



OPEN access

## The crystal structure of 1-(2-hydroxy-5methoxyphenyl)ethanone 4,4-dimethylthiosemicarbazone

#### Brian I. Anderson, Michael B. Freedman, Victoria A. Smolenski and Jerry P. Jasinski\*

Department of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA. \*Correspondence e-mail: jjasinski@keene.edu

Received 13 September 2015; accepted 29 September 2015

Edited by V. V. Chernyshev, Moscow State University, Russia

The asymmetric unit of the title compound, C<sub>12</sub>H<sub>17</sub>N<sub>3</sub>O<sub>2</sub>S, contains two independent molecules, A and B. Both molecules are nearly planar with the dihedral angle between the mean planes of the thioamide group and benzene ring being 7.5  $(1)^{\circ}$ in A and 4.3 (2)° in B. In each molecule, the hydroxy group participates in intramolecular O-H···N hydrogen bonding, while the amino H atom is not involved in hydrogen bonding because of the steric hinderence caused by two neighboring methyl groups. In the crystal, the individual molecules are linked by weak  $C-H \cdot \cdot \cdot O$  hydrogen bonds, forming A-A and *B–B* inversion dimers. The dimers are linked via  $C-H \cdots \pi$ interactions which help stabilize the packing.

Keywords: crystal structure; thiosemicarbazone; weak intermolecular interactions; C—H $\cdots$  $\pi$  interactions.

#### CCDC reference: 1428535

#### 1. Related literature

For thiosemicarbazone ligands and metal complexes, see: Lobana et al. (2009, 2012). For biological and antitumor and antifungal activity of palladium complexes with thiosemicarbazone ligands, see: Chellan et al. (2010). For biological activity of a thiosemicarbazone ligand with a terminal dimethyl substitution, see: Kowol et al. (2009). For related structures, see: Anderson et al. (2012, 2013); Kovala-Demertzi et al. (2000).



V = 2609.3 (3) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.54 \times 0.35 \times 0.05 \text{ mm}$ 

 $\mu = 0.25 \text{ mm}^{-1}$ 

T = 173 K

Z = 8

#### 2. Experimental

2.1. Crystal data

 $C_{12}H_{17}N_3O_2S$  $M_r = 267.34$ Monoclinic  $P2_1/a$ a = 15.7097 (12) Å b = 7.8300 (5) Å c = 21.2351 (19) Å  $\beta = 92.635 \ (8)^{\circ}$ 

#### 2.2. Data collection

| Agilent, Eos, Gemini diffractometer    | 33509 measured reflections             |
|----------------------------------------|----------------------------------------|
| Absorption correction: multi-scan      | 8982 independent reflections           |
| (CrysAlis PRO; Agilent, 2014)          | 6065 reflections with $I > 2\sigma(I)$ |
| $T_{\min} = 0.803, \ T_{\max} = 1.000$ | $R_{\rm int} = 0.081$                  |
|                                        |                                        |

#### 2.3. Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.078$ | 334 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.224$               | H-atom parameters constrained                              |
| S = 1.06                        | $\Delta \rho_{\rm max} = 1.08 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 8982 reflections                | $\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$ |

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the  $C3 \cdots C8$  and  $C3A \cdots C8A$  rings, respectively.

| $D - H \cdot \cdot \cdot A$                                      | D-H        | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|------------------------------------------------------------------|------------|-------------------------|-------------------------|--------------------------------------|
| O1-H1···N3                                                       | 0.84       | 1.84                    | 2.563 (2)               | 143                                  |
| $O1A - H1A \cdots N3A$                                           | 0.84       | 1.86                    | 2.565 (3)               | 141                                  |
| $C11-H11A\cdots O1^{i}$                                          | 0.98       | 2.51                    | 3.315 (3)               | 139                                  |
| $C11A - H11E \cdot \cdot \cdot O1A^{ii}$                         | 0.98       | 2.68                    | 3.305 (4)               | 122                                  |
| $C11A - H11E \cdots Cg2^{iii}$                                   | 0.98       | 2.73                    | 3.590 (3)               | 147                                  |
| $C12-H12B\cdots Cg1^{i}$                                         | 0.98       | 2.82                    | 3.530 (3)               | 130                                  |
| Symmetry codes: (i)<br>$-r + \frac{3}{2}v + \frac{1}{2} - z + 1$ | -x + 1, -y | , -z+2; (ii             | i) $-x + 1, -y,$        | -z + 1; (iii)                        |

 $x + \frac{z}{2}, y + \frac{z}{2}, -z + 1$ 

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

#### Acknowledgements

JPJ acknowledges the NSF-MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

Supporting information for this paper is available from the IUCr electronic archives (Reference: CV5496).

