

open 👌 access

Crystal structure of new organically templated copper sulfate with 2-aminopyridinium

Tamara J. Lukianova,* Vasyl Kinzhybalo and Adam Pietraszko

Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna str. 2, PO Box 1410, 50-950 Wroclaw, Poland. *Correspondence e-mail: T.Lukianova@int.pan.wroc.pl

Received 27 September 2015; accepted 5 October 2015

Edited by E. F. C. Herdtweck, Technischen Universität München, Germany

The title compound, $(C_5H_7N_2)_2[Cu(H_2O)_6](SO_4)_2 \cdot 4H_2O$ [systematic name: bis(2-aminopyridinium) hexaaquacopper(II) bis(sulfate) tetrahydrate], comprises axially elongated hexaaqua-coordinated octahedral Cu^{II} ions located on an inversion centre, non-coordinating sulfate anions, 2-aminopyridinium cations and lattice water molecules. The crystal structure is built of successive inorganic and organic layers extending parallel to (001) that are connected by an extensive three-dimensional hydrogen-bonded network of the type O– $H \cdots O$ and $N-H \cdots O$, as well as $\pi-\pi$ interactions [centroid– centroid distance 3.4140 (14) Å, offset 0.277 Å].

Keywords: crystal structure; organically templated materials; 2-aminopyridine; sulfates; hydrogen bonding; π – π interactions.

CCDC reference: 1429506

1. Related literature

For applications of 2-aminopyridine, see: Windholz (1976). For 2-aminopyridinium sulfate, see: Jebas *et al.* (2006). For other compounds with copper(II), see: Naïli *et al.* (2006); Rekik *et al.* (2006).

 $\gamma = 114.57 (3)^{\circ}$ V = 638.0 (4) Å³

Mo $K\alpha$ radiation

 $0.35 \times 0.14 \times 0.13~\text{mm}$

Diffraction, 2015)

7926 measured reflections

3173 independent reflections

2268 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $T_{\rm min}=0.720,\ T_{\rm max}=1.000$

 $\mu = 1.10 \text{ mm}^{-1}$

T = 295 K

 $R_{\rm int} = 0.038$

160 parameters

 $\Delta \rho_{\text{max}} = 0.36 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.41 \text{ e } \text{\AA}^{-3}$

Z = 1

2. Experimental

2.1. Crystal data

 $\begin{array}{l} (C_5H_7N_2)_2[Cu(H_2O)_6](SO_4)_2\cdot 4H_2O\\ M_r = 626.07\\ Triclinic, P\overline{1}\\ a = 7.115 (3) Å\\ b = 8.211 (3) Å\\ c = 12.561 (4) Å\\ a = 91.83 (3)^{\circ}\\ \beta = 104.59 (3)^{\circ} \end{array}$

2.2. Data collection

Rigaku Oxford Diffraction Xcalibur, Sapphire2 diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Rigaku Oxford

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.094$ S = 1.033173 reflections

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O11W - H11A \cdots O14W^{i}$	0.84	2.00	2.821 (3)	167
$O11W - H11B \cdot \cdot \cdot O12^{ii}$	0.84	2.22	3.032 (4)	162
O12W−H12A···O15W	0.84	1.88	2.719 (3)	172
O12W−H12B···O13	0.84	1.85	2.677 (3)	171
$O13W-H13A\cdots O14^{iii}$	0.84	1.90	2.733 (3)	174
O13W−H13B····O14W	0.84	1.88	2.706 (3)	168
N1-H1···O13	0.86	2.03	2.855 (3)	160
$N2-H2A\cdots O11$	0.86	2.01	2.869 (3)	176
$N2-H2B\cdots O12^{iv}$	0.86	2.05	2.914 (3)	178
$O14W-H14A\cdots O15W^{ii}$	0.84	1.92	2.758 (3)	174
$O14W-H14B\cdots O14^{ii}$	0.84	1.90	2.738 (3)	176
$O15W-H15A\cdots O11^{v}$	0.84	1.93	2.761 (3)	169
$O15W-H15B\cdots O12^{ii}$	0.84	1.93	2.760 (3)	170

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x, -y, -z + 1; (iii) x, y + 1, z; (iv) -x + 1, -y, -z + 2; (v) -x + 1, -y, -z + 1.

