., Chamoreau, L.-M., Vaissermann, J., Ruhlmann, L. & Hasenknopf, B. (2008). *Eur. J. Inorg. Chem.* 2008, 3433– 3441.
- Brandenburg, K. (1997). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.

research communications

- Cao, R. G., Liu, S. X., Xie, L. H., Pan, Y. B., Cao, J. F., Ren, Y. H. & Xu, L. (2007). *Inorg. Chem.* 46, 3541–3547.
- Dessapt, R., Gabard, M., Bujoli-Doeuff, M., Deniard, P. & Jobic, S. (2011). *Inorg. Chem.* **50**, 8790–8796.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Long, D.-L., Burkholder, E. & Cronin, L. (2007). Chem. Soc. Rev. 36, 105–121.
- Marcoux, P. R., Hasenknopf, B., Vaissermann, J. & Gouzerh, P. (2003). Eur. J. Inorg. Chem. pp. 2406–2412.
- Müller, A., Peters, F., Pope, M. T. & Gatteschi, D. (1998). *Chem. Rev.* **98**, 239–272.
- Pope, M. T. & Müller, A. (2001). In *Polyoxometalate Chemistry: from Topology via Self-assembly to Applications*. Dordrecht: Kluwer Academic Publishers.
- Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Thabet, S., Ayed, B. & Haddad, A. (2012). *Mater. Res. Bull.* **47**, 3791–3796.
- Yang, X.-D., Chen, Y.-G., Mirzaei, M., Salimi, A. R. & Yao, F. (2009). *Inorg. Chem. Commun.* 12, 195–197.
- Yang, Y.-Y., Song, Y., Liu, L.-Y. & Qu, X.-S. (2011). Acta Cryst. E67, m776.

Acta Cryst. (2015). E71, 1345-1348 [https://doi.org/10.1107/S2056989015019246]

Crystal structure of an organic–inorganic hybrid compound based on morpholinium cations and a β -type Anderson polyanion

Tamara J. Lukianova, Vasyl Kinzhybalo and Adam Pietraszko

Computing details

Data collection: *CrysAlis PRO* (Rigaku Oxford Diffraction, 2015); cell refinement: *CrysAlis PRO* (Rigaku Oxford Diffraction, 2015); data reduction: *CrysAlis PRO* (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *DIAMOND* (Brandenburg, 1997); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

Pentamorpholinium hexahydrogen hexamolybdoferrate(III) sulfate 3.5-hydrate

Crystal data

 $(C_{4}H_{10}NO)_{5}[Fe(OH)_{6}Mo_{6}O_{18}](SO_{4})\cdot 3.5H_{2}O$ $M_{r} = 1621.30$ Triclinic, *P*1 *a* = 8.900 (3) Å *b* = 13.143 (4) Å *c* = 20.778 (6) Å *a* = 84.92 (3)° *β* = 85.37 (3)° *γ* = 83.70 (3)° *V* = 2400.1 (13) Å³

Data collection

Rigaku Oxford Diffraction Xcalibur Atlas
diffractometer
Radiation source: fine-focus sealed X-ray tube,
Enhance (Mo) X-ray Source
Graphite monochromator
Detector resolution: 10.6249 pixels mm ⁻¹
v scans
Absorption correction: analytical
(CrysAlisPro; Rigaku Oxford Diffraction, 2015)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.112$ S = 1.0211708 reflections 714 parameters Z = 2 F(000) = 1608 $D_x = 2.243 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 15587 reflections $\theta = 2.4-29.3^{\circ}$ $\mu = 1.97 \text{ mm}^{-1}$ T = 100 KBlock, light brown $0.27 \times 0.20 \times 0.12 \text{ mm}$

 $T_{\min} = 0.708, T_{\max} = 0.819$ 37127 measured reflections
11708 independent reflections
9288 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.038$ $\theta_{\text{max}} = 29.6^{\circ}, \theta_{\text{min}} = 2.4^{\circ}$ $h = -12 \rightarrow 11$ $k = -18 \rightarrow 17$ $l = -28 \rightarrow 28$

12 restraints Primary atom site location: structure-invariant direct methods Hydrogen site location: mixed H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0601P)^2 + 2.7906P]$ where $P = (F_o^2 + 2F_c^2)/3$

sup-2

 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta\rho_{\rm max} = 1.98 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\Delta \rho_{\rm min} = -1.29 \ {\rm e} \ {\rm \AA}^{-3}$

				TT 4/TT	0 (1)
	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Mo1	0.07030 (4)	0.98765 (2)	0.70745 (2)	0.01685 (8)	
Mo2	0.08559 (5)	0.86149 (3)	0.85537 (2)	0.02715 (10)	
Mo3	0.16217 (4)	0.60317 (3)	0.86796 (2)	0.02082 (9)	
Mo4	0.22287 (4)	0.47443 (2)	0.73545 (2)	0.01670 (8)	
Mo5	0.23106 (4)	0.60189 (2)	0.58822 (2)	0.01558 (8)	
M06	0.15245 (3)	0.85979 (2)	0.57545 (2)	0.01468 (8)	
01	0.1659 (3)	0.9593 (2)	0.78943 (12)	0.0246 (6)	
O2	0.0207 (3)	0.7260 (2)	0.87992 (13)	0.0268 (7)	
03	0.2976 (3)	0.5184 (2)	0.81276 (12)	0.0185 (5)	
04	0.1380 (3)	0.5093 (2)	0.65144 (12)	0.0192 (6)	
05	0.2965 (3)	0.7388 (2)	0.56585 (12)	0.0180 (5)	
06	0.0066 (3)	0.9393 (2)	0.62919 (12)	0.0169 (5)	
07	0.1890 (3)	1.0768 (2)	0.67652 (13)	0.0245 (6)	
08	-0.0969 (3)	1.0558 (2)	0.73014 (13)	0.0274 (7)	
09	0.2118 (5)	0.8721 (3)	0.91123 (14)	0.0443 (9)	
O1W	0.2590 (12)	0.9809 (15)	1.0154 (8)	0.184 (9)	0.5
H1WA	0.2462	0.9492	0.9832	0.276*	0.5
H1WB	0.2094	1.0047	1.0482	0.276*	0.5
O10	-0.0799 (4)	0.9283 (3)	0.88176 (15)	0.0438 (9)	
011	0.2876 (4)	0.6120(2)	0.92487 (14)	0.0346 (8)	
012	0.0389 (4)	0.5191 (2)	0.90187 (14)	0.0314 (7)	
013	0.0944 (3)	0.3921 (2)	0.76519 (14)	0.0299 (7)	
014	0.3796 (3)	0.3960 (2)	0.71415 (14)	0.0274 (6)	
015	0.1131 (3)	0.5942 (2)	0.52742 (13)	0.0230 (6)	
016	0.3973 (3)	0.5344 (2)	0.56528 (13)	0.0226 (6)	
017	0.2801 (3)	0.9456 (2)	0.54611 (12)	0.0206 (6)	
018	0.0397 (3)	0.8525 (2)	0.51406 (12)	0.0215 (6)	
Fe1	0.16272 (5)	0.73185 (4)	0.72223 (2)	0.01210 (11)	
O1H	0.2536 (3)	0.7399 (2)	0.80532 (12)	0.0185 (6)	
H1H	0.3645	0.7472	0.8042	0.022*	
O2H	0.2464 (3)	0.85564 (19)	0.67550 (11)	0.0147 (5)	
H2H	0.3564	0.8633	0.6777	0.018*	
ОЗН	0.3128 (3)	0.62367 (19)	0.68738 (12)	0.0147 (5)	
НЗН	0.4227	0.6314	0.6898	0.018*	
O4H	0.0625 (3)	0.7268 (2)	0.63805 (11)	0.0151 (5)	
H4H	-0.0486	0.7198	0.6402	0.018*	
O5H	0.0654 (3)	0.6135 (2)	0.76894 (12)	0.0161 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

