



CRYSTALLOGRAPHIC

OPEN access

### Crystal structure of 2-amino-N-(2fluorophenyl)-4,5,6,7-tetrahydro-1benzothiophene-3-carboxamide

#### K. Chandra Kumar,<sup>a</sup> V. Umesh,<sup>b</sup> T. K. Madhura,<sup>c</sup> B. M. Raiesh<sup>a</sup> and Chandra<sup>d</sup>\*

<sup>a</sup>Department of Engineering Physics, HKBK College of Engineering, Bengaluru 560 045, India, <sup>b</sup>Department of Physics, JSS College for Women (Autonomous), Saraswathipuram, Mysuru 570 009, India, <sup>c</sup>Department of Physics, Atria Institute of Technology, Bengaluru 560 024, India, and <sup>d</sup>Department of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India. \*Correspondence e-mail: mychandru.10@gmail.com

Received 24 August 2015; accepted 26 September 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

In the title compound,  $C_{15}H_{15}FN_2OS$ , the dihedral angle between the planes of the benzothiophene ring system and the fluorobenzene ring is  $3.74 (14)^\circ$ . The six-membered ring of the benzothiophene moiety adopts a half-chair conformation. The molecular conformation is consolidated by intramolecular  $N-H\cdots F$  and  $N-H\cdots O$  hydrogen bonds. In the crystal, molecules are linked by N-H···O hydrogen bonds, generating C(6) [001] chains.

Keywords: crystal structure; benzothiophene derivative; biological properties; hydrogen bonding.

#### CCDC reference: 1045467

#### 1. Related literature

For background to thiophene derivatives, see: Bonini et al. (2005); Brault et al. (2005); Isloor et al. (2010). For intermolecular interactions involving F atoms, see: Choudhury et al. (2004).



V = 1365 (3) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.30 \times 0.25 \times 0.20 \text{ mm}$ 

 $\mu = 0.25 \text{ mm}^-$ 

T = 293 K

Z = 4

#### 2. Experimental

2.1. Crystal data

C15H15FN2OS  $M_r = 290.36$ Monoclinic Cc a = 11.213 (13) Åb = 14.231 (17) Åc = 9.582 (15) Å  $\beta = 116.76 \ (3)^{\circ}$ 

| 2.2. Data collection            |                                        |
|---------------------------------|----------------------------------------|
| Bruker APEXII CCD area-detector | 2577 independent reflections           |
| diffractometer                  | 2363 reflections with $I > 2\sigma(I)$ |
| 5264 measured reflections       | $R_{\text{int}} = 0.029$               |

| 2.3. Refinement                 |                                                            |
|---------------------------------|------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.038$ | H-atom parameters constrained                              |
| $vR(F^2) = 0.081$               | $\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$  |
| S = 1.84                        | $\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$ |
| 2577 reflections                | Absolute structure: Flack (1983)                           |
| 82 parameters                   | Absolute structure parameter:                              |
| 2 restraints                    | 0.06 (7)                                                   |

Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                   | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|------------------------------------|------|-------------------------|--------------|--------------------------------------|
| N8−H9A…F7                          | 0.86 | 2.26                    | 2.643 (5)    | 107                                  |
| N16−H15 <i>C</i> …O10              | 0.86 | 2.16                    | 2.733 (5)    | 124                                  |
| N16−H15 <i>D</i> …O10 <sup>i</sup> | 0.86 | 2.25                    | 2.986 (6)    | 143                                  |

Symmetry code: (i)  $x, -y, z + \frac{1}{2}$ .

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

#### Acknowledgements

The authors thank the University of Mysore and HKBK College of Engineering for support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7493).