Data collection: *CrysAlis PRO* (Rigaku Oxford Diffraction, 2015); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS2014/7* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014/7* (Sheldrick, 2015); molecular graphics: *DIAMOND* (Brandenburg *et al.*, 1997); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009).

Acknowledgements

This research was supported by an ILT&SR PAS grant for young scientists and PhD students funded by the Ministry of Science and Higher Education of Poland.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HP2072).

References

Brandenburg, K. (1997). DIAMOND. Crystal Impact GbR, Bonn, Germany.

- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Jebas, S. R., Balasubramanian, T., Peschar, R. & Fraanje, J. (2006). *Acta Cryst.* E62, 02606–02607.
- Naïli, H., Rekik, W., Bataille, T. & Mhiri, T. (2006). Polyhedron, 25, 3543-3554.
- Rekik, W., Naïli, H., Bataille, T., Roisnel, T. & Mhiri, T. (2006). *Inorg. Chim.* Acta, **359**, 3954–3962.
- Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Windholz, M. (1976). *The Merck Index*, 9th ed. Boca Raton, USA: Merck & Co. Inc.

Acta Cryst. (2015). E71, m191–m192 [https://doi.org/10.1107/S2056989015018629]

Crystal structure of new organically templated copper sulfate with 2-aminopyridinium

Tamara J. Lukianova, Vasyl Kinzhybalo and Adam Pietraszko

S1. Comment

Crystal structure of **I** is composed of 2-aminopyridinium (**2ap**) cations, isolated sulfate anions, metal cations octahedrally coordinated by six water molecules $[Cu(H_2O)_6]^{2+}$ and uncoordinated water molecules. The atom labeling scheme for compound **I** is shown in Fig. 1. The asymmetric unit contains one half of Cu atom (lies on a center of inversion) along with three water molecules coordinated to it, one sulfate group, one protonated amine and two solvation water molecules. The Cu ion environment shows considerable axial deformation to tetragonal bipyramidal due to Jahn-Teller effect. The Cu–O12W and Cu–O13W distances are equal to 1.935 (2) and 1.9790 (18) Å, respectively, and the Cu–O11W distance is strongly elongated to 2.398 (2) Å. The distances within the $[Cu(H_2O)_6]^{2+}$ octahedron are comparable to those observed in other compounds (Naïli *et al.*, 2006; Rekik *et al.*, 2006). The crystal packing consists of successive organic and inorganic layers parallel to 0*xy* plane. Inorganic layers are stabilized by a series of O–H…O hydrogen bonds (Table 1 and Fig. 2). Organic layers through N–H…O hydrogen bonds (Table 1 and Fig. 3).

S2. Experimental

The title compound was synthesized by the following method. 2-aminopyridine (0.19g, 2 mmol) was dissolved in 4 ml double distilled water to obtain solution A. The pH of the solution was adjusted to 2.5, by the addition of 30% sulfuric acid. Copper sulfate (0.149 g, 6 mmol) was dissolved in 3ml double distilled water to obtain solution B. Solution A was added on solution B. The resulting solution was kept at room temperature. The green crystals of the title compound were obtained by slow evaporation during the period of several months.

S3. Refinement

The H atoms of water molecules were located from difference Fourier maps and were refined with O–H distances restrained to 0.840 (2) Å and Uiso(H) = 1.5 Ueq(O). In final refinement cycles H atoms of water were let to ride on parent O atom (AFIX 3).

Figure 1

The asymmetric unit of the title compound, showing the crystallographic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are denoted by orange dashed lines. [Symmetry codes: (vi) - x + 1, -y + 1, -z + 1].

View of inorganic layers along perpendicular to this layer direction (c*). Dashed lines indicate the hydrogen bonds.

Figure 3

The molecular arrangement in $(C_5H_7N_2)_2[Cu^{II}(H_2O)_6](SO_4)_2 \cdot 4H_2O$ viewed along [100]. Dashed lines represent hydrogen bonds.

