🔲 CrossMark

Received 12 October 2015 Accepted 13 October 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; 1,2-bis(pyridin-4yl)ethane; 4-alkoxybenzoic acid; hydrogenbonded liquid crystal

CCDC references: 1430875; 1430874; 1430873 Supporting information: this article has

supporting information at journals.iucr.org/e

OPEN O ACCESS

Crystal structures of three co-crystals of 1,2-bis(pyridin-4-yl)ethane with 4-alkoxybenzoic acids: 4-ethoxybenzoic acid–1,2-bis(pyridin-4yl)ethane (2/1), 4-*n*-propoxybenzoic acid–1,2-bis-(pyridin-4-yl)ethane (2/1) and 4-*n*-butoxybenzoic acid–1,2-bis(pyridin-4-yl)ethane (2/1)

Yohei Tabuchi, Kazuma Gotoh and Hiroyuki Ishida*

Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan. *Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

The crystal structures of three hydrogen-bonded co-crystals of 4-alkoxybenzoic acid-1,2-bis(pyridin-4-yl)ethane (2/1), namely, $2C_9H_{10}O_3 \cdot C_{12}H_{12}N_2$, (I), $2C_{10}H_{12}O_3 \cdot C_{12}H_{12}N_2$, (II), and $2C_{11}H_{14}O_3 \cdot C_{12}H_{12}N_2$, (III), have been determined at 93, 290 and 93 K, respectively. In (I), the asymmetric unit consists of one 4-ethoxybenzoic acid molecule and one half-molecule of 1,2-bis(pyridin-4-yl)ethane, which lies on an inversion centre. In (II) and (III), the asymmetric units each comprise two crystallographically independent 4-alkoxybenzoic acid molecules and one 1,2-bis(pyridin-4-yl)ethane molecule. In each crystal, the two components are linked by $O-H \cdots N$ hydrogen bonds, forming a linear hydrogen-bonded 2:1unit of the acid and the base. Similar to the structure of 2:1 unit of (I), the units of (II) and (III) are linked *via* $C-H \cdots O$ hydrogen bonds, forming tape structures.

1. Chemical context

Co-crystals of 4-alkoxybenzoic acid-4,4'-bipyridyl (2/1), in which the two acids and the base are held together by intermolecular O-H···N hydrogen bonds, show thermotropic liquid crystallinity (Kato et al., 1990, 1993; Grunert et al., 1997). Recently, we have reported the crystal structures of the three compounds of 4-ethoxy-, 4-n-propoxy- and 4-n-butoxybenzoic acid (Tabuchi et al., 2015). As an expansion of our work on the structural characterization of hydrogen-bonded co-crystals which exhibit liquid phases, we have prepared compounds of 4-alkoxybenzoic acid-1,2-bis(pyridin-4-yl)ethane (2/1) and analyzed the crystal structures. DSC (differential scanning calorimetry) and polarizing microscope measurements show that the compounds of 4-methoxy-, 4-ethoxy- and 4-n-propoxybenzoic acid have nematic phases at 419 (1), 421 (1) and 419 (1) K, respectively, while the compound of 4-n-butoxybenzoic acid exhibits a smectic A phase at 413 (1) K and a nematic phase at 419 (1) K.

We present here three structures of 4-ethoxybenzoic acid-1,2-bis(pyridin-4-yl)ethane (2/1), (I), 4-*n*-propoxybenzoic acid-1,2-bis(pyridin-4-yl)ethane (2/1), (II), and 4-*n*-butoxybenzoic acid-1,2-bis(pyridin-4-yl)ethane (2/1), (III). The structure of 4-methoxybenzoic acid-1,2-bis(pyridin-4-yl)ethane (2/1) has been reported recently (Mukherjee & Desiraju, 2014).

2. Structural commentary

The molecular structures of (I), (II) and (III) are shown in Fig. 1. The asymmetric unit of (I) consists of one 4-ethoxybenzoic acid molecule and one half-molecule of 1,2-bis-(pyridin-4-yl)ethane which lies on an inversion centre. The two acid molecules and the base molecule are held together *via* $O-H\cdots N$ hydrogen bonds (Table 1) to afford a centrosymmetric linear 2:1 unit. The hydrogen-bonded asymmetric unit is approximately planar with dihedral angles of 9.40 (11), 4.38 (11) and 2.76 (9)°, respectively, between the N1/C10–C14 and O1/C7/O2 planes, the O1/C7/O2 and C1–C6 planes, and the C1–C6 and O3/C8/C9 planes.

The asymmetric units of (II) and (III) are each composed of two crystallographically independent 4-alkoxybenzoic acid molecules and one 1,2-bis(pyridin-4-yl)ethane molecule, and the two acids and the base are held together by $O-H\cdots N$ hydrogen bonds (Tables 2 and 3), forming a linear hydrogenbonded 2:1 aggregate. Similar to the 2:1 unit of (I), the units of (II) and (III) adopt nearly pseudo-inversion symmetry. The dihedral angles between the pyridine rings of 1,2-bis(pyridin-4-yl)ethane are 14.36 (6) and 29.92 (7)°, respectively, for (II) and (III). The pyridine ring and the carboxyl group hydrogen-

Table	1
-------	---

Hydrogen-bond geometry (Å, °) for (I).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$\begin{array}{c} O1 - H1 \cdots N1 \\ C6 - H6 \cdots O2^{i} \end{array}$	0.967 (18)	1.659 (18)	2.6247 (17)	178.0 (14)
	0.95	2.60	3.406 (2)	144

Symmetry code: (i) -x + 1, -y, -z.

Table 2Hydrogen-bond geometry (Å, $^{\circ}$) for (II).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O1-H1\cdots N1$	0.966 (18)	1.657 (19)	2.6207 (17)	175.4 (16)
$O4-H4\cdots N2$ $C6-H6\cdots O2^{i}$	1.010 (19) 0.93	1.610 (19) 2.55	2.6198 (17) 3.376 (2)	179 (2) 149
$C27 - H27 \cdots O5^{ii}$	0.93	2.52	3.389 (2)	156

Symmetry codes: (i) -x - 2, -y, -z + 1; (ii) -x + 1, -y + 1, -z + 1.

Table 3

Hydrogen-bond geometry (Å, °) for (III).

Cg1 and Cg2 are the centroids of the C1-C6 and C12-C17 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1\cdots N1$	1.02 (2)	1.60 (2)	2.6209 (18)	177 (2)
$O4-H4\cdots N2$	1.03 (3)	1.58 (3)	2.6092 (18)	178.1 (19)
$C32-H32\cdots O3^{i}$	0.95	2.57	3.524 (2)	177
$C11 - H11A \cdot \cdot \cdot Cg1^{ii}$	0.98	2.80	3.662 (2)	148
$C33-H33A\cdots Cg2^{iii}$	0.99	2.74	3.598 (2)	145

Symmetry codes: (i) x, y, z - 1; (ii) -x + 1, -y, -z + 2; (iii) -x, -y + 1, -z.

bonded to it are twisted with respect to each other. In (II), the dihedral angles between the N1/C21–C25 and O1/C7/O2 planes, and the N2/C26–C30 and O4/C17/O5 planes are

Figure 1

The molecular structures of compounds (I), (II) and (III) determined at 93, 290 and 93 K, respectively, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. $O-H \cdots N$ hydrogen bonds are indicated by dashed lines [symmetry code for (I): (ii) -x, -y + 2, -z].

research communications

Figure 2

A partial packing diagram of compound (I), showing the tape structure formed by $C-H\cdots O$ hydrogen bonds. H atoms not involved in $C-H\cdots O$ and $O-H\cdots N$ hydrogen bonds (dashed lines) have been omitted [symmetry codes: (i) -x + 1, -y, -z; (ii) -x, -y + 2, -z].

4.86 (14) and 7.71 (14)°, respectively, while those in (III) are 9.48 (16) and 25.25 (17)°, respectively, between the N1/C23–C27 and O1/C7/O2 planes, and the N2/C28–C32 and O4/C17/O5 planes.

The molecular structures of 4-*n*-propoxy- and 4-*n*-butoxybenzoic acids in (II) and (III) are approximately planar. The dihedral angles made by the benzene ring with the carboxyl group and the alkoxy group in each propoxybenzoic acid in (II) are 9.20 (14), 4.36 (14), 1.80 (11) and 5.98 (11)°, respectively, between the C1–C6 and O1/C7/O2 planes, the C11–C16 and O4/C17/O5 planes, the C1–C6 and O3/C8–C10 planes, and the C11–C16 and O6/C18–C20 planes. The corresponding dihedral angles in (III) are 0.67 (16), 15.05 (17), 2.83 (10) and 11.86 (10)°, respectively, between the C1–C6 and O1/C7/O2 planes, the C12–C17 and O4/C18/O5 planes, the C1–C6 and O3/C8–C11 planes, and the C12–C17 and O6/C19–C22 planes.

3. Supramolecular features

In the crystal of (I), the 2:1 units are linked by a pair of C– H···O hydrogen bonds (Table 1), forming a tape structure along [1 $\overline{2}0$] (Fig. 2). In addition, the units are stacked in a column through π - π interactions between the acid and base rings along the *b* axis (Fig. 3). The centroid–centroid distance between the C1–C6 and N1/C10–C14(*x*, *y* – 1, *z*) rings is 3.592 (2) Å.

In the crystal of (II) and (III), the 2:1 units are linked by $C-H\cdots O$ interactions (Tables 2 and 3), forming tape structures along [310] (Fig. 4) and [001] (Fig. 5), respectively.

A partial packing diagram of compound (I), showing the column structure formed by π - π stacking interactions (dashed lines). H atoms not involved in O-H···N hydrogen bonds (dashed lines) have been omitted [symmetry codes: (iii) x, y - 1, z; (iv) x, y + 1, z].

Figure 4 A partial packing diagram of compound (II), showing the tape structure formed by $C-H\cdots O$ interactions. H atoms not involved in $C-H\cdots O$ and $O-H\cdots N$ hydrogen bonds (dashed lines) have been omitted [symmetry codes: (i) -x - 2, -y, -z + 1; (ii) -x + 1, -y + 1, -z + 1].

Between the tapes in (II), a weak π - π interaction is observed. The centroid-centroid distance between the C11-C16 benzene ring and the N2/C26-C30(x + 1, y, z) pyridine ring is 3.7115 (18) Å. On the other hand, between the tapes in (III) C-H··· π interactions are observed (Table 3). Although the 2:1 units of the three compounds are arranged in the crystals with their long axes parallel to each other, the distinct layer structure leading to a smectic structure, as observed in 4-nbutoxybenzoic acid-4,4'-bipyridyl (2/1) (Tabuchi *et al.*, 2015), is not observed.