#### References

- Bonini, C., Chiummiento, L., Bonis, M. D., Funicello, M., Lupattelli, P., Suanno, G., Berti, F. & Campaner, P. (2005). *Tetrahedron*, **61**, 6580–6589.
- Brault, L., Migianu, E., Néguesque, A., Battaglia, E., Bagrel, D. & Kirsch, G. (2005). Eur. J. Med. Chem. 40, 757–763.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Choudhury, A. R., Nagarajan, K. & Guru Row, T. N. (2004). Acta Cryst. C60, 0644–0647.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Isloor, A. M., Kalluraya, B. & Sridhar Pai, K. (2010). Eur. J. Med. Chem. 45, 825–830.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

## supporting information

#### Acta Cryst. (2015). E71, o807–o808 [https://doi.org/10.1107/S2056989015018022]

# Crystal structure of 2-amino-*N*-(2-fluorophenyl)-4,5,6,7-tetrahydro-1-benzo-thiophene-3-carboxamide

#### K. Chandra Kumar, V. Umesh, T. K. Madhura, B. M. Rajesh and Chandra

#### S1. Comment

Thiophene nucleus has been established as a potential entity in the largely growing chemical world of heterocyclic compounds possessing promising pharmacological characteristics such as anti-HIV PR inhibitors (Bonini *et al.*, 2005) and anti-breast cancer (Brault *et al.*, 2005) activities. Particularly, benzothiophene derivative shows significant antimicrobial and anti- inflammatory activities (Isloora *et al.*, 2010). In addition structures containing fluorine atoms plays a major role in intermolecular interactions (Choudhury *et al.*, 2004). The title compound was prepared and characterized by single-crystal X-ray diffraction studies.

In the molecular structure of the title compound (Fig. 1), the dihedral angle between the flurobenzene (C1–C2–C3–C4–C5–C6) and benzothiophene (C11–C12–C13–S14–C15–C17–C18–C19–C20) ring is 3.74 (14)°. The benzothiophene moiety adopts a half chair conformation conformation with puckering parameter Q = 0.475 (3) Å and  $\varphi$  = 215.4 (5)°, and the maximum deviation found on the puckered atom at C18 is 0.372 (4) Å. The carboximidamide unit is in antiperiplanar conformation with respect to the benzothiophene moiety, as indicated by the torsion angle value of 161.9 (3)° (N8–C9–C11–C15). The crystal structure features intermolecular N–H…O hydrogen bonds. The packing diagram of the molecule viewed down the *a* axis as shown in Fig. 2.

#### **S2. Experimental**

Cyclohexanone (1 equiv.), 2-cyano-*N*-(2-fluorophenyl) acetamide (1.1 equiv.), elemental sulfur (1.2 equiv.), diethylamine (0.8 equiv.) was taken in ethanol and mixed thoroughly in a microwave tube. The tube was sealed and irradiated at 325 K for 15 min. After cooling ethyl acetate was added to the reaction mixture and solid residue was removed by filtration. The filtrate was concentrated under reduced pressure and purified by column chromatography to obtain yellow block shaped crystals.

#### **S3. Refinement**

H atoms were placed at idealized positions and allowed to ride on their parent atoms with N–H distance is equal to 0.86 and C–H distances in the range of 0.93 to 0.97 Å;  $U_{iso}(H) = 1.2-1.5U_{eq}(\text{carrier atom})$  for all H atoms.





Perspective diagram of the molecule with 50% probability displacement ellipsoids.



#### Figure 2

Packing diagram of the molecule viewed down the 'a' axis.

2-Amino-N-(2-fluorophenyl)-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxamide

F(000) = 608

 $\theta = 2.5 - 26.4^{\circ}$ 

 $\mu = 0.25 \text{ mm}^{-1}$ T = 293 K

Bolck, yellow

 $0.30 \times 0.25 \times 0.20$  mm

 $D_{\rm x} = 1.413 {\rm Mg} {\rm m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 2577 reflections

Crystal data

C<sub>15</sub>H<sub>15</sub>FN<sub>2</sub>OS  $M_r = 290.36$ Monoclinic, Cc Hall symbol: C -2yc a = 11.213 (13) Å b = 14.231 (17) Å c = 9.582 (15) Å  $\beta = 116.76 (3)^{\circ}$   $V = 1365 (3) \text{ Å}^3$ Z = 4

#### Data collection

| Bruker APEXII CCD area-detector        | $R_{\rm int} = 0.029$                                           |
|----------------------------------------|-----------------------------------------------------------------|
| diffractometer                         | $\theta_{\rm max} = 26.4^\circ, \ \theta_{\rm min} = 2.5^\circ$ |
| $\omega$ and $\varphi$ scans           | $h = -13 \rightarrow 14$                                        |
| 5264 measured reflections              | $k = -17 \rightarrow 17$                                        |
| 2577 independent reflections           | $l = -11 \rightarrow 11$                                        |
| 2363 reflections with $I > 2\sigma(I)$ |                                                                 |

