

Crystal structure of 2-bromo-4,6-dinitroaniline

Gihaeng Kang,^a Tae Ho Kim,^a* Eui-Jae Lee^b and Chang Ho Kang^c*

^aDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang, National University, Jinju 52828, Republic of Korea, ^bResearch Center at Kyung-In Synthetic Corporation (KISCO), Yangcheon-ro 75-69, Gangseo-gu, Seoul 07517, Republic of Korea, and ^cDivision of Applied Life Science and PMBBRC, Gyeongsang, National University, Jinju 52828, Republic of Korea. *Correspondence e-mail: thkim@gnu.ac.kr, jacobgnu69@gnu.ac.kr

Received 18 September 2015; accepted 25 September 2015

Edited by J. Simpson, University of Otago, New Zealand

In the title compound, C₆H₄BrN₃O₄, the dihedral angles between the nitro groups and the aniline ring are 2.04 (3) and 1.18 (4)°, respectively. In the crystal, N-H···O and C-H···O hydrogen bonds and weak side-on C-Br··· π interactions [3.5024 (12) Å] link adjacent molecules, forming a three-dimensional network. A close O···Br contact [3.259 (2) Å] may also add additional stability.

Keywords: crystal structure; aniline derivative; hydrogen bonding; C-Br $\cdot \cdot \cdot \pi$ interactions.

CCDC reference: 1427403

1. Related literature

For information on the title compound, see: Yadav & Sharma (2010). For a related crystal structure, see: Glidewell et al. (2002).

2. Experimental

OPEN d ACCESS

2.1. Crystal data

β

$C_6H_4BrN_3O_4$	V = 832.03 (4) Å ³
$M_r = 262.03$	Z = 4
Monoclinic $P2_1/n$	Mo $K\alpha$ radiation
a = 6.6955 (2) Å	$\mu = 4.93 \text{ mm}^{-1}$
b = 7.7720 (2) Å	$T = 173 { m K}$
c = 16.0608 (4) Å	$0.20 \times 0.15 \times 0.08 \text{ mm}$
$\beta = 95.4182 \ (14)^{\circ}$	

2.2. Data collection

```
Bruker APEXII CCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2013)
  T_{\min} = 0.534, \ T_{\max} = 0.746
```

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.083$ S = 1.061892 reflections

12322 measured reflections

1892 independent reflections 1648 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.030$

127 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.85 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1A \cdots O2^i$	0.88	2.16	2.893 (3)	141
$N1 - H1B \cdot \cdot \cdot O4^{ii}$	0.88	2.36	3.139 (4)	148
$C5-H5\cdots O1^{iii}$	0.95	2.55	3.209 (4)	127
Summer the sector	(i) 1	+ 3 - + 1. (::)	. 1	(;;;)

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2};$ -x - 1, -y + 2, -z + 2; (iii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}.$

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2015R1D1A4A01020317).

Supporting information for this paper is available from the IUCr electronic archives (Reference: SJ5477).

References

Brandenburg, K. (2010). DIAMOND, Crystal Impact GbR, Bonn, Germany, Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Glidewell, C., Low, J. N., McWilliam, S. A., Skakle, J. M. S. & Wardell, J. L. (2002). Acta Cryst. C58, o100-o102.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Yadav, M. K. & Sharma, B. (2010). Der Pharma Chem. 2. 368-377.

supporting information

Acta Cryst. (2015). E71, o813 [https://doi.org/10.1107/S2056989015017946]

Crystal structure of 2-bromo-4,6-dinitroaniline

Gihaeng Kang, Tae Ho Kim, Eui-Jae Lee and Chang Ho Kang

S1. Comment

The title compound, $C_6H_4BrN_3O_4$, is an aniline derivative with additional bromine and nitro substituents. Aniline is the simplest of the primary aromatic amines an organic base used, as are its derivatives, to make dyes, drugs, explosives, plastics and chemicals for the rubber industry (Yadav & Sharma, 2010). Its crystal structure is reported herein. In this compound (Fig. 1), the dihedral angles between the nitro groups and the aniline ring are 2.04 (3) and 1.18 (4)°, respectively. All bond lengths and bond angles are normal and comparable to those observed in the crystal structure of a similar compound (Glidewell *et al.*, 2002).

The crystal structure (Fig. 2) is stabilized by N—H···O and C—H···O hydrogen bonds (Table 1), as well as an intermolecular side-on C2—Br1···*Cg*1^{iv} interaction [Br1···*Cg* = 3.5024 (12) Å, C2—Br1···*Cg* = 96.90 (9) °] (*Cg*1 is the centroid of the C1–C6 ring) [symmetry code: (iv), -*x*, -*y* + 1, -*z* + 2]. A close O3···Br1^{iv} contact, 3.259 (2) Å may also contribute, iv = -1/2+x, 1.5-y, -1/2+z. These contacts result in a three-dimensional network.