#### References

- Agilent (2014). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.
- Anderson, B. J., Keeler, A. M., O'Rourke, K. A., Krauss, S. T. & Jasinski, J. P. (2013). Acta Cryst. E69, 011.
- Anderson, B. J., Kennedy, C. J. & Jasinski, J. P. (2012). Acta Cryst. E68, o2982. Chellan, P., Shunmoogam-Gounden, N., Hendricks, D. T., Gut, J., Rosenthal,
- P. J., Lategan, C., Smith, P. J., Chibale, K. & Smith, G. S. (2010). *Eur. J. Inorg. Chem.* pp. 3520–3528.

- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Kovala-Demertzi, D., Kourkoumelis, N., Demertzis, M. A., Miller, J. R., Frampton, C. S., Swearingen, J. K. & West, D. X. (2000). *Eur. J. Inorg. Chem.* pp. 727–734.
- Kowol, C. R., Trondl, R., Heffeter, P., Arion, V. B., Jakupec, M. A., Roller, A., Galanski, M., Berger, W. & Keppler, B. K. (2009). *J. Med. Chem.* 52, 5032– 5043.
- Lobana, T. S., Kumari, P., Bawa, G., Hundal, G., Butcher, R. J., Fernandez, F. J., Jasinski, J. P. & Golen, J. A. (2012). Z. Anorg. Allg. Chem. 638, 804–810.
- Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

# supporting information

#### Acta Cryst. (2015). E71, o811–o812 [https://doi.org/10.1107/S2056989015018228]

# The crystal structure of 1-(2-hydroxy-5-methoxyphenyl)ethanone 4,4-dimethyl-thiosemicarbazone

## Brian J. Anderson, Michael B. Freedman, Victoria A. Smolenski and Jerry P. Jasinski

#### S1. Comment

The asymmetric unit of the title compound,  $C_{12}H_{17}N_3O_2S$ , contains two independent molecules *A* and *B*, respectively (Fig. 1). Both molecules are nearly planar with the dihedral angle between the mean planes of the thioamide group and benzene ring being 7.5 (1)° in *A* and 4.3 (2)° in *B*. In each molecule, the hydroxy group participates in intramolecular O —H···N hydrogen bonding, while the amino H atom is not involved in hydrogen bonding because of the steric hinderence caused by two neighboring methyl groups. In the crystal, weak intermolecular C—H···O and C—H··· $\pi$  (Table 1) interactions are observed which help stabilize the packing (Fig. 2). No  $\pi$ — $\pi$  stacking interactions are present.

#### **S2. Experimental**

A 25 mL round bottom flask charged with 2.5 mL of H<sub>2</sub>O, 2.5 mL ethanol and 0.1499 g (1.26 mmol) of 4,4-dimethyl-3thiosemicarbazide was dissolved in a water/ethanol mixture and heated. Once the mixture was completely dissolved, 0.2225 g (1.34 mmol) of 2'-hydroxy-5'-methoxyacetophenone was added, and the solution was refluxed for 18 hours resulting in the formation of a yellow solid. After reflux, the slurry was allowed to cool to room temperature, transferred to a separatory funnel and water (15 mL) and dichloromethane (15 mL) was added. The organic layer was separated and the aqueous layer was extracted with an additional 15 mL of DCM. The organic layers were then combined and washed with brine (20 mL), and then dried with magnesium sulfate. The solvent was removed by rotary evaporation. The resulting solid was crystallized from acetonitrile to give 67 mg (18% yield) of yellow crystals. The crystals were observed to decompose above 460 K.

#### **S3. Refinement**

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were located in difference maps. The C–H and N–H atoms were treated as riding atoms in geometrically idealized positions with C–H, N–H distances of 0.95 Å, 0.88 Å and refined with  $U_{iso}(H) = 1.2U_{eq}(C, N)$ . The CH<sub>3</sub> and O–H atoms were also treated as riding atoms in geometrically idealized positions with the CH<sub>3</sub>, O–H distances of 0.98 Å, 0.84 Å and refined with  $U_{iso}(H) = 1.5U_{eq}(C, O)$ .



#### Figure 1

Two independent molecules of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.