H5H	-0.0464	0.6125	0.7673	0.019*	
O6H	0.0001 (3)	0.8368 (2)	0.75643 (12)	0.0166 (5)	
H6H	-0.1079	0.8232	0.7553	0.020*	
S 1	-0.33015 (11)	0.68657 (8)	0.74350 (5)	0.0269 (2)	
O1S	-0.2351 (3)	0.6113 (2)	0.78520 (15)	0.0332 (7)	
O2S	-0.2325(3)	0.7606 (2)	0.70866 (15)	0.0349 (8)	
O3S	-0.3991(3)	0.6318 (2)	0.69703 (15)	0.0312 (7)	
04S	-0.4464(3)	0.7430 (3)	0.78508 (17)	0.0405 (8)	
O1A	0.7444 (3)	0.6640(2)	0.44577 (13)	0.0257 (6)	
C2A	0.7298 (5)	0.6408(4)	0.5141 (2)	0.0291(10)	
H2AA	0.8212	0.5969	0.5278	0.035*	
H2AB	0.6410	0.6018	0.5255	0.035*	
C3A	0.7109(5)	0.7361 (4)	0.5293	0.033 (11)	
НЗАА	0.8029	0.7726	0.5407	0.0312(11)	
H3AB	0.6962	0.7182	0.5964	0.041*	
N4A	0.0902 0.5764 (4)	0.7102 0.8037 (3)	0.52633 (17)	0.0291 (8)	
НИЛА	0.5711	0.8649	0.5442	0.0251 (0)	
	0.3711	0.7738	0.5401	0.035*	
C5A	0.4907 0.5837 (5)	0.7738 0.8224 (3)	0.5401 0.4542(2)	0.033°	
	0.5857 (5)	0.8224(3)	0.4342(2)	0.0289 (9)	
	0.0070	0.8042	0.4391	0.035*	
	0.4677	0.8001	0.4404	0.033°	
	0.0097 (3)	0.7190 (4)	0.4238 (2)	0.0293 (10)	
НОАА	0.5231	0.0790	0.4397	0.035*	
H6AB	0.6156	0.7302	0.3779	0.035*	
OIB	-0.3116(3)	0.2911 (2)	0.65919(15)	0.0287 (7)	
C2B	-0.2048 (4)	0.2376(3)	0.6169 (2)	0.0257 (9)	
H2BA	-0.2334	0.2535	0.5718	0.031*	
H2BB	-0.2059	0.1627	0.6276	0.031*	
C3B	-0.0465 (4)	0.2670 (3)	0.6222 (2)	0.0222 (8)	
НЗВА	-0.0151	0.2484	0.6667	0.027*	
H3BB	0.0263	0.2296	0.5918	0.027*	
N4B	-0.0472 (4)	0.3801 (2)	0.60629 (15)	0.0206 (7)	
H4BA	0.0454	0.3994	0.6124	0.025*	
H4BB	-0.0653	0.3957	0.5639	0.025*	
C5B	-0.1655 (4)	0.4378 (3)	0.6478 (2)	0.0246 (9)	
H5BA	-0.1708	0.5121	0.6340	0.030*	
H5BB	-0.1395	0.4280	0.6935	0.030*	
C6B	-0.3155 (5)	0.3992 (3)	0.6417 (2)	0.0311 (10)	
H6BA	-0.3938	0.4361	0.6701	0.037*	
H6BB	-0.3439	0.4138	0.5965	0.037*	
O1C	0.0475 (5)	0.1916 (5)	0.8976 (2)	0.0507 (14)	0.857 (6)
C2C	-0.0299 (8)	0.1850 (5)	0.8422 (3)	0.0418 (16)	0.857 (6)
H2CA	-0.0784	0.1203	0.8465	0.050*	0.857 (6)
H2CB	0.0437	0.1832	0.8038	0.050*	0.857 (6)
C3C	-0.1492 (6)	0.2742 (7)	0.8318 (3)	0.0405 (16)	0.857 (6)
H3CA	-0.1004	0.3386	0.8222	0.049*	0.857 (6)
H3CB	-0.2065	0.2643	0.7943	0.049*	0.857 (6)
N4C	-0.2543 (6)	0.2821 (5)	0.8907 (3)	0.030(3)	0.857 (6)

H4CA	-0.3116	0.2284	0.8951	0.036*	0.857 (6)
H4CB	-0.3178	0.3411	0.8864	0.036*	0.857 (6)
C5C	-0.1696 (7)	0.2820 (6)	0.9505 (3)	0.0441 (17)	0.857 (6)
H5CA	-0.1188	0.3455	0.9493	0.053*	0.857 (6)
H5CB	-0.2406	0.2788	0.9896	0.053*	0.857 (6)
C6C	-0.0539(8)	0.1896 (7)	0.9524 (3)	0.058 (2)	0.857 (6)
H6CA	0.0028	0.1877	0.9917	0.070*	0.857 (6)
H6CB	-0.1061	0.1264	0.9551	0.070*	0.857 (6)
011C	-0.043(3)	0.271 (2)	0.9549 (11)	0.057 (8)*	0.143 (6)
C21C	0.063 (3)	0.234(3)	0.9067 (18)	0.061 (19)*	0.143 (6)
H21A	0 1521	0 1960	0.9271	0.074*	0 143 (6)
H21B	0.0988	0 2921	0.8782	0.074*	0 143 (6)
C31C	-0.007(5)	0.2921 0.163 (3)	0.8702	0.10(3)*	0.143 (6)
H31A	0.0682	0.1359	0.8336	0.122*	0.143 (6)
H31R	-0.0428	0.1046	0.8953	0.122*	0.143 (6)
N41C	-0.137(4)	0.1040 0.223(3)	0.8359 (14)	0.122 0.053 (12)*	0.143(0) 0.143(6)
НИТА	-0.1878	0.225 (5)	0.8158	0.055 (12)	0.143(0) 0.143(6)
	-0.1014	0.1301	0.8158	0.004	0.143(0) 0.143(6)
C51C	-0.245(3)	0.2701 0.278 (4)	0.8033	0.004°	0.143(0) 0.143(6)
	-0.243(3)	0.278 (4)	0.004(2)	0.07 (4)	0.143(0) 0.143(6)
	-0.3003	0.2272	0.9119	0.087*	0.143(0) 0.142(6)
	-0.3194	0.3239 0.2257(10)	0.0009	0.007°	0.143(0) 0.142(6)
	-0.138(3)	0.3337(19) 0.2012	0.9249 (12)	$0.020(0)^{\circ}$	0.143(0) 0.142(6)
HOIA	-0.1118	0.3913	0.8975	0.024*	0.143(0)
H61B	-0.2282	0.3678	0.9585	0.024*	0.143 (6)
OIE	0.5358 (5)	1.1453 (3)	0.8694 (2)	0.0366 (10)	0.857 (6)
C2E	0.4163 (7)	1.1963 (5)	0.8317 (3)	0.0443 (16)	0.857 (6)
H2EA	0.4200	1.2716	0.8297	0.053*	0.857 (6)
H2EB	0.3168	1.1807	0.8528	0.053*	0.857 (6)
C3E	0.4328 (8)	1.1618 (4)	0.7643 (3)	0.0389 (15)	0.857 (6)
H3EA	0.5270	1.1840	0.7414	0.047*	0.857 (6)
H3EB	0.3461	1.1935	0.7399	0.047*	0.857 (6)
N4E	0.4379 (5)	1.0468 (4)	0.7675 (2)	0.0304 (11)	0.857 (6)
H4EA	0.3454	1.0277	0.7825	0.037*	0.857 (6)
H4EB	0.4586	1.0256	0.7268	0.037*	0.857 (6)
C5E	0.5540 (8)	0.9958 (5)	0.8100 (3)	0.0457 (17)	0.857 (6)
H5EA	0.6565	1.0085	0.7909	0.055*	0.857 (6)
H5EB	0.5476	0.9208	0.8146	0.055*	0.857 (6)
C6E	0.5269 (9)	1.0381 (5)	0.8748 (3)	0.0510 (19)	0.857 (6)
H6EA	0.4254	1.0235	0.8941	0.061*	0.857 (6)
H6EB	0.6033	1.0040	0.9039	0.061*	0.857 (6)
O11E	0.610 (3)	1.148 (2)	0.8423 (15)	0.048 (7)*	0.143 (6)
C21E	0.528 (4)	1.200 (3)	0.7879 (18)	0.044 (9)*	0.143 (6)
H21C	0.5806	1.1787	0.7466	0.053*	0.143 (6)
H21D	0.5273	1.2749	0.7883	0.053*	0.143 (6)
C31E	0.363 (4)	1.170 (3)	0.7931 (18)	0.029 (7)*	0.143 (6)
H31C	0.3099	1.1906	0.8344	0.035*	0.143 (6)
H31D	0.3071	1.2063	0.7570	0.035*	0.143 (6)
N41E	0.371 (3)	1.058 (2)	0.7901 (13)	0.026 (6)*	0.143 (6)

