data reports

CRYSTALLOGRAPHIC

OPEN d ACCESS

Crystal structure of (2E)-1-(1-benzofuran-2-yl)-3-(2-bromophenyl)prop-2-en-1-one monohydrate

S. Satheeshchandra* and Nandakumar Shetty

Department of Physics, S. D. M College (Autonomous), Ujire 574 240, India. *Correspondence e-mail: ssatheeshchandra@rediffmail.com

Received 15 September 2015: accepted 7 October 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

The title compound, C₁₇H₁₁BrO₂·H₂O, crystallizes as a monohydrate in the chiral orthorhombic space group $P2_12_12_1$, and has non-linear optical (NLO) properties. The molecule has an E conformation about the C=C bond and is relatively planar with the benzofuran and bromophenyl rings being inclined to one another by 10.60 $(14)^{\circ}$. In the crystal, the water molecule is linked to the organic molecule by O-H···O hydrogen bonds, forming an $R_2^2(7)$ ring motif while C- $H \cdots O$ hydrogen bonds lead to the formation of helices along the *b*-axis direction.

Keywords: crystal structure; benzofuran; chiral; NLO properties; hydrogen bonding.

CCDC reference: 1430039

1. Related literature

For background to chalcones and their biological and other properties, see: Choudary et al. (1999); Jayarama et al. (2013); Tomazela et al. (2000); Gu et al. (2008). For the crystal structure of a similar compound, see: Benmekhbi et al. (2009).

2. Experimental

2.1. Crystal data

C17H11BrO2·H2O

 $M_r = 345.18$

Orthorhombic, $P2_12_12_1$ a = 4.8614 (4) Å b = 13.8220 (15) Åc = 21.755 (2) Å V = 1461.8 (2) Å³

2.2. Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004)

 $T_{\min} = 0.399, \ T_{\max} = 0.539$

2.3. Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	$\Delta \rho_{\rm max} = 0.42 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.102$	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$
S = 1.01	Absolute structure: Flack (1983),
3636 reflections	1497 Friedel pairs
196 parameters	Absolute structure parameter:
3 restraints	-0.011 (11)
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$O1S - H1SA \cdots O1$	0.96(2)	2.37 (4)	3.181 (4) 2.928 (4)	142 (4) 143 (4)
$C7 - H7 \cdots O1S^{i}$	0.93 (2)	2.32	3.229 (5)	164
$C10-H10\cdotsO1S^{i}$	0.93	2.45	3.375 (5)	174

Z = 4

Mo $K\alpha$ radiation

 $0.40 \times 0.30 \times 0.25 \text{ mm}$

3636 measured reflections

3636 independent reflections

2134 reflections with $I > 2\sigma(I)$

 $\mu = 2.82 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.034$

Symmetry code: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

Acknowledgements

We are grateful to Professor Jayarama A, Department of Physics & Karnataka Government Research Center (KGRC), Sahyadri College of Engineering & Management, Mangalore, for supporting this study.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5214).

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Benmekhbi, L., Belhouas, R., Bouacida, S., Mosbah, S. & Bencharif, L. (2009). Acta Cryst. E65, 01472-01473.

- Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Choudary, B. M., Lakshmi Kantam, M., Venkat Reddy, C. R., Koteswara Rao, K. & Figueras, F. (1999). J. Mol. Catal. A Chem. 146, 279-284.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Gu, B., Ji, W., Patil, P. S. & Dharmaprakash, S. M. (2008). J. Appl. Phys. 103, 103511–103516.
- Jayarama, A., Ravindra, H. J., Menezes, A. P., Dharmaprakash, S. M. & Ng, S. W. (2013). J. Mol. Catal. A Chem. 1051, 285–291.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Tomazela, D. M., Pupo, M. T., Passador, E. A. P., da Silva, M. F. das G. F., Vieira, P. C., Fernandes, J. B., Fo, E. R., Oliva, G. & Pirani, J. R. (2000). *Phytochemistry*, 55, 643–651.