S2. Experimental

The title compound was supplied by the Kyung In Synthetic Corporation. Slow evaporation of a solution in CH_2Cl_2 gave single crystals suitable for X-ray analysis.

S3. Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(N-H) = 0.88 Å, $U_{iso} = 1.2U_{eq}(C)$ for amine group, d(C-H) = 0.95 Å, $U_{iso} = 1.2U_{eq}(C)$ for aromatic C-H.

Figure 1

The asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

Figure 2

Crystal packing viewed along the *a* axis. The intermolecular interactions are shown as dashed lines.

F(000) = 512

 $\theta = 2.6 - 27.1^{\circ}$

 $\mu = 4.93 \text{ mm}^{-1}$

Block, yellow

 $0.20\times0.15\times0.08~mm$

T = 173 K

 $D_{\rm x} = 2.092 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 6099 reflections

2-Bromo-4,6-dinitroaniline

Crystal data

 $C_{6}H_{4}BrN_{3}O_{4}$ $M_{r} = 262.03$ Monoclinic, $P2_{1}/n$ a = 6.6955 (2) Å b = 7.7720 (2) Å c = 16.0608 (4) Å $\beta = 95.4182$ (14)° V = 832.03 (4) Å³ Z = 4

Data collection

Bruker APEXII CCD	1892 independent reflections
diffractometer	1648 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int}=0.030$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.6^{\circ}$
(SADABS; Bruker, 2013)	$h = -8 \rightarrow 8$
$T_{\min} = 0.534, \ T_{\max} = 0.746$	$k = -10 \rightarrow 10$
12322 measured reflections	$l = -20 \rightarrow 20$

Refinement

Refinement on F^2 Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.033$	H-atom parameters constrained
$wR(F^2) = 0.083$	$w = 1/[\sigma^2(F_o^2) + (0.0334P)^2 + 1.6027P]$
<i>S</i> = 1.06	where $P = (F_o^2 + 2F_c^2)/3$
1892 reflections	$(\Delta/\sigma)_{\rm max} = 0.002$
127 parameters	$\Delta ho_{ m max} = 0.85 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.19258 (6)	0.64018 (4)	1.10024 (2)	0.04116 (14)	
01	0.4575 (4)	0.6238 (3)	0.79915 (19)	0.0484 (7)	
O2	0.2420 (4)	0.7493 (4)	0.71047 (15)	0.0544 (8)	
O3	-0.3569 (3)	0.9745 (3)	0.79238 (13)	0.0379 (5)	
04	-0.4360 (3)	0.9614 (3)	0.91874 (15)	0.0397 (6)	
N1	-0.1949 (4)	0.8183 (4)	1.03776 (15)	0.0327 (6)	
H1A	-0.1531	0.7837	1.0886	0.039*	
H1B	-0.3120	0.8696	1.0282	0.039*	

supporting information

N2	0.2978 (4)	0.6977 (4)	0.78113 (17)	0.0348 (6)
N3	-0.3276 (3)	0.9358 (3)	0.86609 (13)	0.0212 (5)
C1	-0.0806 (4)	0.7930 (4)	0.97511 (16)	0.0230 (6)
C2	0.1093 (4)	0.7101 (4)	0.98987 (17)	0.0256 (6)
C3	0.2302 (4)	0.6777 (4)	0.92827 (19)	0.0277 (6)
H3	0.3551	0.6208	0.9404	0.033*
C4	0.1671 (4)	0.7299 (4)	0.84695 (18)	0.0263 (6)
C5	-0.0114 (4)	0.8115 (4)	0.82743 (17)	0.0233 (6)
H5	-0.0513	0.8456	0.7715	0.028*
C6	-0.1333 (4)	0.8435 (3)	0.89051 (16)	0.0214 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U ¹³	U ²³
Br1	0.0571 (2)	0.0375 (2)	0.02593 (18)	-0.01145 (16)	-0.01191 (14)	0.00718 (13)
01	0.0422 (14)	0.0411 (14)	0.0655 (18)	0.0096 (11)	0.0239 (13)	-0.0063 (12)
O2	0.0471 (15)	0.094 (2)	0.0241 (12)	-0.0027 (15)	0.0165 (11)	-0.0089 (13)
O3	0.0415 (13)	0.0450 (14)	0.0268 (11)	0.0051 (11)	0.0004 (10)	0.0036 (10)
O4	0.0329 (12)	0.0438 (14)	0.0437 (14)	0.0057 (10)	0.0111 (11)	0.0000 (11)
N1	0.0409 (15)	0.0416 (15)	0.0168 (11)	-0.0026 (12)	0.0096 (11)	-0.0002 (11)
N2	0.0351 (15)	0.0381 (15)	0.0340 (15)	-0.0082 (12)	0.0174 (12)	-0.0124 (12)
N3	0.0269 (12)	0.0220 (11)	0.0147 (10)	-0.0105 (9)	0.0011 (9)	0.0003 (9)
C1	0.0323 (15)	0.0214 (13)	0.0156 (12)	-0.0095 (11)	0.0051 (11)	-0.0032 (10)
C2	0.0339 (15)	0.0246 (14)	0.0175 (13)	-0.0095 (12)	-0.0025 (11)	0.0019 (11)
C3	0.0274 (14)	0.0242 (14)	0.0308 (15)	-0.0045 (11)	-0.0010 (12)	-0.0003 (12)
C4	0.0290 (15)	0.0289 (15)	0.0224 (13)	-0.0054 (12)	0.0100 (12)	-0.0058 (11)
C5	0.0276 (14)	0.0274 (14)	0.0153 (12)	-0.0069 (11)	0.0046 (11)	-0.0009 (10)
C6	0.0257 (13)	0.0218 (13)	0.0170 (12)	-0.0045 (11)	0.0031 (10)	-0.0019 (10)