H41C	0.4108	1.0406	0.7504	0.032*	0.143 (6)
H41D	0.2757	1.0376	0.7961	0.032*	0.143 (6)
C51E	0.470 (3)	1.002 (2)	0.8430 (13)	0.016 (6)*	0.143 (6)
H51C	0.4192	1.0122	0.8864	0.019*	0.143 (6)
H51D	0.4835	0.9270	0.8376	0.019*	0.143 (6)
C61E	0.617 (4)	1.041 (3)	0.8376 (18)	0.038 (8)*	0.143 (6)
H61C	0.6784	1.0058	0.8721	0.046*	0.143 (6)
H61D	0.6700	1.0251	0.7954	0.046*	0.143 (6)
01D	-0.4396(8)	0.7161 (5)	1.0345 (3)	0.0377 (15)	0.703 (9)
C2D	-0.3989(9)	0.7971 (5)	0.9881 (3)	0.039 (2)	0.703 (9)
H2DA	-0 3004	0.8185	0 9977	0.047*	0 703 (9)
H2DB	-0.4761	0.8570	0.9914	0.047*	0.703 (9)
C3D	-0.3873(8)	0.7643 (6)	0.9214(3)	0.0361(19)	0.703 (9)
H3DA	-0.3537	0.8205	0.8906	0.043*	0.703(9)
H3DR	-0.4882	0.7495	0.0101	0.043*	0.703(9)
N4D	-0.2762(9)	0.6697 (6)	0.9156 (3)	0.045	0.703(9)
НИДА	-0.2822	0.6448	0.9765	0.036*	0.703(9)
	-0.1805	0.6860	0.0175	0.036*	0.703(9) 0.703(0)
C5D	-0.3060(11)	0.0809	0.9175 0.0678 (4)	0.030°	0.703(9) 0.703(0)
	-0.2210	0.5369 (0)	0.9078 (4)	0.041(2)	0.703(9) 0.703(0)
	-0.2219	0.5550	0.9074	0.049	0.703(9) 0.703(0)
	-0.4002	0.5387	1.0226(2)	0.049°	0.703(9)
	-0.3233 (10)	0.0321 (0)	1.0520 (5)	0.040 (2)	0.703(9)
	-0.3322	0.5770	1.0005	0.050*	0.703(9)
Hodb	-0.2281	0.6549	1.0425	0.056*	0.703(9)
OHD	-0.4846 (16)	0.7037 (12)	1.0209 (7)	0.027 (4)*	0.297 (9)
C2ID	-0.4828 (19)	0.7728 (13)	0.9674 (8)	0.032 (4)*	0.297 (9)
H2IE	-0.5345	0.8400	0.9789	0.038*	0.297 (9)
H21F	-0.5382	0.7483	0.9333	0.038*	0.297 (9)
C31D	-0.3180 (18)	0.7855 (11)	0.9415 (7)	0.025 (3)*	0.297 (9)
H3IE	-0.3177	0.8357	0.9030	0.030*	0.297 (9)
H31F	-0.2638	0.8122	0.9751	0.030*	0.297 (9)
N41D	-0.241 (2)	0.6885 (15)	0.9241 (9)	0.027 (5)*	0.297 (9)
H41E	-0.1424	0.6955	0.9115	0.032*	0.297 (9)
H41F	-0.2853	0.6664	0.8906	0.032*	0.297 (9)
C51D	-0.252 (2)	0.6104 (15)	0.9834 (9)	0.033 (4)*	0.297 (9)
H51E	-0.2039	0.5422	0.9720	0.040*	0.297 (9)
H51F	-0.1978	0.6322	1.0188	0.040*	0.297 (9)
C61D	-0.4176 (16)	0.6035 (11)	1.0057 (7)	0.025 (4)*	0.297 (9)
H61E	-0.4711	0.5790	0.9710	0.030*	0.297 (9)
H61F	-0.4259	0.5543	1.0444	0.030*	0.297 (9)
O2W	0.5313 (3)	0.9178 (3)	0.67269 (17)	0.0394 (8)	
H2WA	0.5813	0.9500	0.6425	0.059*	
H2WB	0.5885	0.8684	0.6897	0.059*	
O3W	0.5901 (4)	0.4619 (3)	0.8460 (2)	0.0525 (11)	
H3WA	0.6398	0.4979	0.8176	0.079*	
H3WB	0.4967	0.4702	0.8386	0.079*	
O4W	-0.2744 (3)	0.9785 (3)	0.57958 (14)	0.0327 (7)	
H4WA	-0.2595	1.0042	0.5408	0.049*	