supporting information

Acta Cryst. (2015). E71, o840–o841 [https://doi.org/10.1107/S2056989015018897]

Crystal structure of (2*E*)-1-(1-benzofuran-2-yl)-3-(2-bromophenyl)prop-2-en-1one monohydrate

S. Satheeshchandra and Nandakumar Shetty

S1. Commentary

Chalcones are among the most abundant and ubiquitous group of natural products (Tomazela, *et al.*, 2000). Some of the chalcone derivatives shows high second-harmonic generation conversion efficiency (Gu *et al.*, 2008; Choudary *et al.*, 1999; Jayarama *et al.*, 2013). The title compound crystallizes in a non-centrosymmetric space group and exhibits interesting nonlinear optical properties.

In the title compound, Fig. 1, the benzofuran and bromophenyl groups are linked by a prop-2-en-1-one group. The benzofuran and bromophenyl rings are slightly non-planar with a dihedral angle of 10.60 (14) °. The torsion angle C7–C8–C9–O2 is 175.9 (4)° indicating that the O3 methoxy group is coplanar with the attached benzofuran ring. The C=C double bond shows an *E* conformation.

In the crystal, the water molecule is linked to the organic molecule by O—H…O hydrogen bonds forming an $R_2^2(7)$ ring motif (Table 1 and Fig. 2). The organic molecule is linked to the water molecule by C—H..O hydrogen bonds so forming helices along the *b*-axis direction (Table and Fig. 2).

S2. Synthesis and crystallization

2-Benzofuranyl methyl ketone (0.01 mol) and 2-bromobenzaldehyde (0.01 mol) were dissolved in methanol (60 ml). Sodium hydroxide (2 ml, 20%) was then added drop wise to the solution which was then stirred for 1.5 h. The contents of the flask were cooled using ice-cold water, and the resulting powder content was collected by filtration. The compound was dried and re-crystallized twice using acetone as solvent, yielding golden-yellow block-like crystals.

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The water H atoms were located in a difference Fourier map. They were refined with distance restraints: O—H = 0.88 (2) Å, H…H = 1.43 (2) Å with $U_{iso}(H) = 1.5U_{eq}(O)$. The C-bound H atoms were placed in calculated positions and included in the refinement in the riding model approximation: C—H = 0.93 Å with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

A view of the molecular structure of title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A view along the *a*-axis of the crystal packing of the title compound. The intermolecular interactions are represented by dashed lines (see Table 1).

(2*E*)-1-(1-Benzofuran-2-yl)-3-(2-bromophenyl)prop-2-en-1-one monohydrate

Crystal data

2	
$C_{17}H_{11}BrO_2 \cdot H_2O$	V = 1461.8 (2) Å ³
$M_r = 345.18$	Z = 4
Orthorhombic, $P2_12_12_1$	F(000) = 696
Hall symbol: P 2ac 2ab	$D_{\rm x} = 1.568 { m Mg} { m m}^{-3}$
a = 4.8614 (4) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 13.8220 (15) Å	Cell parameters from 2499 reflections
c = 21.755 (2) Å	$\theta = 4.8 - 41.6^{\circ}$

 $\mu = 2.82 \text{ mm}^{-1}$ T = 296 K

Data collection

3636 measured reflections
2124 m Questioner ith LS 2 (D
2134 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.034$
$\theta_{\rm max} = 28.4^\circ, \ \theta_{\rm min} = 3.0^\circ$
$h = -6 \rightarrow 5$
$k = -18 \rightarrow 18$
$l = -28 \rightarrow 29$
Hydrogen site location: inferred from
neighbouring sites
H atoms treated by a mixture of independent
and constrained refinement
$w = 1/[\sigma^2(F_0^2) + (0.0372P)^2 + 0.0197P]$
where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.42 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\min} = -0.29 \text{ e} \text{ Å}^{-3}$
Absolute structure: Flack (1983), 1497 Friedel
pairs
Absolute structure parameter: -0.011 (11)