#### Refinement

| Refinement on $F^2$                                            | Hydrogen site location: inferred from                     |
|----------------------------------------------------------------|-----------------------------------------------------------|
| Least-squares matrix: full                                     | neighbouring sites                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.038$                                | H-atom parameters constrained                             |
| $wR(F^2) = 0.081$                                              | $w = 1/[\sigma^2(F_o^2) + (0.010P)^2]$                    |
| S = 1.84                                                       | where $P = (F_0^2 + 2F_c^2)/3$                            |
| 2577 reflections                                               | $(\Delta/\sigma)_{\rm max} < 0.001$                       |
| 182 parameters                                                 | $\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$ |
| 2 restraints                                                   | $\Delta \rho_{\rm min} = -0.29 \text{ e} \text{ Å}^{-3}$  |
| Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), ??? Friedel pairs       |
| Secondary atom site location: difference Fourier               | Absolute structure parameter: 0.06 (7)                    |
| map                                                            |                                                           |

#### Special details

**Geometry**. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

**Refinement**. Refinement on  $F^2$  for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The observed criterion of  $F^2 > \sigma(F^2)$  is used only for calculating *-R*-factor-obs *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|--------------|--------------|--------------|-----------------------------|
| S14 | 0.42139 (7)  | 0.13494 (4)  | 1.08277 (7)  | 0.0586 (3)                  |
| F7  | 0.17969 (19) | 0.42740 (10) | 0.4264 (2)   | 0.0746 (6)                  |
| O10 | 0.2917 (2)   | 0.10081 (11) | 0.56571 (19) | 0.0568 (7)                  |
| N8  | 0.2299 (2)   | 0.25423 (14) | 0.5376 (2)   | 0.0503 (7)                  |
|     |              |              |              |                             |