H4WB	-0.1942	0.979	91	0.5993	0.049*	
Atomic a	lisplacement parc	ameters $(Å^2)$				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Mo1	0.02266 (17)	0.01483 (17)	0.01282 (15)	0.00194 (12)	-0.00431 (12)	-0.00177 (12)
Mo2	0.0502 (2)	0.01917 (19)	0.01084 (16)	0.00373 (16)	-0.00339 (15)	-0.00225 (14)
Mo3	0.03058 (19)	0.01924 (18)	0.01175 (15)	0.00277 (14)	-0.00552 (13)	0.00067 (13)
Mo4	0.02022 (17)	0.01442 (17)	0.01648 (16)	-0.00286 (12)	-0.00614 (12)	-0.00127 (13)
Mo5	0.01895 (16)	0.01605 (17)	0.01302 (15)	-0.00288 (12)	-0.00493 (12)	-0.00354 (12)
Mo6	0.01686 (16)	0.01677 (17)	0.01099 (14)	-0.00214 (12)	-0.00403 (11)	-0.00110 (12)
01	0.0416 (17)	0.0191 (15)	0.0147 (13)	-0.0020 (12)	-0.0111 (11)	-0.0027 (11)
O2	0.0430 (18)	0.0202 (15)	0.0137 (13)	0.0069 (13)	0.0033 (12)	0.0001 (11)
O3	0.0209 (13)	0.0187 (14)	0.0166 (12)	0.0005 (10)	-0.0082 (10)	-0.0019 (11)
O4	0.0245 (14)	0.0193 (14)	0.0157 (12)	-0.0051 (11)	-0.0072 (10)	-0.0030 (11)
05	0.0194 (13)	0.0176 (14)	0.0170 (12)	-0.0020 (10)	0.0006 (10)	-0.0037 (11)
O6	0.0175 (13)	0.0188 (14)	0.0140 (12)	0.0016 (10)	-0.0040 (10)	-0.0014 (10)
07	0.0348 (16)	0.0180 (15)	0.0213 (14)	-0.0024 (12)	-0.0085 (12)	-0.0005 (12)
08	0.0317 (16)	0.0245 (16)	0.0231 (14)	0.0089 (12)	0.0011 (12)	-0.0028 (12)
09	0.088 (3)	0.0299 (19)	0.0172 (15)	-0.0044 (18)	-0.0195 (16)	-0.0034 (13)
O1W	0.047 (6)	0.34 (2)	0.204 (15)	-0.034 (10)	0.009 (8)	-0.222 (16)
O10	0.073 (3)	0.0252 (18)	0.0257 (16)	0.0091 (16)	0.0178 (16)	0.0002 (14)
011	0.056 (2)	0.0290 (17)	0.0201 (14)	0.0045 (15)	-0.0213 (14)	-0.0012 (13)
012	0.0392 (18)	0.0264 (17)	0.0249 (15)	0.0032 (13)	0.0026 (13)	0.0052 (13)
013	0.0352 (17)	0.0300 (17)	0.0277 (15)	-0.0146 (13)	-0.0124 (13)	0.0038 (13)
O14	0.0336 (16)	0.0221 (16)	0.0258 (15)	0.0034 (12)	-0.0055 (12)	-0.0035 (12)
015	0.0272 (15)	0.0242 (15)	0.0198 (13)	-0.0051 (12)	-0.0099 (11)	-0.0040 (12)
016	0.0241 (14)	0.0223 (15)	0.0219 (14)	-0.0012 (11)	-0.0027 (11)	-0.0060 (12)
O17	0.0211 (14)	0.0205 (15)	0.0195 (13)	-0.0003 (11)	-0.0007 (10)	-0.0001 (11)
O18	0.0253 (15)	0.0234 (15)	0.0163 (13)	-0.0007 (11)	-0.0062 (11)	-0.0028 (11)
Fe1	0.0122 (2)	0.0141 (3)	0.0106 (2)	-0.00148 (19)	-0.00381 (18)	-0.0014 (2)
O1H	0.0199 (13)	0.0204 (14)	0.0167 (12)	-0.0009 (11)	-0.0091 (10)	-0.0042 (11)
O2H	0.0148 (12)	0.0162 (13)	0.0139 (12)	-0.0024 (10)	-0.0046 (9)	-0.0015 (10)
ОЗН	0.0130 (12)	0.0162 (13)	0.0154 (12)	0.0002 (9)	-0.0038 (9)	-0.0041 (10)
O4H	0.0139 (12)	0.0194 (14)	0.0129 (12)	-0.0034 (10)	-0.0058 (9)	-0.0005 (10)
O5H	0.0134 (12)	0.0171 (14)	0.0183 (12)	-0.0038 (10)	-0.0063 (10)	0.0027 (11)
O6H	0.0148 (12)	0.0197 (14)	0.0145 (12)	0.0024 (10)	-0.0025 (9)	-0.0003 (11)
S1	0.0144 (5)	0.0299 (6)	0.0369 (6)	-0.0038 (4)	-0.0080(4)	0.0019 (5)
O1S	0.0202 (15)	0.0391 (19)	0.0395 (18)	-0.0083 (13)	-0.0063 (13)	0.0112 (15)
O2S	0.0244 (15)	0.0367 (19)	0.0445 (19)	-0.0103 (13)	-0.0176 (13)	0.0150 (15)
O3S	0.0184 (14)	0.0361 (18)	0.0401 (18)	-0.0065 (12)	-0.0052 (12)	-0.0003 (14)
O4S	0.0203 (16)	0.046 (2)	0.060 (2)	-0.0082 (14)	-0.0074 (15)	-0.0161 (17)
O1A	0.0239 (15)	0.0290 (16)	0.0239 (14)	0.0007 (12)	-0.0022 (11)	-0.0054 (12)
C2A	0.026 (2)	0.035 (3)	0.026 (2)	-0.0006 (18)	-0.0054 (17)	0.0016 (19)
C3A	0.029 (2)	0.052 (3)	0.025 (2)	-0.011 (2)	-0.0061 (17)	-0.007 (2)
N4A	0.0265 (19)	0.031 (2)	0.0321 (19)	-0.0077 (15)	0.0075 (15)	-0.0162 (16)
C5A	0.026 (2)	0.025 (2)	0.034 (2)	0.0018 (17)	0.0024 (17)	0.0009 (19)
C6A	0.030 (2)	0.038 (3)	0.022 (2)	0.0001 (19)	-0.0096 (17)	-0.0072 (19)

O1B	0.0245 (15)	0.0247 (16)	0.0373 (17)	-0.0046 (12)	0.0005 (12)	-0.0047 (13)
C2B	0.023 (2)	0.023 (2)	0.031 (2)	-0.0014 (16)	-0.0095 (17)	-0.0026 (18)
C3B	0.023 (2)	0.019 (2)	0.025 (2)	-0.0010 (15)	-0.0053 (15)	-0.0004 (16)
N4B	0.0208 (16)	0.0244 (18)	0.0179 (15)	-0.0031 (13)	-0.0077 (12)	-0.0024 (14)
C5B	0.026 (2)	0.022 (2)	0.026 (2)	-0.0014 (16)	-0.0028 (16)	-0.0049 (17)
C6B	0.025 (2)	0.022 (2)	0.047 (3)	-0.0005 (17)	-0.0061 (19)	-0.007(2)
O1C	0.036 (2)	0.072 (4)	0.040 (3)	0.013 (2)	-0.008 (2)	-0.002 (3)
C2C	0.054 (4)	0.035 (3)	0.031 (3)	0.011 (3)	0.011 (3)	-0.005 (3)
C3C	0.032 (3)	0.056 (5)	0.026 (3)	0.004 (3)	0.006 (2)	0.015 (3)
N4C	0.025 (3)	0.036 (4)	0.029 (3)	-0.0039 (18)	0.0011 (18)	-0.005 (2)
C5C	0.037 (3)	0.064 (5)	0.036 (3)	-0.009 (3)	0.001 (2)	-0.034 (3)
C6C	0.055 (4)	0.089 (6)	0.029 (3)	0.010 (4)	-0.016 (3)	-0.007 (3)
O1E	0.048 (3)	0.030 (2)	0.034 (2)	-0.0058 (18)	-0.019 (2)	-0.0044 (17)
C2E	0.049 (4)	0.033 (3)	0.054 (4)	-0.001 (3)	-0.021 (3)	-0.009 (3)
C3E	0.050 (4)	0.035 (3)	0.036 (3)	-0.021 (3)	-0.025 (3)	0.011 (3)
N4E	0.025 (2)	0.039 (3)	0.030 (2)	-0.009 (2)	-0.007 (2)	-0.006 (2)
C5E	0.050 (4)	0.033 (3)	0.058 (4)	0.002 (3)	-0.031 (3)	-0.008 (3)
C6E	0.085 (5)	0.034 (4)	0.038 (3)	-0.018 (3)	-0.030 (3)	0.010 (3)
O1D	0.041 (4)	0.044 (3)	0.022 (3)	0.012 (3)	0.002 (3)	0.006 (2)
C2D	0.048 (5)	0.030 (4)	0.036 (4)	0.007 (3)	0.001 (3)	-0.002 (3)
C3D	0.034 (4)	0.043 (4)	0.026 (3)	0.009 (3)	-0.002 (3)	0.010 (3)
N4D	0.035 (4)	0.037 (4)	0.019 (3)	-0.008 (3)	0.001 (3)	-0.005 (3)
C5D	0.063 (6)	0.024 (4)	0.033 (4)	0.003 (4)	0.002 (4)	0.001 (3)
C6D	0.059 (5)	0.044 (5)	0.029 (4)	0.017 (4)	-0.001 (3)	0.008 (3)
O2W	0.0255 (16)	0.044 (2)	0.049 (2)	-0.0111 (14)	-0.0154 (14)	0.0164 (17)
O3W	0.0206 (16)	0.064 (3)	0.068 (3)	-0.0085 (17)	-0.0126 (16)	0.032 (2)
O4W	0.0242 (15)	0.048 (2)	0.0244 (15)	-0.0006 (14)	-0.0078 (12)	0.0055 (15)

Geometric parameters (Å, °)

