CRYSTALLOGRAPHIC COMMUNICATIONS

Received 1 October 2015
Accepted 4 October 2015

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; monomeric octahedral $\mathrm{Mn}^{\mathrm{IV}}$ complex; Schiff base ligand; o-vanillin; tris(hydroxymethyl)aminomethane

CCDC reference: 1429416
Supporting information: this article has supporting information at journals.iucr.org/e

OPEN ○ ACCESS

Crystal structure of bis(2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-6-methoxyphenolato)manganese(IV) 0.39-hydrate

Elena A. Buvaylo, ${ }^{\text {a }}$ Olga Yu. Vassilyeva ${ }^{\text {a* }}$ and Brian W. Skelton ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine, and ${ }^{\mathbf{b}}$ Centre for Microscopy, Characterisation and Analysis, M313, University of Western Australia, Perth, WA 6009, Australia. *Correspondence e-mail: vassilyeva@univ.kiev.ua

The title compound, $\left[\mathrm{Mn}\left(\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{5}\right)_{2}\right] \cdot 0.39 \mathrm{H}_{2} \mathrm{O}$, is a 0.39 hydrate of the isostructural complex bis(2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminometh-yl\}-6-methoxyphenolato)manganese(IV) that has previously been reported by Back, Oliveira, Canabarro \& Iglesias [Z. Anorg. Allg. Chem. (2015), 641, 941947], based on room-temperature data. The current structure that was determined at 100 K reveals a lengthening of the c cell parameter compared with the published one due to the incorporation of the partial occupancy water molecule. The title compound crystallizes in the tetragonal chiral space group $P 4_{1} 2_{1} 2$; the neutral $\left[\mathrm{Mn}^{\mathrm{IV}}\left(\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{5}\right)_{2}\right.$] molecule is situated on a crystallographic C_{2} axis. The overall geometry about the central manganese ion is octahedral with an $\mathrm{N}_{2} \mathrm{O}_{4}$ core; each ligand acts as a meridional ONO donor. The coordination environment of $\mathrm{Mn}^{\text {IV }}$ at 100 K displays a difference in one of the two $\mathrm{Mn}-\mathrm{O}$ bond lengths, compared with the room-temperature structure. In the crystal, the neutral molecules are stacked in a helical fashion along the c-axis direction.

1. Chemical context

The title compound is a hydrate of the isostructural complex bis(2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-6methoxyphenolato)manganese(IV) (refcode IGOSII; Back et al., 2015). It was isolated as an unexpected product in an attempt to prepare a heterometallic $\mathrm{Mn} / \mathrm{Zn}$ compound with the multidentate Schiff base ligand $2-\{[(2$-hydroxy-3-meth-oxyphenyl)methylene]amino\}-2-(hydroxymethyl)-1,3-propanediol ($\mathrm{H}_{4} L$) (Odabaşoğlu et al., 2003). Zn powder and $\mathrm{MnCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ were reacted with the Schiff base formed in situ from the condensation between o-vanillin and tris(hydroxymethyl)aminomethane in methanol in a 1:1:2 molar ratio. Metal powders have been successfully applied in direct synthesis of coordination compounds to yield a number of novel monometallic (Babich \& Kokozay, 1997; Babich et al., 1996; Kovbasyuk et al., 1997) and heterometallic complexes (Nikitina et al., 2008; Nesterov et al., 2011) of various nuclearities and dimensionalities. However, the isolated black microcrystalline product of the reaction studied appeared to be the mononuclear Schiff base complex $\left[\mathrm{Mn}^{\mathrm{IV}}\left(\mathrm{H}_{2} L\right)_{2}\right]$-$0.39 \mathrm{H}_{2} \mathrm{O}(\mathbf{1})$. Oxidation of the manganese(II) atom directly to the manganese(IV) species proceeds easily in open air even in the presence of zerovalent Zn , indicating that the tridentate ligand $\mathrm{H}_{2} L^{2-}$ containing two O^{-}donors effectively stabilizes the $\mathrm{Mn}^{\mathrm{IV}}$ oxidation state. Stabilization of $\mathrm{Mn}^{\mathrm{IV}}$ species by similar ligands with phenolate oxygen atoms has been reported previously (Kessissoglou et al., 1987; Pradeep et al., 2004).