## supporting information

| N16  | 0.3503 (2) | 0.01559 (15) | 0.8447 (3) | 0.0674 (9)  |
|------|------------|--------------|------------|-------------|
| C1   | 0.1812 (2) | 0.26650 (18) | 0.3762 (3) | 0.0466 (9)  |
| C2   | 0.1530 (3) | 0.1953 (2)   | 0.2671 (3) | 0.0588 (10) |
| C3   | 0.1087 (4) | 0.2175 (3)   | 0.1106 (3) | 0.0727 (11) |
| C4   | 0.0865 (3) | 0.3097 (3)   | 0.0601 (4) | 0.0735 (13) |
| C5   | 0.1109 (3) | 0.3807 (2)   | 0.1661 (3) | 0.0643 (11) |
| C6   | 0.1566 (3) | 0.35800 (18) | 0.3201 (3) | 0.0519 (9)  |
| C9   | 0.2880 (3) | 0.17625 (17) | 0.6279 (3) | 0.0444 (9)  |
| C11  | 0.3397 (2) | 0.18699 (17) | 0.7955 (3) | 0.0423 (8)  |
| C12  | 0.3705 (3) | 0.27223 (17) | 0.8901 (3) | 0.0422 (8)  |
| C13  | 0.4142 (3) | 0.25543 (17) | 1.0436 (3) | 0.0478 (8)  |
| C15  | 0.3637 (3) | 0.10698 (17) | 0.8869 (3) | 0.0483 (9)  |
| C17  | 0.3638 (3) | 0.37266 (16) | 0.8342 (3) | 0.0497 (9)  |
| C18  | 0.4470 (3) | 0.43925 (17) | 0.9684 (3) | 0.0575 (10) |
| C19  | 0.4211 (4) | 0.42420 (18) | 1.1078 (3) | 0.0665 (11) |
| C20  | 0.4583 (3) | 0.32519 (19) | 1.1743 (3) | 0.0583 (10) |
| H2A  | 0.16370    | 0.13280      | 0.29880    | 0.0710*     |
| H3A  | 0.09370    | 0.16960      | 0.03860    | 0.0870*     |
| H4A  | 0.05520    | 0.32350      | -0.04550   | 0.0880*     |
| H5A  | 0.09670    | 0.44300      | 0.13370    | 0.0770*     |
| H9A  | 0.22220    | 0.30220      | 0.58740    | 0.0600*     |
| H15C | 0.32330    | 0.00050      | 0.74820    | 0.0810*     |
| H15D | 0.36900    | -0.02760     | 0.91420    | 0.0810*     |
| H18A | 0.55430    | 0.32090      | 1.23760    | 0.0700*     |
| H18B | 0.41570    | 0.31140      | 1.24040    | 0.0700*     |
| H20A | 0.32720    | 0.43510      | 1.07740    | 0.0800*     |
| H20B | 0.47240    | 0.46950      | 1.18820    | 0.0800*     |
| H21A | 0.54110    | 0.42920      | 0.99880    | 0.0690*     |
| H21B | 0.42570    | 0.50370      | 0.93290    | 0.0690*     |
| H22A | 0.27150    | 0.39340      | 0.78560    | 0.0600*     |
| H22B | 0.39610    | 0.37500      | 0.75590    | 0.0600*     |
|      |            |              |            |             |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| S14 | 0.0914 (6)  | 0.0458 (4)  | 0.0421 (4)  | 0.0089 (4)   | 0.0332 (4)  | 0.0085 (3)   |
| F7  | 0.1052 (14) | 0.0470 (9)  | 0.0552 (10) | -0.0004 (8)  | 0.0217 (9)  | -0.0020(7)   |
| O10 | 0.0853 (14) | 0.0416 (10) | 0.0432 (10) | 0.0028 (9)   | 0.0286 (10) | -0.0026 (8)  |
| N8  | 0.0726 (15) | 0.0413 (11) | 0.0362 (11) | 0.0066 (10)  | 0.0239 (11) | -0.0015 (8)  |
| N16 | 0.116 (2)   | 0.0397 (13) | 0.0496 (13) | 0.0007 (12)  | 0.0400 (13) | 0.0038 (10)  |
| C1  | 0.0467 (15) | 0.0481 (16) | 0.0397 (15) | 0.0014 (11)  | 0.0147 (13) | 0.0030 (11)  |
| C2  | 0.073 (2)   | 0.0556 (17) | 0.0419 (15) | 0.0064 (14)  | 0.0206 (15) | 0.0020 (12)  |
| C3  | 0.087 (2)   | 0.080(2)    | 0.0370 (15) | 0.0112 (17)  | 0.0154 (15) | -0.0070 (15) |
| C4  | 0.095 (3)   | 0.083 (2)   | 0.0342 (15) | 0.0095 (19)  | 0.0217 (16) | 0.0113 (14)  |
| C5  | 0.070 (2)   | 0.0614 (18) | 0.0486 (18) | 0.0004 (14)  | 0.0153 (15) | 0.0137 (13)  |
| C6  | 0.0546 (17) | 0.0487 (16) | 0.0459 (16) | -0.0034 (12) | 0.0170 (13) | -0.0001 (12) |
| C9  | 0.0539 (17) | 0.0385 (13) | 0.0445 (14) | -0.0016 (12) | 0.0255 (13) | 0.0000 (11)  |
| C11 | 0.0541 (17) | 0.0391 (13) | 0.0377 (13) | 0.0027 (11)  | 0.0241 (13) | 0.0029 (10)  |
|     |             |             |             |              |             |              |

## supporting information

| C10 | 0.0524 (1.0) | 0.0200 (12) | 0.0270 (15) | 0.0010 (11)  | 0.0000 (10) | 0.0015 (10)  |
|-----|--------------|-------------|-------------|--------------|-------------|--------------|
| C12 | 0.0534 (16)  | 0.0389 (13) | 0.03/9(15)  | 0.0012 (11)  | 0.0238 (13) | 0.0015 (10)  |
| C13 | 0.0616 (16)  | 0.0414 (13) | 0.0426 (15) | 0.0068 (12)  | 0.0255 (14) | 0.0037 (10)  |
| C15 | 0.0671 (19)  | 0.0425 (14) | 0.0408 (15) | 0.0012 (12)  | 0.0293 (14) | 0.0005 (11)  |
| C17 | 0.0697 (17)  | 0.0404 (14) | 0.0431 (13) | 0.0014 (12)  | 0.0291 (12) | 0.0014 (10)  |
| C18 | 0.075 (2)    | 0.0433 (14) | 0.0542 (16) | -0.0033 (13) | 0.0292 (15) | -0.0045 (12) |
| C19 | 0.100 (2)    | 0.0474 (15) | 0.059 (2)   | 0.0027 (16)  | 0.0418 (19) | -0.0082 (14) |
| C20 | 0.079 (2)    | 0.0536 (16) | 0.0434 (16) | 0.0055 (14)  | 0.0286 (15) | -0.0018 (12) |