Block, golden-yellow

 $0.40 \times 0.30 \times 0.25$ mm

map

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
Br1	1.34723 (10)	0.98219(3)	0.06738 (2)	0.0902 (2)
01	0.3289 (4)	0.93267 (17)	0.32535 (10)	0.0513 (5)
O2	0.6697 (5)	0.99535 (19)	0.23842 (13)	0.0720 (7)
C1	0.1694 (7)	0.8801 (2)	0.36525 (14)	0.0463 (8)
C2	-0.0186 (7)	0.9171 (3)	0.40591 (16)	0.0593 (10)
H2	-0.0523	0.9831	0.4093	0.071*
C3	-0.1522 (7)	0.8509 (3)	0.44089 (16)	0.0634 (10)
Н3	-0.2812	0.8724	0.4694	0.076*
C4	-0.1034 (7)	0.7519 (3)	0.43576 (17)	0.0607 (9)
H4	-0.2020	0.7091	0.4603	0.073*
C5	0.0860 (7)	0.7169 (3)	0.39547 (16)	0.0587 (10)
H5	0.1185	0.6507	0.3923	0.070*

C6	0.2301 (6)	0.7824 (3)	0.35908 (14)	0.0444 (8)	
C7	0.4402 (6)	0.7757 (3)	0.31357 (15)	0.0468 (8)	
H7	0.5256	0.7195	0.2997	0.056*	
C8	0.4907 (6)	0.8671 (3)	0.29448 (15)	0.0463 (9)	
С9	0.6756 (7)	0.9078 (3)	0.24929 (15)	0.0503 (8)	
C10	0.8640 (6)	0.8424 (2)	0.21760 (14)	0.0446 (7)	
H10	0.8712	0.7779	0.2297	0.054*	
C11	1.0223 (6)	0.8713 (3)	0.17288 (16)	0.0480 (8)	
H11	1.0081	0.9361	0.1619	0.058*	
C12	1.2190 (6)	0.8136 (3)	0.13815 (14)	0.0439 (8)	
C13	1.2629 (7)	0.7170 (3)	0.15197 (16)	0.0523 (9)	
H13	1.1617	0.6892	0.1837	0.063*	
C14	1.4478 (7)	0.6610(3)	0.12115 (19)	0.0615 (10)	
H14	1.4691	0.5961	0.1315	0.074*	
C15	1.6028 (7)	0.7008 (3)	0.07476 (17)	0.0603 (10)	
H15	1.7313	0.6633	0.0539	0.072*	
C16	1.5667 (7)	0.7964 (3)	0.05931 (16)	0.0557 (9)	
H16	1.6695	0.8239	0.0278	0.067*	
C17	1.3787 (7)	0.8507 (3)	0.09068 (14)	0.0493 (8)	
O1S	0.1601 (7)	1.1082 (2)	0.23870 (17)	0.0950 (10)	
H1SA	0.179 (11)	1.078 (4)	0.2780 (12)	0.143*	
H1SB	0.300 (9)	1.070 (3)	0.220 (2)	0.143*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.1130 (4)	0.0695 (3)	0.0881 (3)	0.0070 (3)	0.0327 (3)	0.0255 (2)
01	0.0458 (12)	0.0526 (14)	0.0555 (14)	0.0017 (11)	0.0037 (12)	-0.0104 (11)
O2	0.0594 (14)	0.0592 (19)	0.0974 (19)	0.0071 (14)	0.0271 (13)	0.0068 (15)
C1	0.0391 (17)	0.057 (2)	0.0426 (18)	-0.0028 (18)	-0.0028 (16)	-0.0049 (15)
C2	0.0461 (19)	0.079 (3)	0.053 (2)	0.0023 (19)	0.0023 (17)	-0.016 (2)
C3	0.0426 (18)	0.104 (3)	0.044 (2)	-0.003 (2)	0.0102 (19)	-0.009(2)
C4	0.056 (2)	0.081 (3)	0.0447 (19)	-0.0068 (19)	0.002 (2)	0.008 (2)
C5	0.058 (2)	0.065 (2)	0.054 (2)	0.0003 (19)	-0.0023 (18)	0.0054 (19)
C6	0.0340 (17)	0.058 (2)	0.0408 (17)	0.0013 (15)	-0.0096 (14)	-0.0056 (16)
C7	0.0383 (17)	0.056 (2)	0.0460 (19)	0.0050 (15)	-0.0053 (15)	-0.0044 (17)
C8	0.0323 (16)	0.060 (2)	0.047 (2)	0.0051 (16)	-0.0044 (14)	-0.0082 (18)
C9	0.0368 (17)	0.060 (2)	0.054 (2)	-0.0001 (18)	-0.0042 (16)	-0.0041 (17)
C10	0.0346 (16)	0.052 (2)	0.0469 (18)	-0.0021 (17)	0.0011 (16)	0.0002 (15)
C11	0.0423 (16)	0.055 (2)	0.047 (2)	0.0008 (16)	-0.0021 (16)	0.0048 (16)
C12	0.0302 (16)	0.060(2)	0.0419 (18)	-0.0028 (15)	-0.0042 (13)	-0.0007 (16)
C13	0.050 (2)	0.056 (2)	0.051 (2)	0.0004 (17)	0.0043 (15)	0.0046 (18)
C14	0.059 (2)	0.057 (2)	0.068 (3)	0.0079 (19)	-0.003 (2)	-0.001 (2)
C15	0.051 (2)	0.074 (3)	0.055 (2)	0.0128 (19)	0.0024 (18)	-0.014 (2)
C16	0.0437 (18)	0.085 (3)	0.0389 (19)	-0.0034 (18)	0.0069 (15)	0.0009 (19)
C17	0.0434 (18)	0.063 (2)	0.0418 (18)	-0.0013 (18)	-0.0009 (15)	0.0050 (15)
O1S	0.098 (2)	0.071 (2)	0.117 (3)	0.0067 (18)	0.019 (2)	0.0037 (18)