Remarkably, the current structure that was determined at 100 K reveals shortening of the a cell parameter compared with the published one [8.0953 (2) (1), 8.1620 (2) \AA (IGOSII)] as expected in the case of low-temperature determination, but lengthening of the c cell parameter $[37.568$ (2) (1), 37.4557 (11) \AA (IGOSII)] due to the incorporation of the partial occupancy water molecule. Also, (1) shows somewhat longer $\mathrm{Mn}-\mathrm{O}$ bond lengths to the deprotonated hydroxymethyl group [1.871 (4) A] compared to the corresponding distance in IGOSII [1.849 (2) Å], while the $\mathrm{Mn}-\mathrm{N}$ bonds stay the same $[1.992$ (5) (1), 1.991 (3) \AA (IGOSII)].

2. Structural commentary

The title compound (1) crystallizes in the tetragonal chiral space group $P 4_{1} 2_{1} 2$; the neutral $\left[\mathrm{Mn}^{\mathrm{IV}}\left(\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{5}\right)_{2}\right]$ molecule is situated on a crystallographic C_{2} axis, hence the

Figure 1
The molecular structure of the title complex, showing the atomnumbering scheme. Non-H atoms are shown with displacement ellipsoids at the 50% probability level. Labelled atoms are related to unlabelled atoms by the symmetry operation $y, x,-z+1$.

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

Mn1-O111	1.871 (4)	Mn1-N10	1.992 (5)
Mn1-O11	1.939 (4)		
O111-Mn1-O111 ${ }^{\text {i }}$	94.0 (3)	$\mathrm{O} 111^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{N} 10$	88.07 (19)
O111-Mn1-O11 ${ }^{\text {i }}$	89.58 (16)	$\mathrm{O} 11^{\mathrm{i}}$ - Mn1-N10	98.44 (18)
O111-Mn1-O11	172.89 (18)	O11-Mn1-N10	89.82 (17)
O11-Mn1-O11	87.6 (2)	N10-Mn1-N10 ${ }^{\text {i }}$	168.6 (3)
O111-Mn1-N10	84.14 (18)		

Symmetry code: (i) $y, x,-z+1$.
asymmetric unit comprises one half of the metal complex and the O atom of a water molecule with occupancy 0.195 (15) (Fig. 1). The overall geometry about the central metal ion is distorted octahedral with an $\mathrm{N}_{2} \mathrm{O}_{4}$ core; each ligand acts as a meridional ONO donor. The $\mathrm{Mn}^{\mathrm{IV}}-\mathrm{N}$ (imine) $[1.992$ (5) $\AA]$, $\mathrm{Mn}^{\mathrm{IV}}-\mathrm{O}$ (phenolate) $\left[1.939\right.$ (4) \AA] and $\mathrm{Mn}^{\mathrm{IV}}-\mathrm{O}$ (alkoxo) [1.871 (4) Å] bond lengths in (1) are strictly comparable to those for several reported $\mathrm{Mn}^{\mathrm{IV}}$ complexes containing similar ligation (Kessissoglou et al., 1987; Pradeep et al., 2004). The MnO_{4} equatorial fragment is approximately square planar, the maximum deviation from the mean plane being about $0.11 \AA$. The ranges of cis and trans angles at the metal atom are 84.14 (18)-98.44 (18) and 168.6 (3)-172.89 (18) ${ }^{\circ}$, respectively (Table 1). The $\mathrm{Mn}-\mathrm{N}$ distance is longer than the average $\mathrm{Mn}-\mathrm{O}$ distance by approximately $0.1 \AA$. This is significantly larger than the difference in covalent radii of N and O . Thus, the primary distortion of the $\mathrm{MnN}_{2} \mathrm{O}_{4}$ octahedron is axial elongation along the MnN_{2} axis.

The molecular structure of (1) closely resembles that of the $\mathrm{Mn}^{\mathrm{II}}$ complex of the same ligand, $\left[\mathrm{Mn}^{\mathrm{II}}\left(\mathrm{H}_{3} L\right)_{2}\right] \cdot 2 \mathrm{CH}_{3} \mathrm{OH}$-$0.5 \mathrm{H}_{2} \mathrm{O}$ (refcode ROMROB; Zhang et al., 2009) (Fig. 2). The latter crystallizes in the monoclinic space group $P 2_{1} / n$ and has no crystallographically imposed symmetry. There is a marked increase in the ROMROB $\mathrm{Mn}^{\mathrm{II}}-\mathrm{O}(\mathrm{H})$ bond length (mean $2.134 \AA$) when ($\mathbf{1}$) is compared to ROMROB which has two additional protons to compensate for the two additional electrons. In ROMROB, the $\mathrm{Mn}^{\mathrm{II}}-\mathrm{O}$ (phenolate) and $\mathrm{Mn}^{\mathrm{II}}-$ N (imine) bonds are also elongated (mean lengths 2.011 and