Geometric parameters (Å, °)

| S14—C13       | 1.749 (4)  | C12—C17       | 1.516 (4) |
|---------------|------------|---------------|-----------|
| S14—C15       | 1.734 (4)  | C12—C13       | 1.346 (4) |
| F7—C6         | 1.357 (4)  | C13—C20       | 1.497 (4) |
| O10—C9        | 1.238 (4)  | C17—C18       | 1.530 (4) |
| N8—C1         | 1.400 (4)  | C18—C19       | 1.505 (5) |
| N8—C9         | 1.377 (4)  | C19—C20       | 1.525 (4) |
| N16—C15       | 1.350 (4)  | C2—H2A        | 0.9300    |
| N8—H9A        | 0.8600     | С3—НЗА        | 0.9300    |
| N16—H15C      | 0.8600     | C4—H4A        | 0.9300    |
| N16—H15D      | 0.8600     | C5—H5A        | 0.9300    |
| C1—C6         | 1.388 (4)  | C17—H22A      | 0.9700    |
| C1—C2         | 1.386 (4)  | C17—H22B      | 0.9700    |
| C2—C3         | 1.387 (4)  | C18—H21A      | 0.9700    |
| C3—C4         | 1.382 (6)  | C18—H21B      | 0.9700    |
| C4—C5         | 1.370 (5)  | C19—H20A      | 0.9700    |
| C5—C6         | 1.365 (4)  | С19—Н20В      | 0.9700    |
| C9—C11        | 1.449 (4)  | C20—H18A      | 0.9700    |
| C11—C12       | 1.460 (4)  | C20—H18B      | 0.9700    |
| C11—C15       | 1.387 (4)  |               |           |
|               |            |               |           |
| C13—S14—C15   | 91.95 (12) | C12—C17—C18   | 111.9 (2) |
| C1—N8—C9      | 129.3 (2)  | C17—C18—C19   | 111.7 (3) |
| C9—N8—H9A     | 115.00     | C18—C19—C20   | 112.1 (3) |
| C1—N8—H9A     | 115.00     | C13—C20—C19   | 109.8 (2) |
| H15C—N16—H15D | 120.00     | C1—C2—H2A     | 120.00    |
| C15—N16—H15D  | 120.00     | C3—C2—H2A     | 120.00    |
| C15—N16—H15C  | 120.00     | С2—С3—НЗА     | 119.00    |
| C2—C1—C6      | 117.1 (2)  | C4—C3—H3A     | 120.00    |
| N8—C1—C2      | 125.8 (2)  | C3—C4—H4A     | 120.00    |
| N8—C1—C6      | 117.1 (2)  | C5—C4—H4A     | 120.00    |
| C1—C2—C3      | 119.9 (3)  | C4—C5—H5A     | 121.00    |
| C2—C3—C4      | 121.0 (3)  | С6—С5—Н5А     | 121.00    |
| C3—C4—C5      | 119.8 (3)  | C12—C17—H22A  | 109.00    |
| C4—C5—C6      | 118.6 (3)  | C12—C17—H22B  | 109.00    |
| F7—C6—C5      | 119.4 (2)  | C18—C17—H22A  | 109.00    |
| C1—C6—C5      | 123.6 (2)  | C18—C17—H22B  | 109.00    |
| F7—C6—C1      | 117.0 (2)  | H22A—C17—H22B | 108.00    |
| N8—C9—C11     | 116.8 (2)  | C17—C18—H21A  | 109.00    |