4. Database survey

A search of the Cambridge Structural Database (Version 5.36, last update February 2015; Groom & Allen, 2014) for cocrystals of 1,2-bis(pyridin-4-yl)ethane with 4-alkoxybenzoic acid gave three structures (Mukherjee & Desiraju, 2014; Aakeröy *et al.*, 2005). A similar compound, 4-pentylbenzoic acid–1,2-bis(pyridin-4-yl)ethane (2/1), was reported to exhibit transitions to liquid-crystalline phases (smectic A at 421.3 K and nematic at 439.6 K) and the molecular motions were investigated by solid-state NMR (Duer *et al.*, 1996; Clauss *et al.*, 1996).

5. Synthesis and crystallization

Single crystals of compound (I) were obtained by slow evaporation from an acetone solution (150 ml) of 1,2-bis-(pyridin-4-yl)ethane (67 mg) with 4-ethoxybenzoic acid (120 mg) at room temperature. Crystals of compounds (II) and (III) were obtained from ethanol solutions of 1,2-bis-

A partial packing diagram of compound (III), showing the tape structure formed by $C-H\cdots O$ interactions. H atoms not involved in $C-H\cdots O$ and $O-H\cdots N$ hydrogen bonds (dashed lines) have been omitted [symmetry codes: (i) x, y, z - 1; (iv) x, y, z + 1].

Table 4Experimental details.

	(I)	(II)	(III)
Crystal data			
Chemical formula	$2C_0H_{10}O_2 \cdot C_{12}H_{12}N_2$	$2C_{10}H_{12}O_2 \cdot C_{12}H_{12}N_2$	$2C_{11}H_{14}O_2 \cdot C_{12}H_{12}N_2$
M	516 57	544.63	572.68
Crystal system space group	Triclinic $P\overline{1}$	Triclinic $P\overline{1}$	Triclinic $P\overline{1}$
Temperature (K)	93	290	93
a b c (Å)	6 967 (3) 9 163 (4) 10 813 (6)	9 121 (3) 12 552 (5) 13 306 (6)	7702(2) 10726(4) 19010(7)
α, β, γ (°)	75.41 (2), 74.97 (2), 77.801 (19)	71.328 (16), 75.076 (18), 89.817 (16)	83.861 (17), 78.794 (16), 73.612 (15)
$V(Å^3)$	637.3 (6)	1389.2 (9)	1475.5 (9)
Z	1	2	2
Radiation type	Μο Κα	Μο Κα	Μο Κα
$\mu (\text{mm}^{-1})$	0.09	0.09	0.09
Crystal size (mm)	$0.42 \times 0.38 \times 0.36$	$0.40\times0.30\times0.20$	$0.40 \times 0.20 \times 0.10$
Data collection			
Diffractometer	Rigaku R-AXIS RAPIDII	Rigaku R-AXIS RAPIDII	Rigaku R-AXIS RAPIDII
Absorption correction	Multi-scan (<i>ABSCOR</i> ; Higashi, 1995)	Multi-scan (<i>ABSCOR</i> ; Higashi, 1995)	Multi-scan (<i>ABSCOR</i> ; Higashi, 1995)
T _{min} , T _{max}	0.877. 0.967	0.601. 0.982	0.768, 0.991
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	6408, 2908, 2628	14034, 6347, 4294	14444, 6670, 5219
Rint	0.014	0.022	0.021
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.649	0.649	0.649
Refinement			
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.113, 1.07	0.041, 0.122, 0.97	0.043, 0.129, 1.06
No. of reflections	2908	6347	6670
No. of parameters	177	371	389
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$	0.25, -0.40	0.18, -0.21	0.22, -0.36

Computer programs: RAPID-AUTO (Rigaku, 2006), Il Milione (Burla et al., 2007), SHELXL2014/7 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), CrystalStructure (Rigaku, 2010) and PLATON (Spek, 2009).

(pyridin-4-yl)ethane with 4-*n*-propoxybenzoic acid and 4-*n*-butoxybenzoic acid, respectively, at room temperature [ethanol solution (150 ml) of 1,2-bis(pyridin-4-yl)ethane (62 mg) and 4-*n*-propoxybenzoic acid (120 mg) for (II), and ethanol solution (150 ml) of 1,2-bis(pyridin-4-yl)ethane (57 mg) and 4-*n*-butoxybenzoic acid (120 mg) for (III)].

6. DSC measurements

Phase transitions of 4-methoxybenzoic acid–1,2-bis(pyridin-4yl)ethane (2/1) and the title three compounds were observed by DSC and the liquid phases were confirmed by polarizing microscopy. DSC measurements were performed by using a PerkinElmer Pyris 1 in the temperature range from 103 K to the melting temperature at a heating rate of 10 K min⁻¹. Phase transition temperatures (K) and enthalpies (kJ mol⁻¹) determined by DSC are as follows:

4-methoxybenzoic acid-1,2-bis(pyridin-4-yl)ethane (2/1) 419 (1) [56 (2)] $K_1 \rightarrow N$, 423 (1) [6.3 (13)] $N \rightarrow I$;

(I) 353 (3) [4.5 (5)] $K_1 \rightarrow K_2$, 373 (3) [6.55 (9)] $K_2 \rightarrow K_3$, 404 (1) [0.89 (15)] $K_3 \rightarrow K_4$, 421 (1) [49 (3)] $K_4 \rightarrow N$, 434 (1) [11.7 (10)] $N \rightarrow I$;

(II) 365 (1) [17.9 (9)] $K_1 \rightarrow K_2$, 419 (1) [39 (2)] $K_2 \rightarrow N$, 421 (1) [6.3 (2)] $N \rightarrow I$;

 $\begin{array}{l} (\text{III}) \; 339 \; (2) \; [4.4 \; (2)] \; K_1 \rightarrow K_2, \; 399 \; (1) \; [0.33 \; (4)] \; K_2 \rightarrow K_3, \\ 413 \; (1) \; [39 \; (3)] \; K_3 \rightarrow S_A, \; 419 \; (1) \; [0.74 \; (13)] \; S_A \rightarrow N, \; 424 \; (1) \\ [9.8 \; (15)] \; N \rightarrow I. \end{array}$

 K_i , S_A , N and I denote crystal, smectic A, nematic and isotropic phases, respectively.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. For all compounds, C-bound H atoms were positioned geometrically with C-H = 0.93-0.99 Å and were refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$. The O-bound H atoms were located in difference Fourier maps and freely refined [refined O-H = 0.966 (18)-1.03 (3) Å].

References

- Aakeröy, C. B., Desper, J. & Urbina, J. F. (2005). CrystEngComm, 7, 193–201.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
- Clauss, J., Duer, M. J., Gladden, L. F., Griffin, A. C., Jariwala, C. P. & Stourton, C. (1996). J. Chem. Soc. Faraday Trans. 92, 811–817.
- Duer, M. J., Gladden, L. F., Griffin, A. C., Jariwala, C. P. & Stourton, C. (1996). J. Chem. Soc. Faraday Trans. 92, 803–810.

research communications

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- Grunert, M., Howie, A., Kaeding, A. & Imrie, C. T. (1997). J. Mater. Chem. 7, 211–214.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Kato, T., Fréchet, J. M. J., Wilson, P. G., Saito, T., Uryu, T., Fujishima, A., Jin, C. & Kaneuchi, F. (1993). *Chem. Mater.* **5**, 1094–1100.
- Kato, T., Wilson, P. G., Fujishima, A. & Fréchet, J. M. J. (1990). *Chem. Lett.* pp. 2003–2006.
- Mukherjee, A. & Desiraju, G. R. (2014). Cryst. Growth Des. 14, 1375–1385.
- Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tabuchi, Y., Gotoh, K. & Ishida, H. (2015). Acta Cryst. E71, 1290–1295.

Acta Cryst. (2015). E71, 1340-1344 [https://doi.org/10.1107/S2056989015019349]

Crystal structures of three co-crystals of 1,2-bis(pyridin-4-yl)ethane with 4-alkoxybenzoic acids: 4-ethoxybenzoic acid–1,2-bis(pyridin-4-yl)ethane (2/1), 4-*n*propoxybenzoic acid–1,2-bis(pyridin-4-yl)ethane (2/1) and 4-*n*-butoxybenzoic acid–1,2-bis(pyridin-4-yl)ethane (2/1)

Yohei Tabuchi, Kazuma Gotoh and Hiroyuki Ishida

Computing details

For all compounds, data collection: *RAPID-AUTO* (Rigaku, 2006); cell refinement: *RAPID-AUTO* (Rigaku, 2006); data reduction: *RAPID-AUTO* (Rigaku, 2006); program(s) used to solve structure: *Il Milione* (Burla *et al.*, 2007); program(s) used to refine structure: *SHELXL2014*/7 (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *CrystalStructure* (Rigaku, 2010) and *PLATON* (Spek, 2009).