Figure 2
Scheme showing the structure of the closely related ROMROB $\mathrm{Mn}^{\mathrm{II}}$ complex.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O112-H112 $\cdots \mathrm{O} 11^{\mathrm{ii}}$	0.84	2.2	$2.850(7)$	134
O112-H112 \cdots O16 $^{\mathrm{ii}}$	0.84	2.1	$2.802(7)$	141
${\text { O113-H113 } \cdots \mathrm{O}_{1} 12^{\mathrm{iii}}}^{2}$	0.84	2.3	$2.965(12)$	137

Symmetry codes: (ii) $x+1, y, z$; (iii) $y, x-1,-z+1$.
$2.027 \AA$, respectively). (1) thus provides a rare structural example of variations in the metal coordination sphere to accommodate change in the metal oxidation state. The flexibility of the lattice, formed using the partly deprotonated $\mathrm{H}_{4} L$ ligand, permits distortion of the structure in the solid state to allow for changes in the charge and spin state of the Mn atom without disrupting the integrity of the crystal structure.

3. Supramolecular features

In the crystal lattice, individual $\left[\mathrm{Mn}^{\mathrm{IV}}\left(\mathrm{H}_{2} L\right)_{2}\right]$ molecules are stacked in a helical fashion along the c axis, as shown in Fig. 3, with the minimum $\mathrm{Mn} \cdots \mathrm{Mn}$ distances inside a column being $10.28 \AA$. Molecules that are translated by one unit cell in the a axis direction [$\mathrm{Mn} \cdots \mathrm{Mn}$ distance equals the a-axial length, 8.0953 (2) Å] are intertwined by intermolecular hydrogen bonds between the hydroxyl groups and phenolic and methoxy oxygen atoms. There is also a possible hydrogen-bonding interaction between one hydroxyl group (O113) and the solvent water molecule (O1) considering the O113..O1 distance of 2.17 (2) but as the H atoms on O 1 could not be located this contact could not be confirmed. Details of the hydrogen bonding are given in Table 2.

4. Database survey

A search of the Cambridge Structural Database (CSD Version 5.36 with one update; Groom \& Allen, 2014) for metal complexes of this ligand reveals the crystal structures of above 30 compounds, mostly comprising polynuclear homo- $\mathrm{Co}^{\mathrm{II}-}$ $\mathrm{Co}^{\text {III }}, \mathrm{V}_{2}, \mathrm{Cu}_{4}, \mathrm{Mn}_{4}, \mathrm{Ni}_{4}, \mathrm{Ln}_{9}$ and Ln_{10} and heterometallic $1 s-$ $3 d$ and $3 d-4 f$ assemblies of 4-20 nuclearity. Mononuclear complexes of this ligand are limited to five Mn, Ni and Mo structures. The ligand molecules exist in either doubly or triply
deprotonated forms, adopt a chelating-bridging mode and form five- and six-membered rings. The $\mathrm{H}_{4} L$ ligand can stabilize manganese in various oxidation states. Apart from $\mathrm{Mn}^{\mathrm{II}}$ (ROMROB) and $\mathrm{Mn}^{\text {IV }}$ [(1); IGOSII] complexes, the structure of the $\mathrm{Mn}^{\mathrm{III}}$ derivative, $\left[\mathrm{Mn}_{4}(\mathrm{H} L)_{2}\left(\mathrm{H}_{2} L\right)_{2^{-}}\right.$ $\left.\left.\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{4}\right]\left(\mathrm{ClO}_{4}\right)_{2}\right] \cdot 4 \mathrm{CH}_{3} \mathrm{OH}$ has also been reported (Zhu et al., 2014). Stabilization of $\mathrm{Mn}^{\text {IV }}$ species by similar ligands with phenolate oxygen atoms has been reported previously with details of three structures of $\left[\mathrm{Mn}^{\mathrm{IV}} \mathrm{N}_{2} \mathrm{O}_{4}\right.$] complexes with tridentate Schiff base ligands similar to $\mathrm{H}_{4} L$ (Kessissoglou et al., 1987; Chandra et al., 1990; Pradeep et al., 2004).