| O10—C9—N8       | 120.4 (2)   | C17—C18—H21B    | 109.00     |
|-----------------|-------------|-----------------|------------|
| O10—C9—C11      | 122.8 (2)   | C19—C18—H21A    | 109.00     |
| C9—C11—C12      | 129.8 (2)   | C19—C18—H21B    | 109.00     |
| C9—C11—C15      | 118.7 (2)   | H21A—C18—H21B   | 108.00     |
| C12—C11—C15     | 111.5 (2)   | C18—C19—H20A    | 109.00     |
| C11—C12—C13     | 113.5 (2)   | C18—C19—H20B    | 109.00     |
| C13—C12—C17     | 119.3 (2)   | С20—С19—Н20А    | 109.00     |
| C11—C12—C17     | 127.1 (2)   | С20—С19—Н20В    | 109.00     |
| S14—C13—C20     | 120.30 (19) | H20A—C19—H20B   | 108.00     |
| C12—C13—C20     | 128.1 (2)   | C13—C20—H18A    | 110.00     |
| S14—C13—C12     | 111.56 (19) | C13—C20—H18B    | 110.00     |
| S14—C15—C11     | 111.52 (19) | C19—C20—H18A    | 110.00     |
| N16—C15—C11     | 129.6 (2)   | C19—C20—H18B    | 110.00     |
| S14—C15—N16     | 118.8 (2)   | H18A—C20—H18B   | 108.00     |
|                 |             |                 |            |
| C15—S14—C13—C12 | -0.1 (3)    | N8—C9—C11—C12   | -16.9 (5)  |
| C15—S14—C13—C20 | -178.1 (3)  | N8—C9—C11—C15   | 161.9 (3)  |
| C13—S14—C15—N16 | 178.9 (3)   | C9-C11-C12-C13  | 178.4 (3)  |
| C13—S14—C15—C11 | -0.1 (3)    | C9—C11—C12—C17  | -4.5 (6)   |
| C9—N8—C1—C2     | 16.1 (5)    | C15-C11-C12-C13 | -0.4 (4)   |
| C9—N8—C1—C6     | -165.1 (3)  | C15-C11-C12-C17 | 176.8 (3)  |
| C1—N8—C9—O10    | -7.0 (5)    | C9-C11-C15-S14  | -178.6 (2) |
| C1—N8—C9—C11    | 174.7 (3)   | C9-C11-C15-N16  | 2.4 (5)    |
| N8—C1—C2—C3     | -178.1 (3)  | C12-C11-C15-S14 | 0.3 (4)    |
| C6—C1—C2—C3     | 3.2 (5)     | C12-C11-C15-N16 | -178.6 (3) |
| N8—C1—C6—F7     | -1.1 (4)    | C11—C12—C13—S14 | 0.3 (4)    |
| N8—C1—C6—C5     | 179.0 (3)   | C11—C12—C13—C20 | 178.1 (3)  |
| C2—C1—C6—F7     | 177.7 (3)   | C17—C12—C13—S14 | -177.1 (3) |
| C2-C1-C6-C5     | -2.1 (5)    | C17—C12—C13—C20 | 0.7 (6)    |
| C1—C2—C3—C4     | -2.8 (6)    | C11—C12—C17—C18 | -160.2 (3) |
| C2—C3—C4—C5     | 1.3 (6)     | C13—C12—C17—C18 | 16.8 (5)   |
| C3—C4—C5—C6     | -0.2 (6)    | S14—C13—C20—C19 | -170.8 (3) |
| C4—C5—C6—F7     | -179.2 (3)  | C12-C13-C20-C19 | 11.5 (5)   |
| C4—C5—C6—C1     | 0.6 (6)     | C12—C17—C18—C19 | -47.1 (4)  |
| O10—C9—C11—C12  | 164.9 (3)   | C17—C18—C19—C20 | 61.4 (4)   |
| O10—C9—C11—C15  | -16.4 (5)   | C18—C19—C20—C13 | -41.6 (4)  |
|                 |             |                 |            |

#### Hydrogen-bond geometry (Å, °)

| D—H···A                   | <i>D</i> —Н | Н…А  | $D \cdots A$ | <i>D</i> —H··· <i>A</i> |
|---------------------------|-------------|------|--------------|-------------------------|
| N8—H9A…F7                 | 0.86        | 2.26 | 2.643 (5)    | 107                     |
| N16—H15C…O10              | 0.86        | 2.16 | 2.733 (5)    | 124                     |
| N16—H15D…O10 <sup>i</sup> | 0.86        | 2.25 | 2.986 (6)    | 143                     |

Symmetry code: (i) x, -y, z+1/2.