Geometric parameters (Å, °)

Br1—C17	1.893 (4)	C9—C10	1.460 (5)	
O1—C1	1.372 (4)	C10—C11	1.303 (4)	
O1—C8	1.375 (4)	C10—H10	0.9300	
O2—C9	1.234 (4)	C11—C12	1.456 (4)	
C1—C2	1.370 (5)	C11—H11	0.9300	
C1—C6	1.390 (5)	C12—C13	1.385 (5)	
C2—C3	1.356 (5)	C12—C17	1.390 (4)	
C2—H2	0.9300	C13—C14	1.363 (5)	
C3—C4	1.393 (5)	C13—H13	0.9300	
С3—Н3	0.9300	C14—C15	1.374 (5)	
C4—C5	1.361 (5)	C14—H14	0.9300	
C4—H4	0.9300	C15—C16	1.375 (5)	
C5—C6	1.392 (5)	C15—H15	0.9300	
С5—Н5	0.9300	C16—C17	1.366 (5)	
C6—C7	1.426 (4)	C16—H16	0.9300	
С7—С8	1.353 (5)	O1S—H1SA	0.958 (19)	
С7—Н7	0.9300	O1S—H1SB	0.954 (19)	
C8—C9	1.446 (5)			
C1—O1—C8	106.5 (3)	C8—C9—C10	118.1 (3)	
C2-C1-O1	126.0 (3)	C11—C10—C9	122.2 (3)	
C2—C1—C6	124.5 (3)	C11—C10—H10	118.9	
O1—C1—C6	109.5 (3)	C9—C10—H10	118.9	
C3—C2—C1	115.5 (4)	C10—C11—C12	127.4 (4)	
С3—С2—Н2	122.2	C10—C11—H11	116.3	
C1—C2—H2	122.2	C12—C11—H11	116.3	
C2—C3—C4	122.4 (3)	C13—C12—C17	115.6 (3)	
С2—С3—Н3	118.8	C13—C12—C11	121.1 (3)	
С4—С3—Н3	118.8	C17—C12—C11	123.4 (3)	
C5—C4—C3	121.1 (3)	C14—C13—C12	122.8 (3)	
C5—C4—H4	119.4	C14—C13—H13	118.6	
C3—C4—H4	119.4	C12—C13—H13	118.6	
C4—C5—C6	118.4 (4)	C13—C14—C15	119.7 (4)	
C4—C5—H5	120.8	C13—C14—H14	120.2	
С6—С5—Н5	120.8	C15—C14—H14	120.2	
C1—C6—C5	118.1 (3)	C14—C15—C16	119.7 (3)	
C1—C6—C7	106.4 (3)	C14—C15—H15	120.2	
C5—C6—C7	135.5 (4)	C16—C15—H15	120.2	
C8—C7—C6	106.4 (3)	C17—C16—C15	119.4 (3)	
С8—С7—Н7	126.8	C17—C16—H16	120.3	
С6—С7—Н7	126.8	C15—C16—H16	120.3	
C7—C8—O1	111.2 (3)	C16—C17—C12	122.8 (3)	
С7—С8—С9	133.2 (3)	C16—C17—Br1	116.6 (3)	
01—C8—C9	115.6 (3)	C12—C17—Br1	120.6 (3)	
O2—C9—C8	119.8 (3)	H1SA—O1S—H1SB	94 (2)	
O2—C9—C10	122.1 (3)			