5. Synthesis and crystallization

2-Hydroxy-3-methoxy-benzaldehyde ($0.30 \mathrm{~g}, 2 \mathrm{mmol}$) and tris(hydroxymethyl)aminomethane $(0.24 \mathrm{~g}, 2 \mathrm{mmol})$, were added to methanol $(20 \mathrm{ml})$ and stirred magnetically for 30 min . Next zinc powder ($0.07 \mathrm{~g}, 1 \mathrm{mmol}$) and $\mathrm{MnCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ $(0.20 \mathrm{~g}, 1 \mathrm{mmol})$ were added to the yellow solution and the mixture was heated to 323 K under stirring until total dissolution of the zinc powder was observed (1 h). The resulting brown solution was filtered and allowed to stand at room temperature. Black microcrystals of the title compound were formed in several days. They were collected by filter-suction, washed with dry $\operatorname{Pr}^{\mathrm{i}} \mathrm{OH}$ and finally dried in vacuo (yield: 43%).

The IR spectrum of powdered (1) in the range 4000$400 \mathrm{~cm}^{-1}$ shows all the characteristic Schiff base vibration bands: $\nu(\mathrm{OH}), \nu(\mathrm{CH})$ and $\nu(\mathrm{C}=\mathrm{N})$ at 3400, 3000-2840, and $1602 \mathrm{~cm}^{-1}$, respectively (see Supplementary data). A strong peak at $1618 \mathrm{~cm}^{-1}$ is due to the bending of the $\mathrm{H}_{2} \mathrm{O}$ molecule, providing evidence of the presence of water in (1). The major feature of the X-band solid-state EPR spectrum of (1) at 77 K is a strong and broad signal at $g \sim 4$ and a weak but resolved response at $g \sim 2$ (see Supplementary data). This corresponds to strong axial distortion with small zero-field splitting, $2 D \gg$ $h v$ ($h v 0.31 \mathrm{~cm}^{-1}$ at the X-band frequency) in agreement with structural findings. The ${ }^{55} \mathrm{Mn}$ hyperfine structure is not resolved.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The solvent was modelled as a water molecule with the site occupancy refined to 0.195 (15).

Figure 3
Crystal packing of (1) showing the helical arrangement of $\mathrm{Mn}^{\mathrm{IV}}\left(\mathrm{H}_{2} L\right)_{2}$ molecules in the c-axis direction. H atoms are not shown.

Table 3
Experimental details.

Crystal data	
Chemical formula	$\left[\mathrm{Mn}\left(\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{5}\right)_{2}\right] \cdot 0.39 \mathrm{H}_{2} \mathrm{O}$
$M_{\text {r }}$	568.46
Crystal system, space group	Tetragonal, $P 4_{1} 2_{1} 2$
Temperature (K)	100
$a, c(\AA)$	8.0953 (2), 37.568 (2)
$V\left(\AA^{3}\right)$	2461.97 (18)
Z	4
Radiation type	$\mathrm{Cu} K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	4.92
Crystal size (mm)	$0.09 \times 0.08 \times 0.01$
Data collection	
Diffractometer	Oxford Diffraction Gemini
Absorption correction	Analytical [CrysAlis PRO (Agilent, 2014) using an expression derived by Clark \& Reid (1995)]
$T_{\text {min }}, T_{\text {max }}$	0.695, 0.946
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	18553, 2214, 1885
$R_{\text {int }}$	0.103
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$	0.600
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.052, 0.136, 1.05
No. of reflections	2214
No. of parameters	181
H -atom treatment	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	$0.54,-0.34$
Absolute structure	Flack x determined using 584 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$ (Parsons et al., 2013).
Absolute structure parameter	-0.007 (6)

Computer programs: CrysAlis PRO (Agilent, 2014), SIR92 (Altomare et al., 1993), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg, 1999) and WinGX (Farrugia, 2012).

Associated hydrogen atoms were not located. The OH hydrogen atoms H 112 and H 113 were refined using a riding model with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. All hydrogen atoms bound to carbon were included in calculated positions and refined using a riding model with isotropic displacement parameters based on those of the parent atom $\left[\mathrm{C}-\mathrm{H}=0.95 \AA, U_{\text {iso }}(\mathrm{H})=\right.$ $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for CH and $\mathrm{CH}_{2}, 1.5 U_{\mathrm{eq}}(\mathrm{C})$ for $\left.\mathrm{CH}_{3}\right]$.

Acknowledgements

The authors acknowledge the facilities, scientific and technical assistance of the Australian Microscopy \& Microanalysis Research Facility at the Centre for Microscopy, Characterization \& Analysis, the University of Western Australia, a facility funded by the University, State and Commonwealth Governments.