Mo1—O1	1.954 (3)	N4C—H4CA	0.9100
Mo1-06	1.944 (3)	N4C—H4CB	0.9100
Mo1-07	1.712 (3)	N4C—C5C	1.503 (8)
Mo1-08	1.705 (3)	C5C—H5CA	0.9900
Mo1—O2H	2.312 (3)	C5C—H5CB	0.9900
Mo1—O6H	2.273 (3)	C5C—C6C	1.503 (10)
Mo201	1.942 (3)	C6C—H6CA	0.9900
Mo2—O2	1.944 (3)	C6C—H6CB	0.9900
Mo2—O9	1.703 (3)	O11C—C21C	1.404 (14)
Mo2-010	1.706 (3)	O11C—C61C	1.403 (12)
Mo2—O1H	2.322 (3)	C21C—H21A	0.9900
Мо2—О6Н	2.309 (3)	C21C—H21B	0.9900
Mo3—O2	1.957 (3)	C21C—C31C	1.511 (13)
Mo3—O3	1.928 (3)	C31C—H31A	0.9900
Mo3—O11	1.710 (3)	C31C—H31B	0.9900
Mo3—O12	1.710 (3)	C31C—N41C	1.484 (13)
Mo3—O1H	2.307 (3)	N41C—H41A	0.9100
Мо3—О5Н	2.281 (3)	N41C—H41B	0.9100

Mo4—O3	1.944 (3)	N41C—C51C	1.500 (13)
Mo4—O4	1.955 (3)	C51C—H51A	0.9900
Mo4-013	1 703 (3)	C51C—H51B	0 9900
Mo4-014	1 694 (3)	$C_{51}C - C_{61}C$	1 501 (14)
Mo4—O3H	2 314 (3)	C61C - H61A	0.9900
Mo4—O5H	2.317(3)	C61C—H61B	0.9900
Mo5-04	1.912(3)	O1E-C2E	1.442(7)
Mo5 05	1.912(3) 1.957(3)	01E C6E	1.442(7)
M05015	1.937(3) 1.723(3)	C2E H2EA	0.0000
Mo5016	1.725 (3)	C2E H2ER	0.9900
$M_{0}5 = 0.211$	1.090(3)	C2E C2E	1.500 (0)
Mo5 O4U	2.291(3)	C2E H2EA	1.300 (9)
M05	2.551(5)	CJE HJED	0.9900
M06	1.944 (3)	C3E NAE	0.9900
M06	1.923 (3)	C3E—N4E	1.504 (7)
M06—017	1.727 (3)	N4E—H4EA	0.9100
Mo6—O18	1.701 (3)	N4E—H4EB	0.9100
Mo6—O2H	2.297 (2)	N4E—C5E	1.480 (7)
Mo6—O4H	2.264 (3)	C5E—H5EA	0.9900
O1W—H1WA	0.8397	C5E—H5EB	0.9900
O1W—H1WB	0.8468	C5E—C6E	1.493 (10)
Fe1—O1H	1.981 (3)	C6E—H6EA	0.9900
Fe1—O2H	2.003 (3)	C6E—H6EB	0.9900
Fe1—O3H	1.985 (3)	O11E—C21E	1.47 (4)
Fe1—O4H	2.036 (3)	O11E—C61E	1.41 (5)
Fe1—O5H	2.001 (3)	C21E—H21C	0.9900
Fe1—O6H	2.018 (3)	C21E—H21D	0.9900
O1H—H1H	1.0000	C21E—C31E	1.55 (5)
O2H—H2H	1.0000	C31E—H31C	0.9900
ОЗН—НЗН	1.0000	C31E—H31D	0.9900
O4H—H4H	1.0000	C31E—N41E	1.48 (4)
О5Н—Н5Н	1.0000	N41E—H41C	0.9100
О6Н—Н6Н	1.0000	N41E—H41D	0.9100
<u>\$1-015</u>	1.493 (3)	N41E—C51E	1.55 (4)
S1—O2S	1.478 (3)	C51E—H51C	0.9900
S1—O3S	1.464 (3)	C51E—H51D	0.9900
S1-04S	1 473 (4)	C51E - C61E	1 45 (4)
01A-C2A	1 423 (5)	C61E - H61C	0.9900
01A - C6A	1 406 (5)	C61E—H61D	0.9900
$C^2A - H^2AA$	0.9900	01D-C2D	1 430 (9)
$C_2A = H_2AB$	0.9900	01D - C6D	1.130(9) 1.417(9)
C_{2A} C_{3A}	1.402(7)	$C^{2}D$ $H^{2}D^{A}$	0.0000
$C_{2A} = C_{3A}$	0.0000	C2D H2DB	0.9900
C_{2A} H_{2AB}	0.9900	C_{2D} C_{2D} C_{2D}	1.470(10)
$C_{2A} = M_{A}$	0.9900	$C_{2}D_{-}H_{2}D_{A}$	1.479(10)
C_{JA} IN A	0.0100		0.9900
	0.9100		0.9900
	0.9100		1.308 (10)
	1.494 (5)	N4D—H4DA	0.9100
СЭА—НЭАА	0.9900	N4D—H4DB	0.9100

С5А—Н5АВ	0.9900	N4D	1.480 (10)
C5A—C6A	1.510 (6)	C5D—H5DA	0.9900
С6А—Н6АА	0.9900	C5D—H5DB	0.9900
С6А—Н6АВ	0.9900	C5D—C6D	1.496 (11)
O1B—C2B	1.413 (5)	C6D—H6DA	0.9900
O1B—C6B	1.432 (5)	C6D—H6DB	0.9900
C2B—H2BA	0.9900	O11D—C21D	1.37 (2)
C2B—H2BB	0.9900	O11D—C61D	1.44 (2)
C2B—C3B	1.516 (5)	C21D—H21E	0.9900
СЗВ—НЗВА	0.9900	C21D—H21F	0.9900
C3B—H3BB	0.9900	C21D—C31D	1.54 (2)
C3B—N4B	1.494 (5)	C31D—H31E	0.9900
N4B—H4BA	0.9100	C31D—H31F	0.9900
N4B—H4BB	0.9100	C31D—N41D	1.44 (2)
N4B—C5B	1.491 (5)	N41D—H41E	0.9100
C5B—H5BA	0.9900	N41D—H41F	0.9100
C5B—H5BB	0.9900	N41D—C51D	1.54 (3)
C5B—C6B	1.497 (6)	C51D—H51E	0.9900
C6B—H6BA	0.9900	C51D—H51F	0.9900
C6B—H6BB	0.9900	C51D-C61D	1.52 (2)
01C-C2C	1.403 (9)	C61D—H61E	0.9900
01C-C6C	1.395 (8)	C61D—H61F	0.9900
C2C—H2CA	0.9900	O2W—H2WA	0.8486
C2C—H2CB	0.9900	O2W—H2WB	0.8488
$C_2C_2C_3C_3C_3C_3C_3C_3C_3C_3C_3C_3C_3C_3C_3C$	1.505 (9)	O3W—H3WA	0.8504
C3C—H3CA	0.9900	O3W—H3WB	0.8517
C3C—H3CB	0.9900	O4W—H4WA	0.8512
C3C—N4C	1 484 (8)	O4W—H4WB	0.8530
			010000
O1—Mo1—O2H	82.96 (11)	C5B—N4B—H4BB	109.5
O1—Mo1—O6H	71.17 (11)	N4B—C5B—H5BA	109.9
O6—Mo1—O1	149.82 (11)	N4B—C5B—H5BB	109.9
O6—Mo1—O2H	71.81 (10)	N4B—C5B—C6B	109.1 (3)
O6—Mo1—O6H	84.95 (10)	H5BA—C5B—H5BB	108.3
O7—Mo1—O1	94.58 (13)	C6B—C5B—H5BA	109.9
O7—Mo1—O6	101.90 (12)	C6B—C5B—H5BB	109.9
O7—Mo1—O2H	90.82 (12)	O1B—C6B—C5B	111.8 (3)
07—Мо1—О6Н	158.02 (11)	O1B—C6B—H6BA	109.3
O8—Mo1—O1	102.23 (13)	O1B—C6B—H6BB	109.3
08—Mo1—06	97.36 (13)	С5В—С6В—Н6ВА	109.3
08—Mo1—07	105.90 (14)	C5B—C6B—H6BB	109.3
08—Mo1—O2H	161.86 (13)	H6BA—C6B—H6BB	107.9
08—Mo1—O6H	93.71 (12)	C6C - 01C - C2C	109.8 (5)
06H—Mo1—O2H	71.30 (9)	O1C-C2C-H2CA	109.2
$01 - M_0^2 - 0^2$	149 50 (12)	O1C-C2C-H2CB	109.2
$01 - M_0 2 - 01H$	85 23 (11)	01C - C2C - C3C	112.0 (5)
$01 - M_0 2 - 06H$	70 54 (11)	$H_2CA = C_2C = H_2CB$	107.9
$02 - M_0 2 - 01H$	71 10 (11)	$C_{3}C_{-}C_{2}C_{-}H_{2}C_{A}$	109.2
	, ()		107.4