(I) 4-Ethoxybenzoic acid-1,2-bis(pyridin-4-yl)ethane (2/1)

Crystal data

 $2C_9H_{10}O_3 \cdot C_{12}H_{12}N_2$ $M_r = 516.57$ Triclinic, P1 a = 6.967 (3) Å b = 9.163 (4) Å c = 10.813 (6) Å $\alpha = 75.41 (2)^{\circ}$ $\beta = 74.97 (2)^{\circ}$ $\gamma = 77.801 (19)^{\circ}$ $V = 637.3 (6) \text{ Å}^3$

Data collection

Rigaku R-AXIS RAPIDII diffractometer Detector resolution: 10.000 pixels mm⁻¹ ω scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{min} = 0.877, T_{max} = 0.967$ 6408 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.113$ S = 1.07 Z = 1 F(000) = 274.00 $D_x = 1.346 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71075 \text{ Å}$ Cell parameters from 7263 reflections $\theta = 3.1-30.0^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 93 K Block, colorless $0.42 \times 0.38 \times 0.36 \text{ mm}$

2908 independent reflections 2628 reflections with $I > 2\sigma(I)$ $R_{int} = 0.014$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 3.1^{\circ}$ $h = -9 \rightarrow 8$ $k = -11 \rightarrow 11$ $l = -14 \rightarrow 14$

2908 reflections177 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map	$w = 1/[\sigma^2(F_o^2) + (0.0808P)^2 + 0.0636P]$ where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: mixed	$(\Delta/\sigma)_{\text{max}} < 0.001$
H atoms treated by a mixture of independent	$\Delta\rho_{\text{max}} = 0.25 \text{ e Å}^{-3}$
and constrained refinement	$\Delta\rho_{\text{min}} = -0.40 \text{ e Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Reflections were merged by *SHELXL* according to the crystal class for the calculation of statistics and refinement.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.08950 (10)	0.17801 (7)	0.27364 (6)	0.01773 (17)	
02	0.36783 (10)	0.14762 (7)	0.11743 (7)	0.02284 (18)	
03	0.30648 (10)	-0.53714 (7)	0.43129 (6)	0.01635 (17)	
N1	0.08580 (11)	0.46999 (8)	0.17005 (7)	0.01554 (18)	
C1	0.25803 (12)	-0.07314 (9)	0.26753 (8)	0.01328 (19)	
C2	0.12341 (13)	-0.13188 (10)	0.38081 (8)	0.01439 (19)	
H2	0.0175	-0.0645	0.4223	0.017*	
C3	0.14273 (13)	-0.28698 (9)	0.43308 (8)	0.01467 (19)	
H3	0.0511	-0.3258	0.5104	0.018*	
C4	0.29770 (13)	-0.38638 (9)	0.37165 (8)	0.01337 (19)	
C5	0.42960 (12)	-0.32990 (9)	0.25669 (8)	0.01389 (19)	
Н5	0.5326	-0.3976	0.2135	0.017*	
C6	0.40911 (12)	-0.17344 (9)	0.20570 (8)	0.01382 (19)	
H6	0.4994	-0.1346	0.1277	0.017*	
C7	0.24541 (13)	0.09388 (10)	0.21156 (8)	0.01440 (19)	
C8	0.46043 (13)	-0.64340 (10)	0.36946 (9)	0.0164 (2)	
H8A	0.5947	-0.6172	0.3609	0.020*	
H8B	0.4421	-0.6395	0.2808	0.020*	
C9	0.44480 (14)	-0.80100 (10)	0.45311 (10)	0.0199 (2)	
H9A	0.4609	-0.8032	0.5410	0.030*	
H9B	0.5506	-0.8753	0.4136	0.030*	
H9C	0.3128	-0.8269	0.4591	0.030*	
C10	0.21117 (14)	0.51152 (10)	0.05431 (9)	0.0174 (2)	
H10	0.3031	0.4343	0.0159	0.021*	
C11	0.21180 (13)	0.66206 (10)	-0.01116 (8)	0.0168 (2)	
H11	0.3038	0.6865	-0.0924	0.020*	
C12	0.07739 (13)	0.77805 (9)	0.04216 (8)	0.01326 (19)	
C13	-0.05253 (12)	0.73458 (9)	0.16120 (8)	0.01421 (19)	
H13	-0.1479	0.8093	0.2010	0.017*	
C14	-0.04226 (12)	0.58080 (9)	0.22195 (8)	0.01511 (19)	
H14	-0.1305	0.5533	0.3043	0.018*	
C15	0.08332 (12)	0.94192 (9)	-0.02916 (8)	0.01380 (19)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H15A	0.0760	0.9504	-0.1210	0.017*
H15B	0.2145	0.9686	-0.0308	0.017*
H1	0.091 (2)	0.285 (2)	0.2343 (17)	0.060 (5)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
01	0.0214 (3)	0.0103 (3)	0.0183 (3)	-0.0011 (2)	-0.0008 (2)	-0.0020 (2)
O2	0.0258 (4)	0.0134 (3)	0.0224 (4)	-0.0043 (3)	0.0035 (3)	0.0005 (2)
O3	0.0206 (3)	0.0087 (3)	0.0158 (3)	-0.0015 (2)	-0.0006 (2)	0.0005 (2)
N1	0.0183 (4)	0.0113 (3)	0.0182 (4)	-0.0028 (3)	-0.0076 (3)	-0.0011 (3)
C1	0.0161 (4)	0.0112 (4)	0.0135 (4)	-0.0030 (3)	-0.0053 (3)	-0.0014 (3)
C2	0.0165 (4)	0.0128 (4)	0.0139 (4)	-0.0016 (3)	-0.0027 (3)	-0.0039 (3)
C3	0.0171 (4)	0.0138 (4)	0.0119 (4)	-0.0037 (3)	-0.0008 (3)	-0.0018 (3)
C4	0.0160 (4)	0.0105 (4)	0.0139 (4)	-0.0026 (3)	-0.0053 (3)	-0.0007 (3)
C5	0.0141 (4)	0.0122 (4)	0.0150 (4)	-0.0006 (3)	-0.0035 (3)	-0.0030 (3)
C6	0.0138 (4)	0.0143 (4)	0.0125 (4)	-0.0037 (3)	-0.0022 (3)	-0.0008 (3)
C7	0.0168 (4)	0.0128 (4)	0.0144 (4)	-0.0027 (3)	-0.0048 (3)	-0.0025 (3)
C8	0.0167 (4)	0.0116 (4)	0.0189 (4)	0.0000 (3)	-0.0035 (3)	-0.0021 (3)
C9	0.0234 (4)	0.0114 (4)	0.0241 (5)	-0.0029 (3)	-0.0075 (4)	0.0004 (3)
C10	0.0220 (4)	0.0125 (4)	0.0175 (4)	-0.0009 (3)	-0.0050 (3)	-0.0037 (3)
C11	0.0205 (4)	0.0134 (4)	0.0145 (4)	-0.0024 (3)	-0.0020 (3)	-0.0016 (3)
C12	0.0147 (4)	0.0115 (4)	0.0151 (4)	-0.0029 (3)	-0.0070 (3)	-0.0009 (3)
C13	0.0132 (4)	0.0116 (4)	0.0169 (4)	-0.0010 (3)	-0.0035 (3)	-0.0019 (3)
C14	0.0152 (4)	0.0128 (4)	0.0163 (4)	-0.0036 (3)	-0.0042 (3)	0.0008 (3)
C15	0.0152 (4)	0.0106 (4)	0.0142 (4)	-0.0026 (3)	-0.0031 (3)	0.0002 (3)

Geometric parameters (Å, °)

01—C7	1.3242 (11)	С8—С9	1.5076 (13)
01—H1	0.970 (19)	C8—H8A	0.9900
O2—C7	1.2169 (12)	C8—H8B	0.9900
O3—C4	1.3653 (11)	С9—Н9А	0.9800
O3—C8	1.4353 (11)	С9—Н9В	0.9800
N1-C14	1.3365 (12)	С9—Н9С	0.9800
N1-C10	1.3445 (13)	C10-C11	1.3831 (13)
C1—C6	1.3912 (12)	C10—H10	0.9500
C1—C2	1.3983 (13)	C11—C12	1.3954 (12)
C1—C7	1.4900 (13)	C11—H11	0.9500
С2—С3	1.3825 (13)	C12—C13	1.3874 (14)
С2—Н2	0.9500	C12—C15	1.5091 (13)
C3—C4	1.3978 (12)	C13—C14	1.3920 (12)
С3—Н3	0.9500	C13—H13	0.9500
C4—C5	1.3936 (14)	C14—H14	0.9500
С5—С6	1.3913 (12)	C15-C15 ⁱ	1.5215 (16)
С5—Н5	0.9500	C15—H15A	0.9900
С6—Н6	0.9500	C15—H15B	0.9900

C7—O1—H1	110.2 (10)	H8A—C8—H8B	108.4
C4—O3—C8	117.24 (7)	С8—С9—Н9А	109.5
C14—N1—C10	117.48 (8)	C8—C9—H9B	109.5
C6—C1—C2	119.07 (8)	H9A—C9—H9B	109.5
C6—C1—C7	118.99 (8)	С8—С9—Н9С	109.5
C2—C1—C7	121.94 (8)	Н9А—С9—Н9С	109.5
C3—C2—C1	120.72 (8)	H9B—C9—H9C	109.5
С3—С2—Н2	119.6	N1-C10-C11	122.73 (8)
C1—C2—H2	119.6	N1-C10-H10	118.6
C2—C3—C4	119.69 (8)	C11—C10—H10	118.6
С2—С3—Н3	120.2	C10—C11—C12	120.01 (9)
С4—С3—Н3	120.2	C10—C11—H11	120.0
O3—C4—C5	124.27 (8)	C12—C11—H11	120.0
O3—C4—C3	115.52 (8)	C13—C12—C11	117.06 (8)
C5—C4—C3	120.21 (8)	C13—C12—C15	123.64 (8)
C6—C5—C4	119.43 (8)	C11—C12—C15	119.28 (8)
С6—С5—Н5	120.3	C12—C13—C14	119.55 (8)
С4—С5—Н5	120.3	C12—C13—H13	120.2
C1—C6—C5	120.84 (8)	C14—C13—H13	120.2
C1—C6—H6	119.6	N1—C14—C13	123.16 (8)
С5—С6—Н6	119.6	N1—C14—H14	118.4
O2—C7—O1	123.25 (9)	C13—C14—H14	118.4
O2—C7—C1	122.84 (8)	C12-C15-C15 ⁱ	115.14 (9)
O1—C7—C1	113.92 (8)	C12—C15—H15A	108.5
O3—C8—C9	108.07 (8)	C15 ⁱ —C15—H15A	108.5
O3—C8—H8A	110.1	C12—C15—H15B	108.5
С9—С8—Н8А	110.1	C15 ⁱ —C15—H15B	108.5
O3—C8—H8B	110.1	H15A—C15—H15B	107.5
С9—С8—Н8В	110.1		
C6—C1—C2—C3	1.73 (13)	C6—C1—C7—O1	176.33 (7)
C7—C1—C2—C3	-177.82(7)	C2—C1—C7—O1	-4.12 (12)
C1—C2—C3—C4	-0.40 (13)	C4—O3—C8—C9	178.74 (7)
C8—O3—C4—C5	-0.98(12)	C14—N1—C10—C11	0.07 (13)
C8—O3—C4—C3	178.48 (7)	N1-C10-C11-C12	-0.53 (14)
C2—C3—C4—O3	179.15 (7)	C10-C11-C12-C13	0.12 (13)
C2—C3—C4—C5	-1.37 (13)	C10—C11—C12—C15	178.65 (8)
O3—C4—C5—C6	-178.79 (7)	C11—C12—C13—C14	0.71 (12)
C3—C4—C5—C6	1.78 (13)	C15—C12—C13—C14	-177.75(7)
C2—C1—C6—C5	-1.31 (13)	C10—N1—C14—C13	0.83 (12)
C7—C1—C6—C5	178.25 (7)	C12—C13—C14—N1	-1.24 (13)
C4—C5—C6—C1	-0.43 (13)	C13—C12—C15—C15 ⁱ	-7.83 (14)
C6—C1—C7—O2	-3.77 (13)	C11—C12—C15—C15 ⁱ	173.74 (8)
C2-C1-C7-O2	175.77 (8)		
	~ /		

Symmetry code: (i) -x, -y+2, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
01—H1…N1	0.967 (18)	1.659 (18)	2.6247 (17)	178.0 (14)
C6—H6····O2 ⁱⁱ	0.95	2.60	3.406 (2)	144

Z = 2

F(000) = 580.00 $D_x = 1.302 \text{ Mg m}^{-3}$

 $\theta = 3.0-30.1^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 290 KBlock, colorless $0.40 \times 0.30 \times 0.20 \text{ mm}$

Mo $K\alpha$ radiation, $\lambda = 0.71075$ Å Cell parameters from 12886 reflections

Symmetry code: (ii) -x+1, -y, -z.