References

Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.

Babich, O. A. \& Kokozay, V. N. (1997). Polyhedron, 16, 1487-1490.
Babich, O. A., Kokozay, V. N. \& Pavlenko, V. A. (1996). Polyhedron, 15, 2727-2731.
Back, D. F., de Oliveira, G. M., Canabarro, C. M. \& Iglesias, B. A. (2015). Z. Anorg. Allg. Chem. 641, 941-947.

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Chandra, S. K., Basu, P., Ray, D., Pal, S. \& Chakravorty, A. (1990). Inorg. Chem. 29, 2423-2428.
Clark, R. C. \& Reid, J. S. (1995). Acta Cryst. A51, 887-897.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Groom, C. R. \& Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662671.

Kessissoglou, D. P., Li, X., Butler, W. M. \& Pecoraro, V. L. (1987). Inorg. Chem. 26, 2487-2492.
Kovbasyuk, L. A., Babich, O. A. \& Kokozay, V. N. (1997). Polyhedron, 16, 161-163.
Nesterov, D. S., Kokozay, V. N., Jezierska, J., Pavlyuk, O. V., Boča, R. \& Pombeiro, A. J. L. (2011). Inorg. Chem. 50, 4401-4411.
Nikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. \& Jezierska, J. (2008). Polyhedron, 27, 2426-2430.
Odabaşoğlu, M., Albayrak, Ç., Büyükgüngör, O. \& Lönnecke, P. (2003). Acta Cryst. C59, o616-o619.

Parsons, S., Flack, H. D. \& Wagner, T. (2013). Acta Cryst. B69, 249259.

Pradeep, C. P., Htwe, T., Zacharias, P. S. \& Das, S. K. (2004). New J. Chem. 28, 735-739.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Zhang, X., Wei, P., Dou, J., Li, B. \& Hu, B. (2009). Acta Cryst. E65, m293-m294.
Zhu, W., Zhang, S., Cui, C., Bi, F., Ke, H., Xie, G. \& Chen, S. (2014). Inorg. Chem. Commun. 46, 315-319.

supporting information

Acta Cryst. (2015). E71, 1307-1310 [https://doi.org/10.1107/S2056989015018551]

Crystal structure of bis(2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]imino-methyl\}-6-methoxyphenolato)manganese(IV) 0.39-hydrate

Elena A. Buvaylo, Olga Yu. Vassilyeva and Brian W. Skelton

Computing details

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Bis(2-\{[1,1-bis(hydroxymethyl)-2-oxidoethyl]iminomethyl\}-6-methoxyphenolato)manganese(IV) 0.39 hydrate

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{5}\right)_{2}\right] \cdot 0.39 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=568.46$
Tetragonal, $P 4_{1} 2_{1} 2$
Hall symbol: P 4abw 2nw
$a=8.0953$ (2) Å
$c=37.568$ (2) \AA
$V=2461.97(18) \AA^{3}$
$Z=4$
$F(000)=1188$

Data collection

Oxford Diffraction Gemini
diffractometer
Graphite monochromator
Detector resolution: 10.4738 pixels mm^{-1}
ω scans
Absorption correction: analytical
[CrysAlis Pro (Agilent, 2014) using an
expression derived by Clark \& Reid (1995)]
$T_{\text {min }}=0.695, T_{\text {max }}=0.946$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.136$
$S=1.05$
2214 reflections
181 parameters
0 restraints
$D_{\mathrm{x}}=1.534 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$
Cell parameters from 2851 reflections
$\theta=3.5-67.6^{\circ}$
$\mu=4.92 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Plate, black
$0.09 \times 0.08 \times 0.01 \mathrm{~mm}$

18553 measured reflections
2214 independent reflections
1885 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.103$
$\theta_{\text {max }}=67.7^{\circ}, \theta_{\text {min }}=4.7^{\circ}$
$h=-9 \rightarrow 9$
$k=-6 \rightarrow 9$
$l=-42 \rightarrow 44$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0691 P)^{2}+1.3653 P\right]$
where $P=\left(F_{0}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.54 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.34 \mathrm{e}^{-3}$

Absolute structure: Flack x determined using
584 quotients $\left[\left(I^{+}\right)-\left(I^{\prime}\right)\right] /\left[\left(I^{+}\right)+\left(I^{\prime}\right)\right]$ (Parsons et al.,
2013).
2013).