O2—Mo2—O6H	83.48 (11)	C3C—C2C—H2CB	109.2
O9—Mo2—O1	96.60 (15)	C2C—C3C—H3CA	109.7
O9—Mo2—O2	102.52 (15)	C2C—C3C—H3CB	109.7
O9—Mo2—O10	105.99 (18)	H3CA—C3C—H3CB	108.2
O9—Mo2—O1H	90.80 (14)	N4C—C3C—C2C	109.7 (5)
О9—Мо2—О6Н	158.22 (14)	N4C—C3C—H3CA	109.7
O10—Mo2—O1	101.56 (14)	N4C—C3C—H3CB	109.7
O10—Mo2—O2	95.77 (15)	C3C—N4C—H4CA	109.3
O10—Mo2—O1H	160.83 (15)	C3C—N4C—H4CB	109.3
O10—Mo2—O6H	94.04 (15)	C3C—N4C—C5C	111.5 (5)
O6H—Mo2—O1H	71.13 (9)	H4CA—N4C—H4CB	108.0
O2—Mo3—O1H	71.25 (11)	C5C—N4C—H4CA	109.3
O2—Mo3—O5H	83.28 (11)	C5C—N4C—H4CB	109.3
O3—Mo3—O2	150.44 (11)	N4C—C5C—H5CA	110.1
O3—Mo3—O1H	85.43 (11)	N4C—C5C—H5CB	110.1
O3—Mo3—O5H	71.97 (10)	H5CA—C5C—H5CB	108.4
O11—Mo3—O2	101.54 (14)	C6C—C5C—N4C	108.1 (5)
O11—Mo3—O3	96.56 (14)	C6C—C5C—H5CA	110.1
O11—Mo3—O1H	90.81 (13)	C6C—C5C—H5CB	110.1
O11—Mo3—O5H	159.23 (13)	O1C—C6C—C5C	111.3 (6)
O12—Mo3—O2	94.92 (14)	O1C—C6C—H6CA	109.4
O12—Mo3—O3	102.24 (13)	O1C—C6C—H6CB	109.4
O12—Mo3—O11	106.25 (15)	С5С—С6С—Н6СА	109.4
O12—Mo3—O1H	160.13 (12)	С5С—С6С—Н6СВ	109.4
O12—Mo3—O5H	93.31 (13)	Н6СА—С6С—Н6СВ	108.0
O5H—Mo3—O1H	71.43 (9)	C61C—O11C—C21C	108.7 (15)
O3—Mo4—O4	149.43 (11)	O11C—C21C—H21A	109.7
O3—Mo4—O3H	83.18 (10)	O11C—C21C—H21B	109.7
O3—Mo4—O5H	71.25 (10)	O11C—C21C—C31C	109.8 (16)
O4—Mo4—O3H	70.39 (10)	H21A—C21C—H21B	108.2
O4—Mo4—O5H	85.41 (11)	C31C—C21C—H21A	109.7
O13—Mo4—O3	103.68 (13)	C31C—C21C—H21B	109.7
O13—Mo4—O4	96.24 (13)	C21C—C31C—H31A	110.1
O13—Mo4—O3H	158.31 (12)	C21C—C31C—H31B	110.1
O13—Mo4—O5H	91.61 (13)	H31A—C31C—H31B	108.4
O14—Mo4—O3	96.60 (13)	N41C—C31C—C21C	108.1 (15)
O14—Mo4—O4	100.88 (13)	N41C—C31C—H31A	110.1
O14—Mo4—O13	103.89 (15)	N41C—C31C—H31B	110.1
O14—Mo4—O3H	95.57 (12)	C31C—N41C—H41A	109.2
O14—Mo4—O5H	162.40 (12)	C31C—N41C—H41B	109.2
O5H—Mo4—O3H	70.87 (9)	C31C—N41C—C51C	112.1 (16)
O4—Mo5—O5	147.96 (11)	H41A—N41C—H41B	107.9
O4—Mo5—O3H	71.61 (10)	C51C—N41C—H41A	109.2
O4—Mo5—O4H	83.53 (11)	C51C—N41C—H41B	109.2
O5—Mo5—O3H	83.23 (10)	N41C—C51C—H51A	109.7
O5—Mo5—O4H	69.51 (10)	N41C—C51C—H51B	109.8
O15—Mo5—O4	97.32 (12)	N41C—C51C—C61C	109.6 (15)
O15—Mo5—O5	100.87 (12)	H51A—C51C—H51B	108.2
	× /		

О15—Мо5—О3Н	161.18 (11)	C61C—C51C—H51A	109.7
O15—Mo5—O4H	92.81 (12)	C61C—C51C—H51B	109.8
O16—Mo5—O4	103.40 (13)	O11C—C61C—C51C	111.3 (16)
O16—Mo5—O5	96.86 (12)	O11C—C61C—H61A	109.4
O16—Mo5—O15	105.52 (14)	O11C—C61C—H61B	109.4
О16—Мо5—О3Н	92.07 (12)	C51C—C61C—H61A	109.4
O16—Mo5—O4H	159.17 (12)	C51C—C61C—H61B	109.4
O3H—Mo5—O4H	71.24 (9)	H61A—C61C—H61B	108.0
O5—Mo6—O2H	83.57 (10)	C6E—O1E—C2E	109.8 (5)
05—Mo6—O4H	71.69 (10)	O1E—C2E—H2EA	109.5
$06-M_06-05$	149 28 (10)	O1E - C2E - H2EB	109.5
06—Mo6—02H	72 51 (10)	O1E - C2E - C3E	110.5(5)
06—Mo6—04H	82 58 (11)	H2FA - C2F - H2FB	108.1
$017 - M_06 - 05$	94 63 (12)	C3F - C2F - H2FA	109.5
$017 - M_06 - 06$	103.69(12)	C3E = C2E = H2ER	109.5
017—Mo6—02H	88 87 (11)	C2E $C2E$ $H2EB$	109.5
017_Mo6_04H	157 37 (11)	C2E_C3E_H3EB	109.8
$018 M_{0}6 05$	101.37(11)	C2E C3E N/E	109.5 (5)
$018 - M_06 - 06$	97 17 (12)	H3FA_C3F_H3FB	109.5 (5)
$018 M_{0}6 017$	105.74(13)	NAE C3E H3EA	100.2
018 Mo6 02H	163.09(11)	NAE C3E H3ER	109.8
018 Mo6 04H	04.82(12)	C3E N/E H/EA	109.8
$O4H_Mo6_O2H$	72 08 (9)	C3E_N4E_H4EB	109.2
Mo2 01 Mo1	12.00(0)	HAEA NAE HAEB	107.0
$M_{02} = 01 - M_{01}$	120.08 (15)	C5E N/E C3E	107.9 111.0 (A)
$M_{02} = 02 = M_{03}$	120.08 (13)	C5E N4E H4EA	111.9 (4)
Mo5 04 Mo4	110.91(13) 120.31(14)	C5E N/E H/EB	109.2
$M_{0}6 O5 M_{0}5$	120.31(14) 110.87(13)	NAE CSE HSEA	109.2
Mo6Mo3	119.07(13) 118.00(13)	N4E C5E H5ER	110.0
$H1WA \cap 1W H1WP$	140.1	N4E—C5E—H5EB	100.0
$\begin{array}{ccc} & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$	140.1	HSEA CSE HSED	108.7 (5)
$O_{1H} = Fe_1 = O_{2H}$	90.79 (11)	CAE CSE HSEA	100.5
OIH = FeI = O3H	97.33 (11)	COE—CSE—HSER	110.0
$O_{1H} = Fe_1 = O_{2H}$	177.91(10) 84 54 (11)	COE CSE DIE CSE CSE	110.0 110.0(5)
OIH = FeI = OSH	84.54 (11) 84.60 (11)	OIE C C E H C S E	110.9 (3)
O_{11} Fe_1 O_{41}	82 25 (10)	OIE CE HER	109.5
O_2H Fel O_4H	83.23 (10) 83.20 (11)	OIE - COE - HOEB	109.5
O_2H F_{e1} O_2H	00.02(11)	CSE CE HEP	109.5
$O_{2H} = FeI = O_{2H}$	99.02 (11) 84.52 (11)		109.5
O_{3H} Fel O_{4H}	84.32 (11) 84.25 (11)	HOEA—COE—HOEB	108.0
OSH—Fel—OSH	84.55 (11)	COLE—OTE—C2TE	108 (3)
OSH_Fel_O6H	176.55 (10)	OIIE - C2IE - H2IC	109.0
OSH_Fel_O2H	1/0.15(10)	OHE-C2IE-H2ID	109.0
OSH—Fel—O4H	95.29 (11)	UTIE-C2TE-C3TE	110 (3)
	93.23 (11) 02.25 (11)	$\frac{1}{10} - \frac{1}{10} - \frac{1}{10} = \frac{1}{10} + \frac{1}{10} = \frac{1}{10} $	108.1
$00H$ FeI $04H$ M_{2} $01H$ $H1H$	93.23 (11) 118 2	$C_{21E} = C_{21E} = H_{21D}$	109.6
$\frac{1}{102} - \frac{1}{11} - \frac{1}{11} + \frac{1}{11}$	118.2	$C_{21E} = C_{21E} = H_{21C}$	109.0
MUS-OTH-MO2	93.80 (10)	C21E—C31E—H31C	110.2
MO3-OIH-HIH	118.2	UZIE-USIE-HSID	110.2