Bis(2-aminopyridinium) hexaaquacopper(II) bis(sulfate) tetrahydrate

Crystal data

$(C_5H_7N_2)_2[Cu(H_2O)_6](SO_4)_2 \cdot 4H_2O$	Z = 1
$M_r = 626.07$	F(000) = 327
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.629 {\rm ~Mg} {\rm ~m}^{-3}$
a = 7.115 (3) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 8.211 (3) Å	Cell parameters from 2602 reflections
c = 12.561 (4) Å	$\theta = 3.3 - 27.4^{\circ}$
$\alpha = 91.83 (3)^{\circ}$	$\mu = 1.10 \text{ mm}^{-1}$
$\beta = 104.59 \ (3)^{\circ}$	T = 295 K
$\gamma = 114.57 (3)^{\circ}$	Block, green
$V = 638.0 (4) Å^3$	$0.35 \times 0.14 \times 0.13 \text{ mm}$
Data collection	
Rigaku Oxford Diffraction Xcalibur, Sapphire2	Absorption correction: multi-scan
diffractometer	(CrysAlis PRO; Rigaku Oxford Diffraction,
Radiation source: fine-focus sealed X-ray tube,	2015)
Enhance (Mo) X-ray Source	$T_{\rm min} = 0.720, T_{\rm max} = 1.000$
Graphite monochromator	7926 measured reflections
Detector resolution: 8.2214 pixels mm ⁻¹	3173 independent reflections
ω scans	2268 reflections with $I > 2\sigma(I)$
	$R_{\rm int} = 0.038$

$\theta_{\rm max} = 29.4^{\circ}, \theta_{\rm min} = 3.0^{\circ}$	$k = -10 \rightarrow 11$
$h = -9 \rightarrow 6$	$l = -15 \rightarrow 17$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.094$ S = 1.03 3173 reflections	Hydrogen site location: mixed H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0324P)^2 + 0.2243P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.36$ e Å ⁻³
160 parameters 0 restraints	$\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Cul	0.5000	0.5000	0.5000	0.03035 (15)	
O11W	0.1945 (3)	0.4686 (3)	0.35088 (16)	0.0476 (5)	
H11A	0.1489	0.5468	0.3566	0.071*	
H11B	0.0825	0.3704	0.3272	0.071*	
O12W	0.3772 (3)	0.2434 (2)	0.50851 (15)	0.0482 (6)	
H12A	0.3051	0.1679	0.4500	0.072*	
H12B	0.3718	0.1983	0.5673	0.072*	
O13W	0.3680 (3)	0.5392 (2)	0.61353 (14)	0.0359 (4)	
H13A	0.3521	0.6347	0.6187	0.054*	
H13B	0.2510	0.4506	0.6110	0.054*	
S1	0.34958 (11)	-0.04901 (9)	0.72795 (5)	0.03015 (17)	
O11	0.5437 (3)	-0.0526 (3)	0.80214 (15)	0.0434 (5)	
O12	0.1755 (3)	-0.1167 (3)	0.78078 (18)	0.0541 (6)	
O13	0.3945 (4)	0.1366 (3)	0.70846 (16)	0.0493 (6)	
O14	0.2833 (4)	-0.1658 (3)	0.62203 (16)	0.0566 (6)	
N1	0.6656 (4)	0.4231 (3)	0.89059 (17)	0.0385 (6)	
H1	0.6136	0.3421	0.8326	0.046*	
N2	0.6983 (4)	0.2085 (3)	0.99866 (19)	0.0462 (6)	
H2A	0.6458	0.1297	0.9395	0.055*	
H2B	0.7349	0.1784	1.0629	0.055*	
C2	0.7227 (4)	0.3756 (4)	0.9910 (2)	0.0364 (6)	
C3	0.8066 (5)	0.5115 (4)	1.0846 (2)	0.0484 (8)	
Н3	0.8482	0.4852	1.1557	0.058*	
C4	0.8263 (5)	0.6786 (4)	1.0711 (3)	0.0527 (8)	
H4	0.8812	0.7670	1.1334	0.063*	
C5	0.7659 (5)	0.7227 (4)	0.9654 (3)	0.0510 (8)	
Н5	0.7806	0.8391	0.9566	0.061*	
C6	0.6855 (5)	0.5915 (4)	0.8760 (3)	0.0477 (8)	

H6	0.6441	0.6171	0.8046	0.057*
O14W	-0.0364 (3)	0.2860 (3)	0.59552 (16)	0.0432 (5)
H14A	-0.0658	0.1958	0.6291	0.065*
H14B	-0.1086	0.2458	0.5285	0.065*
O15W	0.1567 (3)	0.0248 (2)	0.30825 (15)	0.0381 (5)
H15A	0.2371	0.0360	0.2675	0.057*
H15B	0.0585	0.0513	0.2734	0.057*