(II) 4-*n*-Propoxybenzoic acid–1,2-bis(pyridin-4-yl)ethane (2/1)

Crystal data

$2C_{10}H_{12}O_3 \cdot C_{12}H_{12}N_2$
$M_r = 544.63$
Triclinic, P1
a = 9.121 (3) Å
b = 12.552 (5) Å
c = 13.306 (6) Å
$\alpha = 71.328 \ (16)^{\circ}$
$\beta = 75.076 \ (18)^{\circ}$
$\gamma = 89.817 \ (16)^{\circ}$
$V = 1389.2 (9) Å^3$
Data collection
Dicola D AVIS DADIDII

Rigaku R-AXIS RAPIDII	6347 independent reflections
diffractometer	4294 reflections with $I > 2\sigma(I)$
Detector resolution: 10.000 pixels mm ⁻¹	$R_{\rm int} = 0.022$
ω scans	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 3.0^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(ABSCOR; Higashi, 1995)	$k = -16 \rightarrow 16$
$T_{\min} = 0.601, \ T_{\max} = 0.982$	$l = -17 \rightarrow 17$
14034 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: mixed
$wR(F^2) = 0.122$	H atoms treated by a mixture of independent
S = 0.97	and constrained refinement
6347 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0771P)^2]$
371 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.18 \ m e \ m \AA^{-3}$
direct methods	$\Delta \rho_{\min} = -0.21 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Reflections were merged by *SHELXL* according to the crystal class for the calculation of statistics and refinement.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	-0.86106 (9)	0.14285 (8)	0.69416 (7)	0.0513 (2)	
02	-0.85639 (9)	0.04844 (8)	0.57825 (7)	0.0572 (3)	
03	-1.54698 (8)	-0.05094 (7)	0.86644 (7)	0.0468 (2)	
04	0.77073 (9)	0.45876 (7)	0.19717 (7)	0.0492 (2)	
05	0.76146 (9)	0.54551 (8)	0.31997 (7)	0.0581 (3)	
06	1.46050 (9)	0.64460 (7)	0.05092 (6)	0.0470 (2)	
N1	-0.57003 (10)	0.19071 (8)	0.59325 (8)	0.0432 (2)	
N2	0.47841 (10)	0.40765 (8)	0.29105 (8)	0.0438 (2)	
C1	-1.08880 (11)	0.04396 (9)	0.71057 (8)	0.0356 (2)	
C2	-1.16087 (12)	0.06518 (9)	0.80729 (9)	0.0386 (2)	
H2	-1.1057	0.1020	0.8382	0.046*	
C3	-1.31324 (12)	0.03204 (9)	0.85748 (9)	0.0407 (3)	
H3	-1.3601	0.0457	0.9225	0.049*	
C4	-1.39693 (12)	-0.02169 (9)	0.81125 (9)	0.0380 (2)	
C5	-1.32604 (12)	-0.04396 (10)	0.71520 (9)	0.0407 (3)	
Н5	-1.3811	-0.0807	0.6843	0.049*	
C6	-1.17302 (12)	-0.01094 (9)	0.66615 (9)	0.0399 (2)	
H6	-1.1256	-0.0259	0.6019	0.048*	
C7	-0.92513 (12)	0.07793 (9)	0.65432 (9)	0.0384 (2)	
C8	-1.63612 (12)	-0.10691 (10)	0.82118 (10)	0.0449 (3)	
H8A	-1.5929	-0.1764	0.8164	0.054*	
H8B	-1.6348	-0.0591	0.7474	0.054*	
C9	-1.79706 (13)	-0.13286 (11)	0.89263 (10)	0.0484 (3)	
H9A	-1.8427	-0.0631	0.8933	0.058*	
H9B	-1.7979	-0.1763	0.9676	0.058*	
C10	-1.88892 (14)	-0.19964 (12)	0.84880 (11)	0.0557 (3)	
H10A	-1.8425	-0.2680	0.8471	0.084*	
H10B	-1.8912	-0.1552	0.7756	0.084*	
H10C	-1.9910	-0.2178	0.8960	0.084*	
C11	0.99847 (12)	0.55101 (9)	0.19183 (9)	0.0372 (2)	
C12	1.08279 (12)	0.51427 (9)	0.10802 (9)	0.0407 (3)	
H12	1.0350	0.4672	0.0823	0.049*	
C13	1.23598 (13)	0.54654 (10)	0.06260 (9)	0.0426 (3)	
H13	1.2907	0.5217	0.0062	0.051*	
C14	1.30898 (12)	0.61617 (9)	0.10086 (9)	0.0394 (2)	
C15	1.22638 (12)	0.65343 (10)	0.18464 (9)	0.0436 (3)	
H15	1.2744	0.6997	0.2111	0.052*	
C16	1.07223 (13)	0.62128 (10)	0.22845 (9)	0.0437 (3)	
H16	1.0169	0.6474	0.2837	0.052*	
C17	0.83294 (12)	0.51878 (9)	0.24279 (9)	0.0400 (2)	
C18	1.53914 (13)	0.70883 (10)	0.09605 (10)	0.0467 (3)	
H18A	1.5325	0.6659	0.1722	0.056*	
H18B	1.4910	0.7782	0.0944	0.056*	
C19	1.70299 (13)	0.73646 (11)	0.03172 (10)	0.0467 (3)	
H19A	1.7104	0.7790	-0.0447	0.056*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H19B	1 7522	0 6674	0.0342	0.056*
C20	1 78187 (14)	0.80588 (11)	0.0342	0.0557 (3)
H20A	1 7796	0.7617	0.1553	0.084*
H20R	1.7790	0.8725	0.0813	0.084*
H20C	1.8857	0.8723	0.0379	0.084*
C21	-0.50433(13)	0.14613 (10)	0.51637 (10)	0.0448 (3)
H21	-0 5642	0.0987	0.4987	0.054*
C22	-0.35180(12)	0.0707	0.4507	0.034
U22	-0.3108	0.10703 (10)	0.40180 (10)	0.0443 (3)
C23	-0.25002(12)	0.1330 0.22752(0)	0.4088	0.033°
C23	-0.23902(12)	0.23733(9) 0.28400(11)	0.46332(9) 0.56275(10)	0.0309(2)
C24	-0.32810 (13)	0.28490 (11)	0.50575 (10)	0.0494 (5)
H24 C25	-0.2/13	0.3339	0.3819	0.039
C25	-0.48225 (13)	0.25931 (12)	0.61548 (10)	0.0543 (3)
H25	-0.5265	0.2919	0.6685	0.065*
C26	0.41740 (13)	0.43030 (11)	0.38378 (10)	0.0474 (3)
H26	0.4803	0.4649	0.4114	0.057*
C27	0.26572 (13)	0.40488 (10)	0.44034 (10)	0.0459 (3)
H27	0.2284	0.4220	0.5048	0.055*
C28	0.16865 (11)	0.35392 (9)	0.40132 (9)	0.0376 (2)
C29	0.23253 (12)	0.32884 (10)	0.30641 (9)	0.0424 (3)
H29	0.1728	0.2926	0.2780	0.051*
C30	0.38599 (13)	0.35788 (10)	0.25382 (10)	0.0453 (3)
H30	0.4264	0.3417	0.1892	0.054*
C31	-0.09183 (12)	0.25894 (10)	0.42528 (9)	0.0401 (3)
H31A	-0.0818	0.2946	0.3472	0.048*
H31B	-0.0489	0.1867	0.4347	0.048*
C32	0.00142 (12)	0.33167 (10)	0.46139 (9)	0.0406 (3)
H32A	-0.0420	0.4037	0.4524	0.049*
H32B	-0.0084	0.2958	0.5394	0.049*
H1	-0.755 (2)	0.1609 (15)	0.6535 (14)	0.098 (6)*
H4	0.658 (2)	0.4399 (16)	0.2335 (15)	0.106 (6)*
	(=)	()	()	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0343 (4)	0.0726 (6)	0.0542 (5)	-0.0057 (4)	-0.0016 (4)	-0.0386 (5)
O2	0.0386 (4)	0.0833 (6)	0.0575 (5)	-0.0022 (4)	0.0016 (4)	-0.0451 (5)
O3	0.0326 (4)	0.0641 (5)	0.0447 (5)	-0.0036 (4)	-0.0004(3)	-0.0273 (4)
O4	0.0359 (4)	0.0656 (5)	0.0546 (5)	-0.0020 (4)	-0.0107 (4)	-0.0324 (4)
O5	0.0434 (5)	0.0806 (6)	0.0562 (5)	-0.0068 (4)	-0.0011 (4)	-0.0401 (5)
O6	0.0368 (4)	0.0590 (5)	0.0484 (5)	-0.0050 (4)	-0.0037 (3)	-0.0281 (4)
N1	0.0339 (5)	0.0533 (6)	0.0421 (5)	-0.0010 (4)	-0.0052 (4)	-0.0194 (4)
N2	0.0337 (5)	0.0465 (5)	0.0497 (6)	0.0016 (4)	-0.0118 (4)	-0.0135 (5)
C1	0.0344 (5)	0.0373 (5)	0.0354 (6)	0.0066 (4)	-0.0080(4)	-0.0137 (5)
C2	0.0375 (5)	0.0444 (6)	0.0388 (6)	0.0037 (5)	-0.0096 (4)	-0.0210 (5)
C3	0.0398 (6)	0.0493 (6)	0.0350 (6)	0.0048 (5)	-0.0038 (4)	-0.0217 (5)
C4	0.0341 (5)	0.0408 (6)	0.0371 (6)	0.0033 (4)	-0.0051 (4)	-0.0139 (5)
C5	0.0367 (5)	0.0497 (6)	0.0397 (6)	0.0000 (5)	-0.0079 (4)	-0.0222 (5)