F(000) = 1136

 $\theta = 3.0 - 32.8^{\circ}$ 

 $\mu = 0.25 \text{ mm}^{-1}$ T = 173 K

Prism, colourless  $0.54 \times 0.35 \times 0.05 \text{ mm}$ 

 $D_{\rm x} = 1.361 {\rm Mg} {\rm m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 7195 reflections

#### Figure 2

A portion of the crystal packing viewed approximately along the *a* axis.

1-(2-Hydroxy-5-methoxyphenyl)ethanone 4,4-dimethylthiosemicarbazone

#### Crystal data

 $C_{12}H_{17}N_{3}O_{2}S$   $M_{r} = 267.34$ Monoclinic,  $P2_{1}/a$  a = 15.7097 (12) Å b = 7.8300 (5) Å c = 21.2351 (19) Å  $\beta = 92.635 (8)^{\circ}$   $V = 2609.3 (3) Å^{3}$  Z = 8

#### Data collection

| Agilent, Eos, Gemini                                 | 33509 measured reflections                                          |
|------------------------------------------------------|---------------------------------------------------------------------|
| diffractometer                                       | 8982 independent reflections                                        |
| Radiation source: Enhance (Mo) X-ray Source          | 6065 reflections with $I > 2\sigma(I)$                              |
| Graphite monochromator                               | $R_{\rm int} = 0.081$                                               |
| Detector resolution: 16.0416 pixels mm <sup>-1</sup> | $\theta_{\rm max} = 32.9^{\circ}, \ \theta_{\rm min} = 3.0^{\circ}$ |
| $\omega$ scans                                       | $h = -23 \rightarrow 23$                                            |
| Absorption correction: multi-scan                    | $k = -11 \rightarrow 11$                                            |
| (CrysAlis PRO; Agilent, 2014)                        | $l = -30 \rightarrow 28$                                            |
| $T_{\min} = 0.803, \ T_{\max} = 1.000$               |                                                                     |

Refinement

| Refinement on $F^2$<br>Least-squares matrix: full  | Primary atom site location: structure-invariant direct methods |
|----------------------------------------------------|----------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.078$<br>wR(F^2) = 0.224 | Hydrogen site location: inferred from<br>neighbouring sites    |
| S = 1.06                                           | H-atom parameters constrained                                  |
| 8982 reflections                                   | $w = 1/[\sigma^2(F_o^2) + (0.1106P)^2 + 0.7177P]$              |
| 334 parameters                                     | where $P = (F_o^2 + 2F_c^2)/3$                                 |
| 0 restraints                                       | $(\Delta/\sigma)_{\rm max} = 0.001$                            |
|                                                    | $\Delta \rho_{\rm max} = 1.08 \text{ e } \text{\AA}^{-3}$      |
|                                                    | $\Delta \rho_{\min} = -0.48 \text{ e } \text{\AA}^{-3}$        |