Absolute structure parameter: -0.007 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. The solvent was modelled as a water molecule with a site occupancy refined to 0.195 (15). Associated hydrogen atoms were not located.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Mn1	0.68511 (10)	0.68511 (10)	0.5	0.0286 (3)	
C11	0.6187 (6)	0.4968 (6)	0.56423 (15)	0.0308 (12)	
O11	0.5567 (4)	0.5690 (5)	0.53567 (9)	0.0333 (8)	
C12	0.7784 (6)	0.4298 (7)	0.56576 (14)	0.0330 (13)	
C13	0.8302 (7)	0.3446 (7)	0.59647 (14)	0.0365 (13)	
H13	0.9372	0.2963	0.5969	0.044*	
C14	0.7305 (7)	0.3297 (7)	0.62568 (16)	0.0385 (13)	
H14	0.7677	0.2721	0.6462	0.046*	
C15	0.5729 (7)	0.4005 (7)	0.62492 (15)	0.0394 (13)	
H15	0.5037	0.393	0.6453	0.047*	
C16	0.5167 (7)	0.4815 (7)	0.59479 (14)	0.0329 (11)	
O16	0.3648 (5)	0.5520 (5)	0.59131 (11)	0.0414 (10)	
C161	0.2522 (8)	0.5349 (8)	0.62010 (18)	0.0443 (15)	
H16A	0.2355	0.4174	0.6253	0.066*	
H16B	0.1462	0.5854	0.6137	0.066*	
H16C	0.2971	0.5901	0.6412	0.066*	
C10	0.8942 (7)	0.4456 (7)	0.53655 (15)	0.0364 (13)	
H10	0.9951	0.3863	0.5385	0.044*	
N10	0.8733 (5)	0.5316 (6)	0.50849 (12)	0.0349 (11)	
C101	1.0070 (8)	0.5533 (9)	0.48146 (17)	0.0502 (17)	
C111	0.9865 (8)	0.7342 (9)	0.46941 (19)	0.0508 (17)	
H11A	1.0338	0.8087	0.4876	0.061*	
H11B	1.0475	0.7518	0.4469	0.061*	
O111	0.8214 (5)	0.7719 (5)	0.46438 (11)	0.0444 (10)	
C112	1.1779 (9)	0.5228 (11)	0.4957 (2)	0.072 (2)	
H11C	1.1897	0.4044	0.5018	0.087*	
H11D	1.26	0.5492	0.477	0.087*	
O112	1.2110 (7)	0.6187 (10)	0.52604 (19)	0.096 (2)	
H112	1.2848	0.5727	0.5382	0.143*	
C113	0.9654 (11)	0.4419 (9)	0.44961 (19)	0.065 (2)	
H11E	0.8528	0.4678	0.441	0.078*	
H11F	1.044	0.464	0.43	0.078*	
O113	0.9740 (11)	0.2689 (7)	0.45943 (17)	0.105 (3)	