C6	0.0386 (6)	0.0479 (6)	0.0354 (6)	0.0043 (5)	-0.0048 (4)	-0.0209 (5)
C7	0.0344 (5)	0.0447 (6)	0.0374 (6)	0.0045 (5)	-0.0071 (4)	-0.0171 (5)
C8	0.0373 (6)	0.0527 (7)	0.0468 (7)	-0.0009 (5)	-0.0063 (5)	-0.0230 (5)
C9	0.0389 (6)	0.0548 (7)	0.0466 (7)	-0.0028 (5)	-0.0011 (5)	-0.0184 (6)
C10	0.0407 (6)	0.0621 (8)	0.0621 (8)	-0.0084 (6)	-0.0018 (6)	-0.0270 (7)
C11	0.0370 (5)	0.0407 (6)	0.0357 (6)	0.0032 (4)	-0.0124 (4)	-0.0130 (5)
C12	0.0423 (6)	0.0460 (6)	0.0399 (6)	0.0002 (5)	-0.0151 (5)	-0.0194 (5)
C13	0.0438 (6)	0.0503 (6)	0.0383 (6)	0.0030 (5)	-0.0088 (5)	-0.0224 (5)
C14	0.0380 (5)	0.0427 (6)	0.0378 (6)	0.0026 (5)	-0.0096 (4)	-0.0141 (5)
C15	0.0401 (6)	0.0494 (6)	0.0469 (6)	-0.0026 (5)	-0.0100 (5)	-0.0251 (5)
C16	0.0429 (6)	0.0510(7)	0.0413 (6)	0.0032 (5)	-0.0073 (5)	-0.0240 (5)
C17	0.0390 (6)	0.0432 (6)	0.0395 (6)	0.0040 (5)	-0.0123 (5)	-0.0149 (5)
C18	0.0424 (6)	0.0506 (7)	0.0512 (7)	-0.0017 (5)	-0.0083 (5)	-0.0256 (6)
C19	0.0397 (6)	0.0505 (7)	0.0487 (7)	-0.0024 (5)	-0.0066 (5)	-0.0191 (5)
C20	0.0434 (6)	0.0641 (8)	0.0609 (8)	-0.0070 (6)	-0.0073 (6)	-0.0276 (7)
C21	0.0378 (6)	0.0512 (7)	0.0484 (7)	-0.0026 (5)	-0.0084 (5)	-0.0229 (5)
C22	0.0381 (6)	0.0529 (7)	0.0457 (6)	0.0014 (5)	-0.0045 (5)	-0.0266 (5)
C23	0.0332 (5)	0.0411 (6)	0.0350 (5)	0.0034 (4)	-0.0078 (4)	-0.0119 (5)
C24	0.0387 (6)	0.0653 (8)	0.0511 (7)	-0.0061 (5)	-0.0058 (5)	-0.0332 (6)
C25	0.0408 (6)	0.0771 (9)	0.0513 (7)	-0.0030 (6)	-0.0006 (5)	-0.0388 (7)
C26	0.0393 (6)	0.0556 (7)	0.0502 (7)	-0.0022 (5)	-0.0164 (5)	-0.0177 (6)
C27	0.0408 (6)	0.0571 (7)	0.0428 (6)	0.0000 (5)	-0.0119 (5)	-0.0202 (5)
C28	0.0334 (5)	0.0388 (6)	0.0388 (6)	0.0033 (4)	-0.0103 (4)	-0.0101 (5)
C29	0.0356 (5)	0.0474 (6)	0.0486 (7)	0.0004 (5)	-0.0120 (5)	-0.0210 (5)
C30	0.0376 (6)	0.0494 (7)	0.0489 (7)	0.0036 (5)	-0.0072 (5)	-0.0200 (5)
C31	0.0322 (5)	0.0482 (6)	0.0397 (6)	0.0003 (5)	-0.0050 (4)	-0.0178 (5)
C32	0.0342 (5)	0.0483 (6)	0.0398 (6)	0.0008 (5)	-0.0079 (4)	-0.0169 (5)

Geometric parameters (Å, °)

01—C7	1.3136 (14)	C13—C14	1.3891 (15)
O1—H1	0.963 (19)	C13—H13	0.9300
O2—C7	1.2108 (14)	C14—C15	1.3885 (16)
O3—C4	1.3638 (13)	C15—C16	1.3821 (16)
O3—C8	1.4297 (13)	C15—H15	0.9300
O4—C17	1.3157 (14)	C16—H16	0.9300
O4—H4	1.01 (2)	C18—C19	1.4969 (16)
O5—C17	1.2110 (14)	C18—H18A	0.9700
O6—C14	1.3628 (13)	C18—H18B	0.9700
O6—C18	1.4355 (13)	C19—C20	1.5245 (16)
N1—C25	1.3264 (15)	C19—H19A	0.9700
N1—C21	1.3294 (15)	C19—H19B	0.9700
N2—C30	1.3277 (15)	C20—H20A	0.9600
N2—C26	1.3352 (16)	C20—H20B	0.9600
C1—C6	1.3828 (15)	C20—H20C	0.9600
C1—C2	1.3935 (15)	C21—C22	1.3754 (16)
C1—C7	1.4815 (15)	C21—H21	0.9300
C2—C3	1.3778 (15)	C22—C23	1.3841 (15)

С2—Н2	0.9300	С22—Н22	0.9300
C3—C4	1.3881 (15)	C23—C24	1.3770 (16)
С3—Н3	0.9300	C23—C31	1.5079 (15)
C4—C5	1.3897 (16)	C24—C25	1.3840 (16)
C5—C6	1.3810 (15)	C24—H24	0.9300
С5—Н5	0.9300	C25—H25	0.9300
С6—Н6	0.9300	C26—C27	1.3766 (17)
C8—C9	1.5002 (16)	С26—Н26	0.9300
C8—H8A	0.9700	C27—C28	1.3841 (15)
C8—H8B	0.9700	С27—Н27	0.9300
C9—C10	1.5211 (16)	C28—C29	1.3812 (16)
C9—H9A	0.9700	$C_{28} = C_{32}$	1.5084 (15)
C9—H9B	0.9700	C_{29} C_{30}	1 3846 (16)
C10—H10A	0.9600	C29—H29	0.9300
C10_H10B	0.9600	C30_H30	0.9300
	0.9600	C_{31} C_{32}	1 5113 (16)
C11 C16	1.3842(15)	$C_{31} = C_{32}$	0.0700
$C_{11} = C_{10}$	1.3042(13) 1.2002(16)		0.9700
C11 - C12	1.3903 (10)	Сээ нээл	0.9700
	1.4640(10)	C32—H32A	0.9700
C12—C13	1.3761 (16)	С32—Н32В	0.9700
C12—H12	0.9300		
C7—O1—H1	109.0 (11)	05—C17—O4	122 94 (10)
C4-O3-C8	117 37 (9)	05-C17-C11	122.91(10) 122.69(10)
$C_1 = C_1 = C_1$	117.37(0) 111.7(11)	04 C17 C11	122.09(10) 114.38(10)
C17 - 04 - 114	111.7 (11)	04-017-011	114.38(10) 110.74(10)
$C_{14} = 00 = C_{18}$	110.46(9)	06 - 018 - 019	100.5
$C_{23} = N_1 = C_{21}$	117.13(10) 117.12(10)	C_{10} C	109.5
$C_{30} = N_2 = C_{20}$	117.12(10)	С19—С18—Н18А	109.5
C_{6}	118.76 (10)	06-018-HI8B	109.5
	119.13 (10)	C19—C18—H18B	109.5
C2-C1-C/	122.11 (10)	H18A—C18—H18B	108.1
C3—C2—C1	120.48 (10)	C18—C19—C20	109.14 (10)
С3—С2—Н2	119.8	C18—C19—H19A	109.9
C1—C2—H2	119.8	С20—С19—Н19А	109.9
C2—C3—C4	120.17 (10)	C18—C19—H19B	109.9
С2—С3—Н3	119.9	C20—C19—H19B	109.9
С4—С3—Н3	119.9	H19A—C19—H19B	108.3
O3—C4—C3	116.02 (10)	C19—C20—H20A	109.5
O3—C4—C5	124.12 (10)	C19—C20—H20B	109.5
C3—C4—C5	119.85 (10)	H20A—C20—H20B	109.5
C6—C5—C4	119.36 (10)	C19—C20—H20C	109.5
С6—С5—Н5	120.3	H20A—C20—H20C	109.5
С4—С5—Н5	120.3	H20B—C20—H20C	109.5
C5—C6—C1	121.37 (10)	N1—C21—C22	122.90 (10)
С5—С6—Н6	119.3	N1—C21—H21	118.6
C1—C6—H6	119.3	C22—C21—H21	118.6
O2—C7—O1	122.92 (10)	C21—C22—C23	120.34 (11)
O2—C7—C1	122.94 (10)	C21—C22—H22	119.8