#### Special details

**Experimental**. Absorption correction: CrysAlisPro (Agilent, 2014). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|      |              |             |              | <b>Τ</b> Τ Ψ/ <b>Τ</b> Τ      |  |
|------|--------------|-------------|--------------|-------------------------------|--|
|      | x            | У           | Z            | $U_{\rm iso}$ */ $U_{\rm eq}$ |  |
| S1   | 0.44809 (3)  | 0.09151 (7) | 1.11976 (3)  | 0.03013 (15)                  |  |
| 01   | 0.32782 (10) | 0.2857 (2)  | 0.99601 (7)  | 0.0293 (3)                    |  |
| H1   | 0.3742       | 0.2469      | 1.0112       | 0.044*                        |  |
| O2   | 0.35386 (11) | 0.6134 (2)  | 0.76763 (7)  | 0.0336 (4)                    |  |
| N1   | 0.61624 (11) | 0.0389 (2)  | 1.11969 (8)  | 0.0248 (3)                    |  |
| N2   | 0.55831 (11) | 0.1799 (2)  | 1.03407 (8)  | 0.0246 (3)                    |  |
| H2   | 0.6099       | 0.1881      | 1.0199       | 0.030*                        |  |
| N3   | 0.48981 (11) | 0.2446 (2)  | 1.00018 (8)  | 0.0233 (3)                    |  |
| C1   | 0.54532 (13) | 0.1017 (2)  | 1.09064 (9)  | 0.0215 (4)                    |  |
| C2   | 0.50099 (12) | 0.3329 (2)  | 0.94986 (9)  | 0.0220 (4)                    |  |
| C3   | 0.42248 (12) | 0.3932 (2)  | 0.91666 (9)  | 0.0211 (4)                    |  |
| C4   | 0.34139 (13) | 0.3677 (3)  | 0.94099 (9)  | 0.0236 (4)                    |  |
| C5   | 0.26923 (14) | 0.4287 (3)  | 0.90750 (11) | 0.0295 (4)                    |  |
| Н5   | 0.2148       | 0.4145      | 0.9246       | 0.035*                        |  |
| C6   | 0.27513 (14) | 0.5088 (3)  | 0.85053 (11) | 0.0299 (4)                    |  |
| H6   | 0.2251       | 0.5482      | 0.8282       | 0.036*                        |  |
| C7   | 0.35447 (13) | 0.5322 (3)  | 0.82530 (10) | 0.0258 (4)                    |  |
| C8   | 0.42704 (13) | 0.4770 (3)  | 0.85839 (9)  | 0.0247 (4)                    |  |
| H8   | 0.4811       | 0.4960      | 0.8414       | 0.030*                        |  |
| C9   | 0.43341 (17) | 0.6297 (4)  | 0.73913 (11) | 0.0405 (6)                    |  |
| H9A  | 0.4248       | 0.6843      | 0.6978       | 0.061*                        |  |
| H9B  | 0.4585       | 0.5162      | 0.7339       | 0.061*                        |  |
| H9C  | 0.4719       | 0.6997      | 0.7660       | 0.061*                        |  |
| C10  | 0.58601 (13) | 0.3769 (3)  | 0.92477 (10) | 0.0267 (4)                    |  |
| H10A | 0.6306       | 0.3603      | 0.9580       | 0.040*                        |  |
| H10B | 0.5858       | 0.4963      | 0.9110       | 0.040*                        |  |
| H10C | 0.5971       | 0.3026      | 0.8889       | 0.040*                        |  |
|      |              |             |              |                               |  |

| C11  | 0.70021 (13) | 0.0579 (3)    | 1.09373 (10) | 0.0292 (4) |