H113	0.9002	0.2478	0.4745	0.157^{*}	
O1	$0.787(3)$	$0.090(3)$	$0.4441(6)$	$0.048(9)$	$0.195(15)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	$0.0282(4)$	$0.0282(4)$	$0.0293(6)$	$-0.0008(5)$	$-0.0022(4)$	$0.0022(4)$
C11	$0.031(3)$	$0.025(3)$	$0.036(3)$	$-0.002(2)$	$-0.005(2)$	$0.000(2)$
O11	$0.026(2)$	$0.039(2)$	$0.034(2)$	$-0.0011(15)$	$-0.0036(16)$	$0.0023(17)$
C12	$0.034(3)$	$0.030(3)$	$0.035(3)$	$-0.005(2)$	$-0.003(2)$	$0.002(2)$
C13	$0.031(3)$	$0.037(3)$	$0.042(3)$	$-0.001(2)$	$-0.006(2)$	$0.003(2)$
C14	$0.043(3)$	$0.035(3)$	$0.037(3)$	$-0.005(3)$	$-0.007(2)$	$0.008(2)$
C15	$0.046(3)$	$0.035(3)$	$0.037(3)$	$-0.008(3)$	$0.002(3)$	$0.001(2)$
C16	$0.032(3)$	$0.029(3)$	$0.037(3)$	$-0.005(2)$	$0.001(2)$	$0.003(2)$
O16	$0.032(2)$	$0.052(2)$	$0.041(2)$	$0.0051(17)$	$0.0082(17)$	$0.0053(19)$
C161	$0.038(3)$	$0.043(4)$	$0.052(4)$	$0.002(3)$	$0.011(3)$	$0.007(3)$
C10	$0.026(3)$	$0.041(3)$	$0.042(3)$	$0.002(2)$	$-0.002(2)$	$0.000(3)$
N10	$0.028(2)$	$0.045(3)$	$0.032(2)$	$-0.002(2)$	$-0.0006(18)$	$0.007(2)$
C101	$0.036(3)$	$0.067(5)$	$0.047(4)$	$0.008(3)$	$0.007(3)$	$0.012(3)$
C111	$0.045(4)$	$0.060(4)$	$0.047(4)$	$-0.008(3)$	$0.004(3)$	$0.016(3)$
O111	$0.043(2)$	$0.048(2)$	$0.041(2)$	$-0.010(2)$	$-0.0092(19)$	$0.0110(18)$
C112	$0.039(4)$	$0.098(6)$	$0.080(6)$	$0.006(4)$	$0.019(4)$	$0.035(5)$
O112	$0.049(3)$	$0.142(6)$	$0.096(5)$	$-0.025(4)$	$-0.025(3)$	$0.055(4)$
C113	$0.085(6)$	$0.056(4)$	$0.055(4)$	$0.015(4)$	$0.024(4)$	$0.012(4)$
O113	$0.184(8)$	$0.053(3)$	$0.077(4)$	$0.048(4)$	$0.067(5)$	$0.025(3)$
O1	$0.055(16)$	$0.037(13)$	$0.052(15)$	$0.017(11)$	$0.016(11)$	$0.008(10)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{Mn} 1-\mathrm{O} 111$	$1.871(4)$	$\mathrm{C} 161-\mathrm{H} 16 \mathrm{~B}$	0.98
$\mathrm{Mn} 1-\mathrm{O} 111^{\mathrm{i}}$	$1.871(4)$	$\mathrm{C} 161-\mathrm{H} 16 \mathrm{C}$	0.98
$\mathrm{Mn} 1-\mathrm{O} 11^{\mathrm{i}}$	$1.939(4)$	$\mathrm{C} 10-\mathrm{N} 10$	$1.275(7)$
$\mathrm{Mn} 1-\mathrm{O} 11$	$1.939(4)$	$\mathrm{C} 10-\mathrm{H} 10$	0.95
$\mathrm{Mn} 1-\mathrm{N} 10$	$1.992(5)$	$\mathrm{N} 10-\mathrm{C} 101$	$1.495(7)$
$\mathrm{Mn} 1-\mathrm{N} 10^{\mathrm{i}}$	$1.992(5)$	$\mathrm{C} 101-\mathrm{C} 112$	$1.504(10)$
$\mathrm{C} 11-\mathrm{O} 11$	$1.321(6)$	$\mathrm{C} 101-\mathrm{C} 113$	$1.536(10)$
$\mathrm{C} 11-\mathrm{C} 12$	$1.403(8)$	$\mathrm{C} 101-\mathrm{C} 111$	$1.542(10)$
$\mathrm{C} 11-\mathrm{C} 16$	$1.420(8)$	$\mathrm{C} 111-\mathrm{O} 111$	$1.384(8)$
$\mathrm{C} 12-\mathrm{C} 13$	$1.408(7)$	$\mathrm{C} 111-\mathrm{H} 11 \mathrm{~A}$	0.99
$\mathrm{C} 12-\mathrm{C} 10$	$1.449(8)$	$\mathrm{C} 111-\mathrm{H} 11 \mathrm{~B}$	0.99
$\mathrm{C} 13-\mathrm{C} 14$	$1.368(8)$	$\mathrm{C} 112-\mathrm{O} 112$	$1.405(11)$
$\mathrm{C} 13-\mathrm{H} 13$	0.95	$\mathrm{C} 112-\mathrm{H} 11 \mathrm{C}$	0.99
$\mathrm{C} 14-\mathrm{C} 15$	$1.399(9)$	$\mathrm{C} 112-\mathrm{H} 11 \mathrm{D}$	0.99
$\mathrm{C} 14-\mathrm{H} 14$	0.95	$\mathrm{O} 112-\mathrm{H} 112$	0.84
$\mathrm{C} 15-\mathrm{C} 16$	$1.384(8)$	$\mathrm{C} 113-\mathrm{O} 113$	$1.450(9)$
$\mathrm{C} 15-\mathrm{H} 15$	0.95	$\mathrm{C} 113-\mathrm{H} 11 \mathrm{E}$	0.99
$\mathrm{C} 16-\mathrm{O} 16$	$1.362(7)$	$\mathrm{C} 113-\mathrm{H} 11 \mathrm{~F}$	0.99
$\mathrm{O} 16-\mathrm{C} 161$	$1.421(7)$	$\mathrm{O} 113-\mathrm{H} 113$	0.84