O1—C7—C1	114.14 (10)	С23—С22—Н22	119.8
O3—C8—C9	109.94 (10)	C24—C23—C22	116.51 (10)
O3—C8—H8A	109.7	C24—C23—C31	123.83 (10)
С9—С8—Н8А	109.7	C22—C23—C31	119.66 (10)
O3—C8—H8B	109.7	C23—C24—C25	119.76 (11)
С9—С8—Н8В	109.7	C23—C24—H24	120.1
H8A—C8—H8B	108.2	C25—C24—H24	120.1
C8—C9—C10	109.84 (10)	N1—C25—C24	123.33 (11)
С8—С9—Н9А	109.7	N1—C25—H25	118.3
С10—С9—Н9А	109.7	C24—C25—H25	118.3
С8—С9—Н9В	109.7	N2—C26—C27	123.04 (11)
С10—С9—Н9В	109.7	N2—C26—H26	118.5
Н9А—С9—Н9В	108.2	С27—С26—Н26	118.5
C9—C10—H10A	109.5	C26—C27—C28	120.05 (11)
C9-C10-H10B	109.5	С26—С27—Н27	120.0
H10A—C10—H10B	109.5	C28—C27—H27	120.0
C9-C10-H10C	109.5	C_{29} C_{28} C_{27}	116.80 (10)
	109.5	$C_{29} C_{28} C_{27}$	123.87(10)
H10R C10 H10C	109.5	$C_{23} = C_{23} = C_{32}$	123.87(10) 110.32(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	$C_{27} = C_{28} = C_{32}$	119.32(10)
C16 - C11 - C12	110.39(10) 118.92(10)	$C_{28} = C_{29} = C_{30}$	119.07 (10)
C10 - C11 - C17	110.03(10) 122.78(10)	C_{20} C_{20} H_{20}	120.2
	122.78 (10)	C30—C29—H29	120.2
	120.97 (10)	N2-C30-C29	123.30 (11)
C13—C12—H12	119.5	N2—C30—H30	118.3
С11—С12—Н12	119.5	С29—С30—Н30	118.3
C12—C13—C14	120.07 (10)	C23—C31—C32	115.61 (10)
С12—С13—Н13	120.0	С23—С31—Н31А	108.4
C14—C13—H13	120.0	С32—С31—Н31А	108.4
O6—C14—C15	124.08 (10)	C23—C31—H31B	108.4
O6—C14—C13	116.27 (10)	C32—C31—H31B	108.4
C15—C14—C13	119.64 (10)	H31A—C31—H31B	107.4
C16—C15—C14	119.53 (10)	C28—C32—C31	115.92 (10)
C16—C15—H15	120.2	C28—C32—H32A	108.3
C14—C15—H15	120.2	C31—C32—H32A	108.3
C15—C16—C11	121.38 (11)	C28—C32—H32B	108.3
C15—C16—H16	119.3	C31—C32—H32B	108.3
C11—C16—H16	119.3	H32A—C32—H32B	107.4
C6—C1—C2—C3	-0.05(16)	C17—C11—C16—C15	179.52 (10)
C7-C1-C2-C3	-179.81(10)	C16—C11—C17—O5	-4.84(17)
C1 - C2 - C3 - C4	-0.79(17)	C_{12} C_{11} C_{17} C_{17} C_{15}	175 67 (11)
C8 - C3 - C4 - C3	-17971(10)	C_{16} C_{11} C_{17} C_{16} C_{11} C_{17} C_{16}	175.07 (11)
$C_{8} = O_{3} = C_{4} = C_{5}$	-0.69(16)	C_{12} C_{11} C_{17} C_{17} C_{14}	-4.25(16)
C_{2} C_{3} C_{4} C_{3}	-17973(10)	C12 - C11 - C17 - C19	-17858(0)
$C_2 = C_3 = C_4 = C_5$	1 21 (17)	06 C18 C10 C20	170.25 (10)
$C_2 - C_3 - C_4 - C_5$	1.21(17) -170.77(10)	C_{10} C_{10} C_{17} C_{20} C_{25} $N1$ C_{21} C_{22}	1/9.23(10)
$C_2 = C_4 = C_5 = C_6$	-1/9.77(10)	V_{23} NI C21 C22 C22	0.20 (10)
$C_{4} = C_{5} = C_{6} = C_{1}$	-0.78(17)	N1 - U21 - U22 - U23	-0.30 (19)
C4—C5—C6—C1	-0.06 (17)	C21—C22—C23—C24	-0.73 (18)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.48 (17) -179.76 (10) -8.98 (17) 170.78 (11) 171.02 (10) -9.22 (15) 179.75 (10) -176.05 (10) 0.19 (17) 179.68 (10) 0.47 (17)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	179.59 (10) $1.05 (18)$ $-179.28 (11)$ $-0.6 (2)$ $-0.4 (2)$ $-0.28 (18)$ $-0.30 (19)$ $1.34 (17)$ $-177.13 (10)$ $-1.82 (17)$ $176 57 (10)$
C18—O6—C14—C15 C18—O6—C14—C13 C12—C13—C14—O6 C12—C13—C14—C15 O6—C14—C15—C16 C13—C14—C15—C16 C14—C15—C16—C11 C12—C11—C16—C15	5.71 (16) -175.08 (10) -179.62 (10) -0.37 (17) 178.80 (10) -0.39 (17) 1.07 (18) -0.96 (17)	C26—N2—C30—C29 C28—C29—C30—N2 C24—C23—C31—C32 C22—C23—C31—C32 C29—C28—C32—C31 C27—C28—C32—C31 C23—C31—C32—C28	-0.25 (17) 1.35 (18) 3.71 (17) -176.64 (10) 11.42 (17) -170.22 (10) -179.72 (9)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D····A	D—H··· A
01—H1…N1	0.966 (18)	1.657 (19)	2.6207 (17)	175.4 (16)
O4—H4…N2	1.010 (19)	1.610 (19)	2.6198 (17)	179 (2)
C6—H6····O2 ⁱ	0.93	2.55	3.376 (2)	149
С27—Н27…О5 ^{іі}	0.93	2.52	3.389 (2)	156

Symmetry codes: (i) -*x*-2, -*y*, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+1.

(III) 4-*n*-Butoxybenzoic acid–1,2-bis(pyridin-4-yl)ethane (2/1)

Crystal data

$2C_{11}H_{14}O_3 \cdot C_{12}H_{12}N_2$	Z = 2
$M_r = 572.68$	F(000) = 612.00
Triclinic, $P\overline{1}$	$D_x = 1.289 \text{ Mg m}^{-3}$
a = 7.702 (2) Å	Mo K α radiation, $\lambda = 0.71075 \text{ Å}$
b = 10.726 (4) Å	Cell parameters from 15221 reflections
c = 19.010 (7) Å	$\theta = 3.0-30.2^{\circ}$
a = 83.861 (17)°	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 78.794$ (16)°	T = 93 K
$\gamma = 73.612$ (15)°	Block, colorless
V = 14/5.5 (9) A ³ Data collection Rigaku R-AXIS RAPIDII	$0.40 \times 0.20 \times 0.10 \text{ mm}$ $T_{\min} = 0.768, T_{\max} = 0.991$
diffractometer	14444 measured reflections
Detector resolution: 10.000 pixels mm ⁻¹	6670 independent reflections
ω scans	5219 reflections with $I > 2\sigma(I)$
Absorption correction: multi-scan	$R_{\text{int}} = 0.021$
(ABSCOR; Higashi, 1995)	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$

$h = -9 \rightarrow 10$	$l = -24 \rightarrow 24$
$k = -12 \rightarrow 13$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: mixed
$wR(F^2) = 0.129$	H atoms treated by a mixture of independent
S = 1.06	and constrained refinement
6670 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0705P)^2 + 0.390P]$
389 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.22 \ m e \ m \AA^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.36 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Reflections were merged by *SHELXL* according to the crystal class for the calculation of statistics and refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.51653 (13)	0.27771 (9)	0.61192 (5)	0.0218 (2)
O2	0.64354 (14)	0.06698 (9)	0.59129 (5)	0.0236 (2)
O3	0.68036 (13)	0.09242 (9)	0.92200 (5)	0.0209 (2)
O4	0.22564 (13)	0.47777 (10)	-0.13269 (5)	0.0230 (2)
O5	0.11681 (15)	0.69204 (10)	-0.11701 (5)	0.0309 (3)
O6	0.08262 (14)	0.65267 (9)	-0.44591 (5)	0.0225 (2)
N1	0.45623 (15)	0.30647 (11)	0.47936 (6)	0.0192 (2)
N2	0.28494 (16)	0.44868 (12)	-0.00061 (6)	0.0218 (3)
C1	0.62039 (17)	0.13761 (13)	0.70801 (7)	0.0163 (3)
C2	0.56165 (17)	0.24210 (13)	0.75274 (7)	0.0182 (3)
H2	0.5050	0.3265	0.7343	0.022*
C3	0.58528 (18)	0.22352 (13)	0.82341 (7)	0.0193 (3)
Н3	0.5460	0.2953	0.8533	0.023*
C4	0.66680 (17)	0.09943 (13)	0.85130 (7)	0.0178 (3)
C5	0.72677 (18)	-0.00590 (13)	0.80742 (7)	0.0182 (3)
Н5	0.7830	-0.0904	0.8260	0.022*
C6	0.70292 (17)	0.01481 (13)	0.73615 (7)	0.0176 (3)
H6	0.7439	-0.0565	0.7059	0.021*
C7	0.59569 (17)	0.15588 (13)	0.63141 (7)	0.0171 (3)
C8	0.76407 (18)	-0.03082 (13)	0.95543 (7)	0.0191 (3)
H8A	0.8937	-0.0635	0.9321	0.023*
H8B	0.6977	-0.0957	0.9514	0.023*
C9	0.75313 (18)	-0.00767 (14)	1.03313 (7)	0.0201 (3)
H9A	0.6224	0.0241	1.0554	0.024*