Fe1—O1H—Mo2	102.45 (11)	H31C—C31E—H31D	108.5
Fe1—O1H—Mo3	101.86 (11)	N41E - C31E - C21E	107 (3)
Fe1—O1H—H1H	118.2	N41E—C31E—H31C	110.2
Mo1—O2H—H2H	118.5	N41E—C31E—H31D	110.2
Mo6—O2H—Mo1	92.61 (9)	C_{31E} N41E H41C	109.6
Mo6-02H-H2H	118 5	$C_{31}E_{N_{1}}N_{41}E_{H_{1}}H_{41}D$	109.6
Fe1—O2H—Mo1	102.24 (10)	C_{31E} N41E C51E	110(2)
Fe1—O2H—Mo6	102.24(11)	H41C - N41F - H41D	108.1
Fe1 = O2H = H2H	118 5	C51E - N41E - H41C	109.6
M_04 $O3H$ $H3H$	117.7	C_{51E} N41E H41D	109.6
Mo5 - O3H - Mo4	93 52 (10)	N41E $-$ C51E $-$ H51C	109.0
M05-03H-H3H	117 7	N41E $-C51E$ H51D	109.7
Fe1O3HMo4	102 43 (10)	H_{51C} C_{51E} H_{51D}	109.7
Fel O3H Mo5	102.43(10) 103.95(11)	C61E C51E N/1E	100.2
Fe1 024 H2H	105.95 (11)	C61E - C51E - H51C	10(2)
	117.7	C61E C51E H51D	109.7
Mos O4II Mos	110.0		109.7
Moo-O4H-Mos	94.02 (9) 118 6		114 (5)
$M00 - 04 \Pi - \Pi 4 \Pi$	110.0 100.27(10)		108.7
Fel—O4H—Mo5	100.27(10) 102.24(11)	OTTE-COTE-HOTD	108.7
Fe1—04H—M06	102.34 (11)	CSIE—COIE—HOIC	108.7
Fe1—04H—H4H	118.6	CSIE—CoIE—HoID	108.7
Mo3—O5H—Mo4	93.37 (9)	H6IC—C6IE—H6ID	107.6
Мо3—О5Н—Н5Н	118.3	C6D—OID—C2D	109.7 (6)
Mo4—O5H—H5H	118.3	OID—C2D—H2DA	109.4
Fe1—O5H—Mo3	102.11 (11)	O1D—C2D—H2DB	109.4
Fel—O5H—Mo4	102.35 (11)	01D—C2D—C3D	111.3 (6)
Fe1—O5H—H5H	118.3	H2DA—C2D—H2DB	108.0
Mo1—O6H—Mo2	94.54 (10)	C3D—C2D—H2DA	109.4
Мо1—О6Н—Н6Н	117.9	C3D—C2D—H2DB	109.4
Мо2—О6Н—Н6Н	117.9	C2D—C3D—H3DA	109.5
Fe1—O6H—Mo1	103.15 (11)	C2D—C3D—H3DB	109.5
Fe1—O6H—Mo2	101.72 (11)	C2D—C3D—N4D	110.8 (6)
Fe1—O6H—H6H	117.9	H3DA—C3D—H3DB	108.1
O2S—S1—O1S	108.74 (16)	N4D—C3D—H3DA	109.5
O3S—S1—O1S	109.32 (19)	N4D—C3D—H3DB	109.5
O3S—S1—O2S	109.95 (19)	C3D—N4D—H4DA	109.3
O3S—S1—O4S	111.28 (18)	C3D—N4D—H4DB	109.3
O4S—S1—O1S	108.9 (2)	H4DA—N4D—H4DB	108.0
O4S—S1—O2S	108.6 (2)	C5D—N4D—C3D	111.6 (6)
C6A—O1A—C2A	109.2 (3)	C5D—N4D—H4DA	109.3
O1A—C2A—H2AA	109.4	C5D—N4D—H4DB	109.3
O1A—C2A—H2AB	109.4	N4D—C5D—H5DA	109.5
O1A—C2A—C3A	111.3 (4)	N4D—C5D—H5DB	109.5
H2AA—C2A—H2AB	108.0	N4D—C5D—C6D	110.8 (7)
СЗА—С2А—Н2АА	109.4	H5DA—C5D—H5DB	108.1
C3A—C2A—H2AB	109.4	C6D—C5D—H5DA	109.5
С2А—С3А—НЗАА	109.9	C6D—C5D—H5DB	109.5
С2А—С3А—НЗАВ	109.9	O1D-C6D-C5D	111.9 (6)