C8—O1—C1—C2	178.7 (3)	01	-3.8 (5)
C8—O1—C1—C6	-0.4 (3)	C7—C8—C9—C10	-3.6 (6)
O1—C1—C2—C3	-179.9 (3)	O1—C8—C9—C10	176.5 (3)
C6—C1—C2—C3	-1.0 (5)	O2—C9—C10—C11	-5.2 (5)
C1—C2—C3—C4	-0.3 (5)	C8—C9—C10—C11	174.5 (3)
C2—C3—C4—C5	1.0 (6)	C9—C10—C11—C12	179.5 (3)
C3—C4—C5—C6	-0.3 (5)	C10-C11-C12-C13	-2.0 (5)
C2-C1-C6-C5	1.6 (5)	C10-C11-C12-C17	179.6 (3)
O1—C1—C6—C5	-179.3 (3)	C17—C12—C13—C14	-0.5 (5)
C2-C1-C6-C7	-178.3 (3)	C11—C12—C13—C14	-179.0 (3)
O1—C1—C6—C7	0.8 (3)	C12-C13-C14-C15	1.0 (5)
C4—C5—C6—C1	-0.9 (5)	C13-C14-C15-C16	-1.0 (5)
C4—C5—C6—C7	179.0 (3)	C14—C15—C16—C17	0.5 (5)
C1—C6—C7—C8	-0.9 (3)	C15—C16—C17—C12	-0.1 (5)
C5—C6—C7—C8	179.1 (3)	C15—C16—C17—Br1	178.9 (3)
C6—C7—C8—O1	0.8 (4)	C13—C12—C17—C16	0.1 (5)
C6—C7—C8—C9	-179.1 (3)	C11—C12—C17—C16	178.6 (3)
C1C7C7	-0.3 (4)	C13—C12—C17—Br1	-178.9 (2)
C1—O1—C8—C9	179.6 (3)	C11—C12—C17—Br1	-0.4 (4)
C7—C8—C9—O2	176.0 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H··· <i>A</i>	D····A	D—H··· A
01 <i>S</i> —H1 <i>SA</i> ···O1	0.96 (2)	2.37 (4)	3.181 (4)	142 (4)
O1 <i>S</i> —H1 <i>SB</i> ···O2	0.95 (2)	2.11 (4)	2.928 (4)	143 (4)
C7—H7…O1 <i>S</i> ⁱ	0.93	2.32	3.229 (5)	164
C10—H10····O1 <i>S</i> ⁱ	0.93	2.45	3.375 (5)	174

Symmetry code: (i) -x+1, y-1/2, -z+1/2.