H9B	0.8140	0.0612	1.0358	0.024*
C10	0.84284 (19)	-0.12942 (14)	1.07582 (7)	0.0234 (3)
H10A	0.7823	-0.1985	1.0733	0.028*
H10B	0.9738	-0.1611	1.0539	0.028*
C11	0.8294 (2)	-0.10349 (16)	1.15397 (7)	0.0275 (3)
H11A	0.7000	-0.0701	1.1755	0.041*
H11B	0.8958	-0.0390	1.1568	0.041*
H11C	0.8836	-0.1846	1.1800	0.041*
C12	0.13736 (17)	0.61449 (13)	-0.23165(7)	0.0186(3)
C13	0.13730(17) 0.14716(18)	0.50757 (13)	-0.26965(7)	0.0200(3)
H13	0.1674	0.4232	-0.2462	0.0200 (3)
C14	0.12777(18)	0.4232 0.52337 (13)	-0.34095(7)	0.024
U14	0.12777 (18)	0.52557 (15)	-0.3662	0.0200 (3)
C15	0.1331 0.10025 (17)	0.4302	-0.37501(7)	0.025°
C15	0.10023(17)	0.04080(13) 0.75280(12)	-0.37391(7)	0.0182(3)
	0.09527(18)	0.75589 (15)	-0.33900 (7)	0.0192 (3)
H10	0.0764	0.8379	-0.3629	0.023*
CI/	0.1111/(1/)	0.73674 (13)	-0.26/20(/)	0.0189 (3)
HI7	0.1054	0.8099	-0.2418	0.023*
C18	0.15721 (18)	0.60009 (14)	-0.15474 (7)	0.0205 (3)
C19	0.02570 (19)	0.77902 (13)	-0.48132 (7)	0.0196 (3)
H19A	0.1233	0.8246	-0.4871	0.024*
H19B	-0.0871	0.8324	-0.4528	0.024*
C20	-0.01042 (18)	0.75828 (13)	-0.55364 (7)	0.0199 (3)
H20A	-0.0972	0.7036	-0.5473	0.024*
H20B	0.1059	0.7114	-0.5831	0.024*
C21	-0.0906 (2)	0.88721 (14)	-0.59280(7)	0.0244 (3)
H21A	-0.2101	0.9317	-0.5644	0.029*
H21B	-0.0070	0.9437	-0.5964	0.029*
C22	-0.1187 (2)	0.86963 (16)	-0.66777 (8)	0.0279 (3)
H22A	0.0000	0.8288	-0.6968	0.042*
H22B	-0.1723	0.9547	-0.6903	0.042*
H22C	-0.2017	0.8141	-0.6645	0.042*
C23	0.48692 (18)	0.19855 (13)	0.44432 (7)	0.0200 (3)
H23	0.5283	0.1166	0.4688	0.024*
C24	0.46126 (18)	0.20069 (13)	0.37437 (7)	0.0197(3)
H24	0.4851	0.1214	0.3517	0.024*
C25	0.40048(17)	0.31899(13)	0.33696(7)	0.021
C26	0.3688(2)	0.43079(13)	0.37340(7)	0.0170(3)
H26	0.3279	0.5140	0.3502	0.0224 (3)
C27	0.3279	0.3140 0.42053(14)	0.3302 0.44380(7)	0.027
U27	0.3909 (2)	0.42033 (14)	0.44900 (7)	0.0227 (3)
П27 С28	0.3729 0.18240 (10)	0.4982	0.4080	0.027°
C28	0.16349 (19)	0.34309 (13)	0.04192 (7)	0.0249 (3)
П20 С20	0.0930	0.0110 0.54572(14)	0.0250 0.11240 (7)	0.030°
0.29	0.20320 (19)	0.54575(14)	0.11249(/)	0.0224 (3)
H29	0.12/8	0.0101	0.1409	$0.02/^{*}$
C30	0.33331(17)	0.44/04 (13)	0.141/4(7)	0.0176(3)
C31	0.43955 (19)	0.34872 (13)	0.09681 (7)	0.0213 (3)
H31	0.5310	0.2792	0.1141	0.026*

C32	0.41101 (19)	0.35308 (14)	0.02703 (7)	0.0221 (3)
H32	0.4842	0.2851	-0.0028	0.027*
C33	0.37029 (19)	0.32021 (13)	0.26098 (7)	0.0203 (3)
H33A	0.2547	0.2962	0.2622	0.024*
H33B	0.4717	0.2525	0.2355	0.024*
C34	0.35958 (18)	0.44973 (12)	0.21788 (7)	0.0174 (3)
H34A	0.2562	0.5173	0.2425	0.021*
H34B	0.4741	0.4749	0.2172	0.021*
H1	0.497 (3)	0.288 (2)	0.5597 (13)	0.060 (7)*
H4	0.247 (3)	0.468 (2)	-0.0805 (14)	0.069 (7)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0304 (5)	0.0184 (5)	0.0149 (5)	-0.0016 (4)	-0.0083 (4)	0.0015 (4)
O2	0.0355 (6)	0.0196 (5)	0.0155 (5)	-0.0052 (4)	-0.0069 (4)	-0.0011 (4)
O3	0.0293 (5)	0.0204 (5)	0.0122 (5)	-0.0023 (4)	-0.0087 (4)	0.0002 (4)
O4	0.0268 (5)	0.0238 (5)	0.0158 (5)	-0.0011 (4)	-0.0076 (4)	0.0015 (4)
05	0.0420 (6)	0.0285 (6)	0.0196 (5)	-0.0005 (5)	-0.0105 (4)	-0.0044 (4)
O6	0.0329 (5)	0.0204 (5)	0.0124 (5)	-0.0031 (4)	-0.0067 (4)	0.0009 (4)
N1	0.0218 (6)	0.0222 (6)	0.0131 (5)	-0.0046 (5)	-0.0048(4)	0.0013 (4)
N2	0.0261 (6)	0.0261 (6)	0.0139 (5)	-0.0077 (5)	-0.0062 (4)	0.0020 (4)
C1	0.0165 (6)	0.0193 (6)	0.0134 (6)	-0.0050 (5)	-0.0039 (4)	0.0012 (5)
C2	0.0203 (6)	0.0167 (6)	0.0166 (6)	-0.0032 (5)	-0.0052 (5)	0.0022 (5)
C3	0.0231 (7)	0.0183 (6)	0.0160 (6)	-0.0037 (5)	-0.0044(5)	-0.0023 (5)
C4	0.0174 (6)	0.0231 (7)	0.0131 (6)	-0.0053 (5)	-0.0044 (4)	0.0006 (5)
C5	0.0197 (6)	0.0169 (6)	0.0167 (6)	-0.0020 (5)	-0.0055 (5)	0.0017 (5)
C6	0.0185 (6)	0.0177 (6)	0.0157 (6)	-0.0030 (5)	-0.0028 (5)	-0.0026 (5)
C7	0.0181 (6)	0.0188 (6)	0.0151 (6)	-0.0063 (5)	-0.0036 (4)	0.0013 (5)
C8	0.0204 (6)	0.0201 (7)	0.0163 (6)	-0.0028 (5)	-0.0069 (5)	0.0015 (5)
C9	0.0196 (6)	0.0257 (7)	0.0142 (6)	-0.0044 (5)	-0.0046 (5)	0.0017 (5)
C10	0.0245 (7)	0.0277 (7)	0.0158 (7)	-0.0040 (6)	-0.0055 (5)	0.0036 (5)
C11	0.0292 (8)	0.0367 (8)	0.0166 (7)	-0.0087 (6)	-0.0079 (5)	0.0049 (6)
C12	0.0151 (6)	0.0233 (7)	0.0152 (6)	-0.0017 (5)	-0.0037 (5)	0.0008 (5)
C13	0.0213 (7)	0.0196 (6)	0.0172 (6)	-0.0026 (5)	-0.0051 (5)	0.0025 (5)
C14	0.0253 (7)	0.0176 (6)	0.0184 (7)	-0.0036 (5)	-0.0053 (5)	-0.0018 (5)
C15	0.0180 (6)	0.0216 (7)	0.0129 (6)	-0.0024 (5)	-0.0029 (4)	0.0003 (5)
C16	0.0196 (6)	0.0191 (6)	0.0170 (6)	-0.0031 (5)	-0.0034 (5)	0.0020 (5)
C17	0.0186 (6)	0.0195 (6)	0.0182 (6)	-0.0033 (5)	-0.0042 (5)	-0.0026 (5)
C18	0.0181 (6)	0.0263 (7)	0.0155 (6)	-0.0029 (5)	-0.0043 (5)	0.0007 (5)
C19	0.0244 (7)	0.0187 (6)	0.0143 (6)	-0.0036 (5)	-0.0050 (5)	0.0020 (5)
C20	0.0223 (7)	0.0227 (7)	0.0141 (6)	-0.0049 (5)	-0.0044 (5)	0.0004 (5)
C21	0.0274 (7)	0.0260 (7)	0.0171 (7)	-0.0017 (6)	-0.0069 (5)	0.0011 (5)
C22	0.0291 (8)	0.0355 (8)	0.0200 (7)	-0.0086 (6)	-0.0102 (6)	0.0053 (6)
C23	0.0227 (7)	0.0197 (6)	0.0171 (6)	-0.0044 (5)	-0.0058 (5)	0.0026 (5)
C24	0.0239 (7)	0.0182 (6)	0.0174 (6)	-0.0054 (5)	-0.0051 (5)	-0.0005 (5)
C25	0.0169 (6)	0.0220 (7)	0.0137 (6)	-0.0055 (5)	-0.0029 (4)	0.0009 (5)
C26	0.0312 (7)	0.0177 (6)	0.0167 (7)	-0.0020 (6)	-0.0086(5)	0.0015 (5)

C27	0.0312 (7)	0.0196 (7)	0.0166 (7)	-0.0032 (6)	-0.0077 (5)	-0.0018 (5)
C28	0.0250 (7)	0.0280 (7)	0.0189 (7)	-0.0005 (6)	-0.0079 (5)	0.0010 (5)
C29	0.0234 (7)	0.0246 (7)	0.0162 (6)	-0.0011 (6)	-0.0037 (5)	-0.0017 (5)
C30	0.0195 (6)	0.0215 (6)	0.0133 (6)	-0.0078 (5)	-0.0038 (5)	0.0010 (5)
C32	0.0282 (7)	0.0224 (7)	0.0153 (6)	-0.0056 (6)	-0.0040 (5)	-0.0015 (5)
C33	0.0286 (7)	0.0202 (7)	0.0136 (6)	-0.0074 (5)	-0.0070 (5)	0.0004 (5)
C34	0.0220 (6)	0.0186 (6)	0.0123 (6)	-0.0049 (5)	-0.0051 (5)	-0.0010 (5)

Geometric parameters (Å, °)

O1—C7	1.3234 (16)	C14—C15	1.3962 (19)
O1—H1	1.02 (2)	C14—H14	0.9500
O2—C7	1.2144 (17)	C15—C16	1.391 (2)
O3—C4	1.3606 (16)	C16—C17	1.3871 (19)
O3—C8	1.4372 (16)	C16—H16	0.9500
O4—C18	1.3240 (17)	C17—H17	0.9500
O4—H4	1.03 (3)	C19—C20	1.5053 (18)
O5—C18	1.2146 (18)	C19—H19A	0.9900
O6—C15	1.3568 (16)	C19—H19B	0.9900
O6—C19	1.4374 (16)	C20—C21	1.5246 (19)
N1—C23	1.3374 (18)	C20—H20A	0.9900
N1—C27	1.3380 (18)	C20—H20B	0.9900
N2—C28	1.3314 (18)	C21—C22	1.521 (2)
N2—C32	1.3384 (18)	C21—H21A	0.9900
C1—C6	1.3906 (18)	C21—H21B	0.9900
C1—C2	1.3971 (18)	C22—H22A	0.9800
C1—C7	1.4903 (18)	C22—H22B	0.9800
C2—C3	1.3764 (18)	C22—H22C	0.9800
C2—H2	0.9500	C23—C24	1.3788 (19)
C3—C4	1.3977 (18)	С23—Н23	0.9500
С3—Н3	0.9500	C24—C25	1.3915 (18)
C4—C5	1.3939 (19)	C24—H24	0.9500
C5—C6	1.3887 (18)	C25—C26	1.3871 (19)
С5—Н5	0.9500	C25—C33	1.5051 (18)
С6—Н6	0.9500	C26—C27	1.3849 (19)
C8—C9	1.5062 (19)	С26—Н26	0.9500
C8—H8A	0.9900	С27—Н27	0.9500
C8—H8B	0.9900	C28—C29	1.3833 (19)
C9—C10	1.5243 (19)	C28—H28	0.9500
С9—Н9А	0.9900	C29—C30	1.3875 (19)
С9—Н9В	0.9900	С29—Н29	0.9500
C10-C11	1.519 (2)	C30—C31	1.3946 (19)
C10—H10A	0.9900	C30—C34	1.5044 (18)
C10—H10B	0.9900	C31—C32	1.3799 (19)
C11—H11A	0.9800	С31—Н31	0.9500
C11—H11B	0.9800	С32—Н32	0.9500
C11—H11C	0.9800	C33—C34	1.5251 (19)