C161-H16A	0.98		
O111-Mn1-O111 ${ }^{\text {i }}$	94.0 (3)	H16A-C161-H16B	109.5
O111-Mn1-O11 ${ }^{\text {i }}$	89.58 (16)	O16-C161-H16C	109.5
O111- ${ }^{\mathrm{i}} \mathrm{Mn} 1-\mathrm{O} 11^{\mathrm{i}}$	172.89 (19)	H16A-C161-H16C	109.5
O111-Mn1-O11	172.89 (18)	H16B-C161-H16C	109.5
O111--Mn1-O11	89.58 (16)	N10-C10-C12	126.0 (5)
$\mathrm{O} 11-\mathrm{Mn} 1-\mathrm{O} 11$	87.6 (2)	N10-C10-H10	117
O111-Mn1-N10	84.14 (18)	C12-C10-H10	117
O111-Mn1-N10	88.07 (19)	C10-N10-C101	122.0 (5)
O11-Mn1-N10	98.44 (18)	C10-N10-Mn1	125.1 (4)
O11-Mn1-N10	89.82 (17)	C101-N10-Mn1	111.8 (4)
O111-Mn1-N10 ${ }^{\text {i }}$	88.07 (19)	N10-C101-C112	113.9 (5)
O111-Mn1-N10 ${ }^{\text {i }}$	84.14 (18)	N10-C101-C113	107.5 (6)
$\mathrm{O} 11^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{N} 10^{\mathrm{i}}$	89.82 (17)	C112-C101-C113	112.5 (7)
O11-Mn1-N10 ${ }^{\text {i }}$	98.44 (18)	N10-C101-C111	103.5 (5)
$\mathrm{N} 10-\mathrm{Mn} 1-\mathrm{N} 10^{\mathrm{i}}$	168.6 (3)	C112-C101-C111	111.1 (6)
O11-C11-C12	123.7 (5)	C113-C101-C111	107.8 (5)
O11-C11-C16	118.3 (5)	O111-C111-C101	110.7 (5)
C12-C11-C16	118.0 (5)	O111-C111-H11A	109.5
C11-O11-Mn1	124.9 (3)	C101-C111-H11A	109.5
C11-C12-C13	119.8 (5)	O111-C111-H11B	109.5
C11-C12-C10	122.1 (5)	C101-C111-H11B	109.5
C13-C12-C10	118.1 (5)	H11A-C111-H11B	108.1
C14-C13-C12	121.6 (5)	C111-O111-Mn1	112.9 (4)
C14-C13-H13	119.2	O112-C112-C101	111.9 (7)
C12-C13-H13	119.2	O112-C112-H11C	109.2
C13-C14-C15	119.0 (5)	C101-C112-H11C	109.2
C13-C14-H14	120.5	O112-C112-H11D	109.2
C15-C14-H14	120.5	C101-C112-H11D	109.2
C16-C15-C14	120.7 (5)	H11C-C112-H11D	107.9
C16-C15-H15	119.7	C112-O112-H112	109.5
C14-C15-H15	119.7	O113-C113-C101	111.0 (6)
O16-C16-C15	125.0 (5)	O113-C113-H11E	109.4
O16-C16-C11	114.3 (5)	C101-C113-H11E	109.4
C15-C16-C11	120.7 (5)	O113-C113-H11F	109.4
C16-O16-C161	117.7 (5)	C101-C113-H11F	109.4
O16-C161-H16A	109.5	H11E-C113-H11F	108
O16-C161-H16B	109.5	C113-O113-H113	109.5

Symmetry code: (i) $y, x,-z+1$.
Hydrogen-bond geometry (A, o)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 112 — \mathrm{H} 112 \cdots \mathrm{O} 11^{\mathrm{ii}}$	0.84	2.2	$2.850(7)$	134

supporting information

$\mathrm{O} 112 — \mathrm{H} 112 \cdots \mathrm{O} 16^{\mathrm{ii}}$	0.84	2.1	$2.802(7)$	141
$\mathrm{O} 113 — \mathrm{H} 113 \cdots \mathrm{O}_{1} 1^{\mathrm{iii}}$	0.84	2.3	$2.965(12)$	137

Symmetry codes: (ii) $x+1, y, z$; (iii) $y, x-1,-z+1$.