|------|--------------|---------------|--------------|------------|
| H11A | 0.7003       | 0.0029        | 1.0523       | 0.044*     |
| H11B | 0.7432       | 0.0041        | 1.1221       | 0.044*     |
| H11C | 0.7134       | 0.1795        | 1.0894       | 0.044*     |
| C12  | 0.61403 (15) | -0.0437 (3)   | 1.18084 (10) | 0.0302 (4) |
| H12A | 0.6294       | 0.0392        | 1.2140       | 0.045*     |
| H12B | 0.6547       | -0.1386       | 1.1828       | 0.045*     |
| H12C | 0.5565       | -0.0873       | 1.1869       | 0.045*     |
| S1A  | 0.56414 (5)  | -0.19363 (10) | 0.59613 (3)  | 0.0475 (2) |
| O1A  | 0.66714 (13) | -0.3267 (2)   | 0.44906 (9)  | 0.0443 (5) |
| H1A  | 0.6392       | -0.2552       | 0.4692       | 0.066*     |
| O2A  | 0.82584 (12) | -0.0500 (2)   | 0.24624 (8)  | 0.0411 (4) |
| N1A  | 0.53156 (14) | 0.1371 (3)    | 0.61861 (10) | 0.0413 (5) |
| N2A  | 0.59826 (13) | 0.0826 (3)    | 0.52876 (9)  | 0.0357 (4) |
| H2A  | 0.5970       | 0.1935        | 0.5220       | 0.043*     |
| N3A  | 0.63480 (12) | -0.0228 (3)   | 0.48627 (9)  | 0.0319 (4) |
| C1A  | 0.56361 (15) | 0.0174 (4)    | 0.58155 (11) | 0.0355 (5) |
| C2A  | 0.67559 (14) | 0.0493 (3)    | 0.44166 (10) | 0.0287 (4) |
| C3A  | 0.71116 (14) | -0.0682 (3)   | 0.39541 (10) | 0.0280 (4) |
| C4A  | 0.70414 (16) | -0.2470 (3)   | 0.40023 (11) | 0.0349 (5) |
| C5A  | 0.73558 (19) | -0.3507 (3)   | 0.35358 (12) | 0.0421 (6) |
| H5A  | 0.7299       | -0.4711       | 0.3568       | 0.050*     |
| C6A  | 0.77470 (18) | -0.2826 (3)   | 0.30294 (12) | 0.0406 (6) |
| H6A  | 0.7957       | -0.3555       | 0.2714       | 0.049*     |
| C7A  | 0.78354 (16) | -0.1063 (3)   | 0.29783 (11) | 0.0334 (5) |
| C8A  | 0.75226 (15) | -0.0007 (3)   | 0.34303 (11) | 0.0311 (4) |
| H8A  | 0.7584       | 0.1195        | 0.3390       | 0.037*     |
| C9A  | 0.83626 (17) | 0.1293 (4)    | 0.24074 (12) | 0.0396 (5) |
| H9AA | 0.8701       | 0.1720        | 0.2773       | 0.059*     |
| H9AB | 0.7802       | 0.1845        | 0.2389       | 0.059*     |
| H9AC | 0.8656       | 0.1550        | 0.2021       | 0.059*     |
| C10A | 0.68571 (17) | 0.2386 (3)    | 0.43561 (12) | 0.0357 (5) |
| H10D | 0.6873       | 0.2908        | 0.4776       | 0.054*     |
| H10E | 0.6375       | 0.2851        | 0.4101       | 0.054*     |
| H10F | 0.7389       | 0.2637        | 0.4151       | 0.054*     |
| C11A | 0.5344 (2)   | 0.3188 (4)    | 0.60277 (14) | 0.0511 (7) |
| H11D | 0.5078       | 0.3852        | 0.6357       | 0.077*     |
| H11E | 0.5035       | 0.3382        | 0.5623       | 0.077*     |
| H11F | 0.5939       | 0.3547        | 0.5998       | 0.077*     |
| C12A | 0.4973 (2)   | 0.0922 (5)    | 0.67918 (14) | 0.0571 (8) |
| H12D | 0.5362       | 0.1325        | 0.7134       | 0.086*     |
| H12E | 0.4912       | -0.0321       | 0.6820       | 0.086*     |
| H12F | 0.4414       | 0.1462        | 0.6828       | 0.086*     |