C12—C17	1,3895 (19)	С33—Н33А	0.9900
C12—C13	1.396 (2)	C33—H33B	0.9900
C12—C18	1.4865 (18)	C34—H34A	0.9900
C_{13} $-C_{14}$	1 3796 (19)	C34—H34B	0.9900
C13—H13	0.9500		0.9900
	0.9500		
C7—O1—H1	112.6(13)	O5-C18-O4	124.19 (13)
C4-O3-C8	119 21 (10)	05-C18-C12	122.87 (13)
$C_{18} - O_{4} - H_{4}$	113.1 (13)	04 - C18 - C12	112.07(13) 112.93(12)
$C_{15} - 06 - C_{19}$	117 94 (10)	06-019-012	107.13(11)
$C_{23} = N_1 = C_{27}$	117.21 (12)	06-C19-H19A	110.3
$C_{23} = N_{1} = C_{23}$	117.67 (12)	C_{20} C_{19} H_{19A}	110.3
C_{6} C_{1} C_{2}	118.85 (12)	06_C19_H19B	110.3
$C_{0} - C_{1} - C_{2}$	110.03(12) 110.07(12)	C_{20} C_{10} H_{10B}	110.3
$C_0 - C_1 - C_7$	119.97(12) 121.18(12)	$H_{10A} = C_{10} = H_{10B}$	108.5
$C_2 - C_1 - C_7$	121.10(12) 120.44(12)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	108.5 111 41 (11)
$C_3 = C_2 = C_1$	120.44 (12)	$C_{19} - C_{20} - C_{21}$	111.41 (11)
$C_3 - C_2 - H_2$	119.0	C19 - C20 - H20A	109.5
C1 = C2 = H2	119.8	C_{21} C_{20} H_{20A}	109.5
$C_2 = C_3 = C_4$	120.22 (12)	C19 - C20 - H20B	109.3
$C_2 - C_3 - H_3$	119.9	C21—C20—H20B	109.3
C4—C3—H3	119.9	$H_{20}A - C_{20} - H_{20}B$	108.0
03-04-05	124.82 (12)	$C_{22} - C_{21} - C_{20}$	112.54 (12)
03	115.04 (11)	C22—C21—H21A	109.1
C5—C4—C3	120.13 (12)	C20—C21—H21A	109.1
C6—C5—C4	118.85 (12)	C22—C21—H21B	109.1
C6—C5—H5	120.6	C20—C21—H21B	109.1
C4—C5—H5	120.6	H21A—C21—H21B	107.8
C5—C6—C1	121.50 (12)	C21—C22—H22A	109.5
С5—С6—Н6	119.3	C21—C22—H22B	109.5
С1—С6—Н6	119.3	H22A—C22—H22B	109.5
O2—C7—O1	123.76 (12)	C21—C22—H22C	109.5
O2—C7—C1	122.85 (12)	H22A—C22—H22C	109.5
O1—C7—C1	113.38 (11)	H22B—C22—H22C	109.5
O3—C8—C9	106.52 (11)	N1-C23-C24	123.07 (12)
O3—C8—H8A	110.4	N1—C23—H23	118.5
С9—С8—Н8А	110.4	C24—C23—H23	118.5
O3—C8—H8B	110.4	C23—C24—C25	120.01 (12)
C9—C8—H8B	110.4	C23—C24—H24	120.0
H8A—C8—H8B	108.6	C25—C24—H24	120.0
C8—C9—C10	112.97 (12)	C26—C25—C24	116.82 (12)
С8—С9—Н9А	109.0	C26—C25—C33	123.58 (12)
С10—С9—Н9А	109.0	C24—C25—C33	119.59 (12)
С8—С9—Н9В	109.0	C27—C26—C25	119.72 (13)
С10—С9—Н9В	109.0	C27—C26—H26	120.1
Н9А—С9—Н9В	107.8	C25—C26—H26	120.1
C11—C10—C9	111.88 (12)	N1—C27—C26	123.16 (13)
C11—C10—H10A	109.2	N1—C27—H27	118.4
C9-C10-H10A	109.2	C26—C27—H27	118.4

C11—C10—H10B	109.2	N2—C28—C29	122.87 (13)
C9—C10—H10B	109.2	N2—C28—H28	118.6
H10A—C10—H10B	107.9	C29—C28—H28	118.6
C10-C11-H11A	109.5	C28—C29—C30	119.95 (13)
C10—C11—H11B	109.5	С28—С29—Н29	120.0
H11A—C11—H11B	109.5	С30—С29—Н29	120.0
C10—C11—H11C	109.5	C29—C30—C31	116.87 (12)
H11A—C11—H11C	109.5	C29—C30—C34	120.72 (12)
H11B—C11—H11C	109.5	C31—C30—C34	122.39 (12)
C17—C12—C13	118.89 (12)	C32—C31—C30	119.61 (12)
C17—C12—C18	119.51 (12)	C32—C31—H31	120.2
C13—C12—C18	121.60 (12)	C30—C31—H31	120.2
C14-C13-C12	120.56 (13)	N2-C32-C31	123.03 (13)
C14—C13—H13	119.7	N2-C32-H32	118.5
С12—С13—Н13	119.7	C31—C32—H32	118.5
C13 - C14 - C15	119.97 (13)	C_{25} C_{33} C_{34}	115.09 (11)
C13—C14—H14	120.0	C25—C33—H33A	108 5
C15 - C14 - H14	120.0	C34—C33—H33A	108.5
06-C15-C16	124.24 (12)	C25-C33-H33B	108.5
06-C15-C14	115.68(12)	C34—C33—H33B	108.5
C16-C15-C14	120.08(12)	H33A-C33-H33B	107.5
C_{17} C_{16} C_{15}	119 31 (12)	C_{30} C_{34} C_{33}	113 82 (11)
C17 - C16 - H16	120.3	C30-C34-H34A	108.8
C_{15} C_{16} H_{16}	120.3	C33_C34_H34A	108.8
C_{16} C_{17} C_{12}	120.5 121.17(12)	C30_C34_H34B	108.8
$C_{10} = C_{17} = C_{12}$	110 4	C33_C34_H34B	108.8
C_{12} C_{17} H_{17}	119.4	H34A - C34 - H34B	107.7
	117.4	1134/ 034 11340	107.7
C6—C1—C2—C3	0.01 (19)	C18—C12—C17—C16	179.58 (11)
C7—C1—C2—C3	179.91 (12)	C17—C12—C18—O5	14.7 (2)
C1—C2—C3—C4	-0.6 (2)	C13—C12—C18—O5	-166.26 (14)
C8—O3—C4—C5	0.84 (19)	C17—C12—C18—O4	-164.26 (12)
C8—O3—C4—C3	-179.33 (11)	C13—C12—C18—O4	14.75 (18)
C2—C3—C4—O3	-179.01 (12)	C15—O6—C19—C20	-171.63 (10)
C2—C3—C4—C5	0.8 (2)	O6—C19—C20—C21	174.20 (11)
O3—C4—C5—C6	179.42 (12)	C19—C20—C21—C22	176.83 (12)
C3—C4—C5—C6	-0.40 (19)	C27—N1—C23—C24	0.4 (2)
C4—C5—C6—C1	-0.23 (19)	N1—C23—C24—C25	-0.1 (2)
C2—C1—C6—C5	0.43 (19)	C23—C24—C25—C26	0.1 (2)
C7—C1—C6—C5	-179.47 (12)	C23—C24—C25—C33	-179.12 (12)
C6—C1—C7—O2	0.6 (2)	C24—C25—C26—C27	-0.4 (2)
C2-C1-C7-O2	-179.28 (13)	C33—C25—C26—C27	178.76 (13)
C6-C1-C7-O1	-179.56 (11)	C23—N1—C27—C26	-0.7(2)
C2-C1-C7-01	0.54 (17)	C25—C26—C27—N1	0.8 (2)
C4—O3—C8—C9	-178.27 (11)	C32—N2—C28—C29	-0.1 (2)
O3—C8—C9—C10	-178.06 (11)	N2-C28-C29-C30	0.0 (2)
C8—C9—C10—C11	-179.82 (12)	C28—C29—C30—C31	0.2 (2)
C17—C12—C13—C14	-1.19 (19)	C28—C29—C30—C34	178.69 (13)
			(10)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	179.80 (12) 0.8 (2) -9.84 (19) 170.46 (11) -179.97 (11) 0.3 (2) 179.36 (12) -0.95 (19) 0.52 (19) 0.54 (10)	C29—C30—C31—C32 C34—C30—C31—C32 C28—N2—C32—C31 C30—C31—C32—N2 C26—C25—C33—C34 C24—C25—C33—C34 C29—C30—C34—C33 C31—C30—C34—C33 C25—C33—C34—C30	-0.4 (2) -178.80 (13) -0.1 (2) 0.3 (2) 18.14 (19) -162.70 (12) 133.61 (14) -48.02 (17) 178.79 (10)
C13—C12—C17—C12	0.54 (19)	025-055-054-050	170.77 (10)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C12–C17 rings, respectively.

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
01—H1…N1	1.02 (2)	1.60 (2)	2.6209 (18)	177 (2)
O4—H4…N2	1.03 (3)	1.58 (3)	2.6092 (18)	178.1 (19)
C32—H32···O3 ⁱ	0.95	2.57	3.524 (2)	177
C11—H11 <i>A</i> ··· <i>Cg</i> 1 ⁱⁱ	0.98	2.80	3.662 (2)	148
C33—H33 <i>A</i> ··· <i>Cg</i> 2 ⁱⁱⁱ	0.99	2.74	3.598 (2)	145

Symmetry codes: (i) *x*, *y*, *z*-1; (ii) -*x*+1, -*y*, -*z*+2; (iii) -*x*, -*y*+1, -*z*.