C2A—C3A—N4A	109 1 (3)	O1D—C6D—H6DA	109.2
H3AA—C3A—H3AB	108.3	O1D - C6D - H6DB	109.2
N4A—C3A—H3AA	109.9	C5D - C6D - H6DA	109.2
NAA C3A H3AB	109.9	C5D C6D H6DR	109.2
$C_{2A} = N_{AA} = H_{AA}$	109.9		109.2
C_{A} N4A H4AD	109.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.9
C_{3A} N4A C_{5A}	109.2	$C_{21D} = O_{11D} = C_{01D}$	111.7(13)
C_{A} N4A C_{A}	112.1 (5)	OIID - C2ID - H2IE	109.0
H4AA—N4A—H4AB	107.9	OIID—C2ID—H2IF	109.6
C5A—N4A—H4AA	109.2	OIID—C2ID—C3ID	110.1 (13)
C5A—N4A—H4AB	109.2	H2IE—C2ID—H2IF	108.2
N4A—C5A—H5AA	110.1	C31D—C21D—H21E	109.6
N4A—C5A—H5AB	110.1	C31D—C21D—H21F	109.6
N4A—C5A—C6A	108.1 (3)	C21D—C31D—H31E	109.6
Н5АА—С5А—Н5АВ	108.4	C21D—C31D—H31F	109.6
С6А—С5А—Н5АА	110.1	H31E—C31D—H31F	108.1
C6A—C5A—H5AB	110.1	N41D-C31D-C21D	110.4 (14)
O1A—C6A—C5A	111.0 (3)	N41D-C31D-H31E	109.6
O1A—C6A—H6AA	109.4	N41D-C31D-H31F	109.6
O1A—C6A—H6AB	109.4	C31D—N41D—H41E	110.0
С5А—С6А—Н6АА	109.4	C31D—N41D—H41F	110.0
С5А—С6А—Н6АВ	109.4	C31D—N41D—C51D	108.4 (16)
Н6АА—С6А—Н6АВ	108.0	H41E—N41D—H41F	108.4
C2B = O1B = C6B	109 5 (3)	C51D - N41D - H41E	110.0
O1B-C2B-H2BA	109.4	C51D N41D H41F	110.0
O1B C2B H2BR	109.4	N41D_C51D_H51F	109.8
O1B C2B C3B	109.4	NAID CSID HSIE	109.8
	102.0	H51E C51D H51E	109.8
$\Pi 2 D A - C 2 D - \Pi 2 D D A$	100.0	CAD CSID NAID	100.3 100.2(15)
C_{2D} C_{2D} H_{2DD}	109.4	COID—CSID—IN4ID	109.2 (13)
C3B—C2B—H2BB	109.4	COID—CSID—HSIE	109.8
C_{2B} C_{3B} H_{3BA}	110.0	ColD—CSID—HSIF	109.8
C2B—C3B—H3BB	110.0	OIID-C6ID-C5ID	108.5 (13)
H3BA—C3B—H3BB	108.3	OIID—C6ID—H6IE	110.0
N4B—C3B—C2B	108.7 (3)	O11D—C61D—H61F	110.0
N4B—C3B—H3BA	110.0	C51D—C61D—H61E	110.0
N4B—C3B—H3BB	110.0	C51D—C61D—H61F	110.0
C3B—N4B—H4BA	109.5	H61E—C61D—H61F	108.4
C3B—N4B—H4BB	109.5	H2WA—O2W—H2WB	109.7
H4BA—N4B—H4BB	108.0	H3WA—O3W—H3WB	109.3
C5B—N4B—C3B	110.9 (3)	H4WA—O4W—H4WB	109.1
C5B—N4B—H4BA	109.5		
O1A—C2A—C3A—N4A	56.9 (4)	O1E—C2E—C3E—N4E	55.3 (7)
C2A—O1A—C6A—C5A	64.4 (4)	C2E—O1E—C6E—C5E	64.1 (7)
C2A—C3A—N4A—C5A	-52.4 (5)	C2E—C3E—N4E—C5E	-52.5 (7)
C3A—N4A—C5A—C6A	52.8 (5)	C3E—N4E—C5E—C6E	53.9 (7)
N4A—C5A—C6A—O1A	-58.7 (4)	N4E—C5E—C6E—O1E	-59.7 (7)
C6A—O1A—C2A—C3A	-63.6 (4)	C6E—O1E—C2E—C3E	-61.8(7)
01B—C2B—C3B—N4B	-58.7 (4)	O11E—C21E—C31E—N41E	-61 (4)
	· · · · · · · · · · · · · · · · · · ·		

C2B—O1B—C6B—C5B	-61.6 (5)	C21E—O11E—C61E—C51E	-63 (4)
C2B—C3B—N4B—C5B	54.7 (4)	C21E—C31E—N41E—C51E	55 (3)
C3B—N4B—C5B—C6B	-54.4 (4)	C31E—N41E—C51E—C61E	-53 (3)
N4B-C5B-C6B-01B	57.5 (5)	N41E—C51E—C61E—O11E	57 (4)
C6B—O1B—C2B—C3B	61.9 (4)	C61E—O11E—C21E—C31E	63 (4)
O1C—C2C—C3C—N4C	-55.1 (7)	O1D—C2D—C3D—N4D	-56.2 (9)
C2C—O1C—C6C—C5C	-64.2 (8)	C2D-01D-C6D-C5D	-61.6 (9)
C2C—C3C—N4C—C5C	51.1 (8)	C2D—C3D—N4D—C5D	49.8 (10)
C3C—N4C—C5C—C6C	-52.9 (8)	C3D—N4D—C5D—C6D	-48.9 (10)
N4C—C5C—C6C—O1C	59.4 (8)	N4D-C5D-C6D-01D	55.4 (10)
C6C—O1C—C2C—C3C	61.6 (8)	C6D-01D-C2D-C3D	62.2 (8)
O11C—C21C—C31C—N41C	61 (3)	O11D-C21D-C31D-N41D	59.6 (19)
C21C—O11C—C61C—C51C	65 (3)	C21D-011D-C61D-C51D	63.0 (17)
C21C—C31C—N41C—C51C	-52 (3)	C21D—C31D—N41D—C51D	-55.8 (18)
C31C—N41C—C51C—C61C	50 (4)	C31D—N41D—C51D—C61D	57.0 (19)
N41C-C51C-C61C-011C	-55 (3)	N41D-C51D-C61D-011D	-58.6 (18)
C61C—O11C—C21C—C31C	-67 (3)	C61D-011D-C21D-C31D	-62.2 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
01 <i>W</i> —H1 <i>WA</i> ···O9	0.84	1.94	2.781 (11)	178
$O1W$ — $H1WB$ ···O 10^{i}	0.85	1.99	2.831 (11)	173
O2W—H2WA···O4W ⁱⁱ	0.85	1.80	2.619 (4)	161
$O2W$ — $H2WB$ ···O2 S^{ii}	0.85	2.05	2.876 (4)	164
O2W—H2WB···O4S ⁱⁱ	0.85	2.48	3.129 (5)	133
$O3W$ — $H3WA$ ···O1 S^{ii}	0.85	1.99	2.790 (5)	155
O3 <i>W</i> —H3 <i>WB</i> ···O3	0.85	1.92	2.753 (4)	167
O4 <i>W</i> —H4 <i>WA</i> ···O17 ⁱⁱⁱ	0.85	1.88	2.714 (4)	165
O4 <i>W</i> —H4 <i>WB</i> ···O6	0.85	1.94	2.761 (4)	161
$O1H$ — $H1H$ ···O4 S^{ii}	1.00	1.69	2.673 (4)	165
O2 <i>H</i> —H2 <i>H</i> ⋯O2 <i>W</i>	1.00	1.78	2.743 (4)	162
O3 <i>H</i> —H3 <i>H</i> ···O3 <i>S</i> ^{ti}	1.00	1.61	2.602 (4)	174
O4 <i>H</i> —H4 <i>H</i> ···O2 <i>S</i>	1.00	2.13	2.911 (4)	133
O5 <i>H</i> —H5 <i>H</i> ···O1 <i>S</i>	1.00	1.69	2.672 (4)	165
O6 <i>H</i> —H6 <i>H</i> ···O2 <i>S</i>	1.00	1.83	2.691 (4)	142
$N4A - H4AA \cdots O4W^{ii}$	0.91	2.34	3.102 (5)	141
N4 <i>A</i> —H4 <i>AB</i> ···O5	0.91	1.86	2.760 (4)	169
N4 <i>B</i> —H4 <i>BA</i> ···O4	0.91	2.00	2.761 (4)	140
N4B—H4BA···O1 A^{iv}	0.91	2.26	2.840 (4)	121
N4B—H4BB····O15 v	0.91	1.97	2.869 (4)	171
N4C—H4CA····O1E ^{vi}	0.91	1.97	2.817 (7)	155
N41 C —H41 A ···O11 E ^{vi}	0.91	1.92	2.54 (5)	124
N4 <i>E</i> —H4 <i>EA</i> ···O1	0.91	1.91	2.780 (6)	160
N41 <i>E</i> —H41 <i>D</i> …O1	0.91	1.52	2.35 (3)	150
N4 <i>D</i> —H4 <i>DA</i> ···O1 <i>S</i>	0.91	1.99	2.866 (8)	162

N4 <i>D</i> —H4 <i>DB</i> ···O2	0.91	2.00	2.846 (9)	155	
N41 <i>D</i> —H41 <i>E</i> ···O2	0.91	1.62	2.520 (19)	169	

Symmetry codes: (i) -x, -y+2, -z+2; (ii) x+1, y, z; (iii) -x, -y+2, -z+1; (iv) -x+1, -y+1, -z+1; (v) -x, -y+1, -z+1; (vi) x-1, y-1, z.