Atomic displacement parameters $(Å^2)$

	<i>I</i> /11	I /22	I 733	I /12	1713	1/23
	0	0	0	U	U	0
Cu1	0.0418 (3)	0.0233 (2)	0.0246 (2)	0.0126 (2)	0.0103 (2)	0.00304 (17)
O11W	0.0435 (13)	0.0422 (12)	0.0502 (13)	0.0187 (10)	0.0034 (10)	-0.0031 (9)
O12W	0.0811 (16)	0.0242 (10)	0.0267 (10)	0.0126 (10)	0.0132 (10)	0.0046 (8)
O13W	0.0416 (11)	0.0323 (10)	0.0345 (10)	0.0166 (9)	0.0121 (9)	0.0024 (8)
S1	0.0370 (4)	0.0289 (4)	0.0247 (3)	0.0156 (3)	0.0071 (3)	0.0055 (3)
O11	0.0407 (12)	0.0640 (14)	0.0317 (10)	0.0304 (11)	0.0077 (9)	0.0081 (9)
O12	0.0433 (13)	0.0771 (16)	0.0562 (14)	0.0330 (12)	0.0231 (11)	0.0360 (12)
O13	0.0755 (16)	0.0315 (11)	0.0321 (11)	0.0188 (11)	0.0090 (10)	0.0076 (8)
O14	0.0838 (17)	0.0504 (13)	0.0325 (11)	0.0404 (13)	-0.0057 (11)	-0.0096 (9)
N1	0.0453 (15)	0.0451 (15)	0.0225 (11)	0.0202 (12)	0.0053 (10)	0.0028 (10)
N2	0.0582 (17)	0.0452 (15)	0.0291 (12)	0.0205 (13)	0.0062 (12)	0.0065 (10)
C2	0.0369 (17)	0.0448 (17)	0.0254 (14)	0.0166 (14)	0.0081 (12)	0.0043 (11)
C3	0.051 (2)	0.057 (2)	0.0256 (14)	0.0178 (17)	0.0040 (14)	0.0018 (13)
C4	0.052 (2)	0.050(2)	0.0408 (18)	0.0150 (17)	0.0032 (15)	-0.0090 (15)
C5	0.049 (2)	0.0418 (18)	0.058 (2)	0.0192 (16)	0.0097 (17)	0.0062 (15)
C6	0.051 (2)	0.055 (2)	0.0384 (17)	0.0273 (17)	0.0093 (15)	0.0133 (14)
O14W	0.0480 (13)	0.0359 (11)	0.0390 (11)	0.0149 (10)	0.0075 (10)	0.0070 (8)
O15W	0.0356 (11)	0.0438 (12)	0.0357 (10)	0.0190 (9)	0.0090 (9)	0.0048 (8)

Geometric parameters (Å, °)

Cu1—O11W	2.398 (2)	N1—C2	1.347 (3)	
Cu1—O11W ⁱ	2.398 (2)	N1—C6	1.353 (4)	
Cu1-O12Wi	1.935 (2)	N2—H2A	0.8600	
Cu1—O12W	1.935 (2)	N2—H2B	0.8600	
Cu1—O13W	1.9790 (18)	N2—C2	1.319 (4)	
Cu1-O13Wi	1.9790 (18)	C2—C3	1.412 (4)	
O11W—H11A	0.8397	С3—Н3	0.9300	
O11W—H11B	0.8396	C3—C4	1.341 (4)	
O12W—H12A	0.8396	C4—H4	0.9300	
O12W—H12B	0.8394	C4—C5	1.397 (4)	
O13W—H13A	0.8398	С5—Н5	0.9300	
O13W—H13B	0.8398	C5—C6	1.355 (4)	
S1—011	1.471 (2)	С6—Н6	0.9300	
S1—012	1.466 (2)	O14W—H14A	0.8397	
S1—013	1.464 (2)	O14W—H14B	0.8397	
S1—O14	1.462 (2)	O15W—H15A	0.8399	