Geometric parameters (Å, °)

Br1—C2	1.887 (3)	N3—C6	1.505 (4)	
O1—N2	1.224 (4)	C1—C2	1.425 (4)	
O2—N2	1.228 (4)	C1—C6	1.426 (4)	
O3—N3	1.219 (3)	C2—C3	1.360 (4)	
O4—N3	1.182 (3)	C3—C4	1.395 (4)	
N1C1	1.335 (4)	С3—Н3	0.9500	
N1—H1A	0.8800	C4—C5	1.363 (4)	
N1—H1B	0.8800	C5—C6	1.382 (4)	
N2—C4	1.456 (4)	С5—Н5	0.9500	
C1—N1—H1A	120.0	C1	117.8 (2)	
C1—N1—H1B	120.0	C2—C3—C4	118.6 (3)	
H1A—N1—H1B	120.0	С2—С3—Н3	120.7	
O1—N2—O2	123.7 (3)	С4—С3—Н3	120.7	
O1—N2—C4	118.7 (3)	C5—C4—C3	122.2 (3)	
O2—N2—C4	117.6 (3)	C5—C4—N2	119.1 (3)	
O4—N3—O3	126.8 (3)	C3—C4—N2	118.7 (3)	

O4—N3—C6	117.9 (2)	C4—C5—C6	118.7 (3)
O3—N3—C6	115.3 (2)	C4—C5—H5	120.6
N1—C1—C2	120.5 (3)	С6—С5—Н5	120.6
N1—C1—C6	124.7 (3)	C5—C6—C1	122.6 (3)
C2—C1—C6	114.8 (2)	C5—C6—N3	116.8 (2)
C3—C2—C1	123.1 (3)	C1C6N3	120.6 (2)
C3—C2—Br1	119.1 (2)		
N1—C1—C2—C3	178.6 (3)	C3—C4—C5—C6	0.1 (4)
C6—C1—C2—C3	-1.3 (4)	N2—C4—C5—C6	-179.2 (3)
N1—C1—C2—Br1	-0.5 (4)	C4—C5—C6—C1	-0.7 (4)
C6-C1-C2-Br1	179.52 (19)	C4—C5—C6—N3	179.3 (2)
C1—C2—C3—C4	0.9 (4)	N1-C1-C6-C5	-178.7 (3)
Br1-C2-C3-C4	180.0 (2)	C2-C1-C6-C5	1.3 (4)
C2—C3—C4—C5	-0.2 (4)	N1-C1-C6-N3	1.3 (4)
C2—C3—C4—N2	179.1 (3)	C2-C1-C6-N3	-178.7 (2)
O1—N2—C4—C5	-179.7 (3)	O4—N3—C6—C5	178.5 (3)
O2—N2—C4—C5	1.4 (4)	O3—N3—C6—C5	-0.6 (3)
O1—N2—C4—C3	1.0 (4)	O4—N3—C6—C1	-1.5 (4)
O2—N2—C4—C3	-177.9 (3)	O3—N3—C6—C1	179.4 (3)

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
0.88	2.16	2.893 (3)	141
0.88	2.36	3.139 (4)	148
0.95	2.55	3.209 (4)	127
	<i>D</i> —H 0.88 0.88 0.95	D—H H···A 0.88 2.16 0.88 2.36 0.95 2.55	D—H H···A D···A 0.88 2.16 2.893 (3) 0.88 2.36 3.139 (4) 0.95 2.55 3.209 (4)

Symmetry codes: (i) x-1/2, -y+3/2, z+1/2; (ii) -x-1, -y+2, -z+2; (iii) -x+1/2, y+1/2, -z+3/2.