N1—H1	0.8600	O15W—H15B	0.8401
O11W ⁱ —Cu1—O11W	180.0	014—S1—011	109.47 (12)
O12W—Cu1—O11W	92.90 (9)	O14—S1—O12	109.29 (15)
O12W ⁱ —Cu1—O11W ⁱ	92.90 (9)	O14—S1—O13	109.78 (13)
O12W ⁱ —Cu1—O11W	87.10 (9)	C2—N1—H1	118.2
O12W—Cu1—O11W ⁱ	87.10 (9)	C2—N1—C6	123.6 (2)
O12W ⁱ —Cu1—O12W	180.0	C6—N1—H1	118.2
O12W—Cu1—O13W	89.66 (8)	H2A—N2—H2B	120.0
O12W ⁱ —Cu1—O13W ⁱ	89.66 (9)	C2—N2—H2A	120.0
O12W ⁱ —Cu1—O13W	90.34 (8)	C2—N2—H2B	120.0
O12W—Cu1—O13W ⁱ	90.34 (8)	N1—C2—C3	116.8 (3)
O13W ⁱ —Cu1—O11W	88.14 (8)	N2-C2-N1	120.1 (2)
O13W—Cu1—O11W ⁱ	88.14 (8)	N2—C2—C3	123.1 (3)
O13W ⁱ —Cu1—O11W ⁱ	91.86 (8)	С2—С3—Н3	119.9
O13W—Cu1—O11W	91.86 (8)	C4—C3—C2	120.1 (3)
O13W—Cu1—O13W ⁱ	180.00 (11)	С4—С3—Н3	119.9
Cu1—O11W—H11A	115.8	C3—C4—H4	119.3
Cu1—O11W—H11B	122.9	C3—C4—C5	121.3 (3)
H11A—O11W—H11B	104.7	C5—C4—H4	119.3
Cu1—O12W—H12A	119.8	C4—C5—H5	120.9
Cu1—O12W—H12B	125.3	C6—C5—C4	118.2 (3)
H12A—O12W—H12B	114.2	С6—С5—Н5	120.9
Cu1—O13W—H13A	118.5	N1—C6—C5	119.9 (3)
Cu1—O13W—H13B	113.2	N1—C6—H6	120.0
H13A—O13W—H13B	108.7	С5—С6—Н6	120.0
O12—S1—O11	108.78 (12)	H14A—O14W—H14B	106.1
O13—S1—O11	110.06 (13)	H15A—O15W—H15B	106.7
O13—S1—O12	109.43 (13)		
N1—C2—C3—C4	0.0 (4)	C3—C4—C5—C6	0.3 (5)
N2-C2-C3-C4	-179.7 (3)	C4—C5—C6—N1	0.0 (5)
C2—N1—C6—C5	-0.3 (5)	C6—N1—C2—N2	179.9 (3)
C2—C3—C4—C5	-0.2 (5)	C6—N1—C2—C3	0.3 (4)

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
011 <i>W</i> —H11 <i>A</i> ···O14 <i>W</i> ⁱⁱ	0.84	2.00	2.821 (3)	167
O11 <i>W</i> —H11 <i>B</i> …O12 ⁱⁱⁱ	0.84	2.22	3.032 (4)	162
O12 <i>W</i> —H12 <i>A</i> ···O15 <i>W</i>	0.84	1.88	2.719 (3)	172
O12 <i>W</i> —H12 <i>B</i> ···O13	0.84	1.85	2.677 (3)	171
O13 <i>W</i> —H13 <i>A</i> ···O14 ^{iv}	0.84	1.90	2.733 (3)	174
O13 <i>W</i> —H13 <i>B</i> …O14 <i>W</i>	0.84	1.88	2.706 (3)	168
N1—H1…O13	0.86	2.03	2.855 (3)	160
N2—H2A…O11	0.86	2.01	2.869 (3)	176

$N2-H2B\cdots O12^{v}$	0.86	2.05	2.914 (3)	178
O14 <i>W</i> —H14 <i>A</i> ···O15 <i>W</i> ⁱⁱⁱ	0.84	1.92	2.758 (3)	174
O14 <i>W</i> —H14 <i>B</i> ···O14 ⁱⁱⁱ	0.84	1.90	2.738 (3)	176
O15 <i>W</i> —H15 <i>A</i> ···O11 ^{vi}	0.84	1.93	2.761 (3)	169
O15 <i>W</i> —H15 <i>B</i> ···O12 ⁱⁱⁱ	0.84	1.93	2.760 (3)	170

Symmetry codes: (ii) -*x*, -*y*+1, -*z*+1; (iii) -*x*, -*y*, -*z*+1; (iv) *x*, *y*+1, *z*; (v) -*x*+1, -*y*, -*z*+2; (vi) -*x*+1, -*y*, -*z*+1.