## Atomic displacement parameters $(Å^2)$

|    | $U^{11}$   | <i>U</i> <sup>22</sup> | $U^{33}$   | $U^{12}$    | $U^{13}$     | $U^{23}$     |
|----|------------|------------------------|------------|-------------|--------------|--------------|
| S1 | 0.0221 (3) | 0.0347 (3)             | 0.0344 (3) | -0.0020 (2) | 0.01022 (19) | 0.00048 (19) |

# supporting information

| 01   | 0.0209 (7)  | 0.0346 (9)  | 0.0330 (8)  | -0.0050 (6)  | 0.0082 (6)   | 0.0030 (6)   |
|------|-------------|-------------|-------------|--------------|--------------|--------------|
| O2   | 0.0299 (8)  | 0.0352 (9)  | 0.0358 (8)  | -0.0002 (7)  | 0.0011 (6)   | 0.0072 (6)   |
| N1   | 0.0191 (8)  | 0.0243 (8)  | 0.0313 (9)  | 0.0007 (6)   | 0.0058 (6)   | 0.0012 (6)   |
| N2   | 0.0204 (8)  | 0.0245 (8)  | 0.0295 (8)  | 0.0024 (6)   | 0.0079 (6)   | 0.0015 (6)   |
| N3   | 0.0206 (8)  | 0.0212 (8)  | 0.0284 (8)  | 0.0020 (6)   | 0.0043 (6)   | -0.0025 (6)  |
| C1   | 0.0209 (9)  | 0.0178 (8)  | 0.0263 (9)  | -0.0008 (6)  | 0.0050(7)    | -0.0035 (6)  |
| C2   | 0.0208 (9)  | 0.0179 (8)  | 0.0277 (9)  | -0.0001 (7)  | 0.0067 (7)   | -0.0049 (6)  |
| C3   | 0.0178 (8)  | 0.0168 (8)  | 0.0290 (9)  | -0.0024 (6)  | 0.0047 (7)   | -0.0040 (6)  |
| C4   | 0.0214 (9)  | 0.0196 (8)  | 0.0303 (10) | -0.0028 (7)  | 0.0053 (7)   | -0.0035 (7)  |
| C5   | 0.0184 (9)  | 0.0295 (10) | 0.0410 (12) | -0.0021 (8)  | 0.0067 (8)   | -0.0009 (8)  |
| C6   | 0.0220 (10) | 0.0278 (10) | 0.0396 (12) | -0.0004 (8)  | -0.0011 (8)  | -0.0004 (8)  |
| C7   | 0.0261 (10) | 0.0195 (9)  | 0.0317 (10) | -0.0008 (7)  | 0.0020 (7)   | -0.0004 (7)  |
| C8   | 0.0219 (9)  | 0.0212 (9)  | 0.0314 (10) | -0.0013 (7)  | 0.0049 (7)   | -0.0028 (7)  |
| C9   | 0.0376 (13) | 0.0515 (16) | 0.0330 (12) | 0.0026 (11)  | 0.0066 (9)   | 0.0089 (10)  |
| C10  | 0.0200 (9)  | 0.0272 (10) | 0.0333 (10) | -0.0021 (7)  | 0.0050 (7)   | 0.0037 (7)   |
| C11  | 0.0197 (9)  | 0.0314 (11) | 0.0370 (11) | -0.0006 (8)  | 0.0051 (8)   | -0.0012 (8)  |
| C12  | 0.0307 (11) | 0.0297 (11) | 0.0300 (10) | -0.0010 (9)  | 0.0009 (8)   | 0.0034 (8)   |
| S1A  | 0.0435 (4)  | 0.0464 (4)  | 0.0531 (4)  | -0.0001 (3)  | 0.0089 (3)   | 0.0232 (3)   |
| O1A  | 0.0528 (12) | 0.0284 (9)  | 0.0515 (11) | -0.0099 (8)  | 0.0010 (8)   | 0.0119 (7)   |
| O2A  | 0.0469 (11) | 0.0383 (10) | 0.0388 (9)  | 0.0026 (8)   | 0.0079 (7)   | 0.0008 (7)   |
| N1A  | 0.0350 (12) | 0.0492 (13) | 0.0402 (11) | -0.0032 (10) | 0.0064 (9)   | 0.0068 (9)   |
| N2A  | 0.0370 (11) | 0.0329 (10) | 0.0375 (11) | -0.0036 (8)  | 0.0050 (8)   | 0.0086 (7)   |
| N3A  | 0.0310 (10) | 0.0310 (10) | 0.0336 (10) | -0.0049 (8)  | 0.0004 (7)   | 0.0070 (7)   |
| C1A  | 0.0237 (11) | 0.0454 (14) | 0.0373 (12) | -0.0057 (9)  | 0.0001 (8)   | 0.0117 (9)   |
| C2A  | 0.0254 (10) | 0.0248 (10) | 0.0352 (11) | -0.0042 (8)  | -0.0036 (8)  | 0.0084 (8)   |
| C3A  | 0.0257 (10) | 0.0233 (9)  | 0.0343 (11) | -0.0039 (8)  | -0.0053 (8)  | 0.0055 (7)   |
| C4A  | 0.0356 (12) | 0.0273 (11) | 0.0408 (12) | -0.0071 (9)  | -0.0075 (9)  | 0.0079 (9)   |
| C5A  | 0.0529 (16) | 0.0243 (11) | 0.0480 (14) | -0.0046 (10) | -0.0079 (11) | 0.0022 (9)   |
| C6A  | 0.0466 (15) | 0.0311 (12) | 0.0432 (13) | 0.0005 (10)  | -0.0060 (11) | -0.0047 (9)  |
| C7A  | 0.0342 (12) | 0.0317 (12) | 0.0338 (11) | -0.0026 (9)  | -0.0048 (9)  | 0.0020 (8)   |
| C8A  | 0.0297 (11) | 0.0268 (10) | 0.0364 (11) | -0.0018 (8)  | -0.0026 (8)  | 0.0046 (8)   |
| C9A  | 0.0350 (13) | 0.0426 (14) | 0.0416 (13) | -0.0040 (11) | 0.0070 (10)  | 0.0037 (10)  |
| C10A | 0.0385 (13) | 0.0264 (11) | 0.0428 (13) | -0.0029 (9)  | 0.0083 (10)  | 0.0061 (9)   |
| C11A | 0.0501 (18) | 0.0504 (18) | 0.0536 (17) | -0.0002 (13) | 0.0090 (13)  | -0.0007 (12) |
| C12A | 0.0508 (18) | 0.079 (2)   | 0.0424 (16) | -0.0007 (16) | 0.0133 (13)  | 0.0123 (14)  |
|      |             |             |             |              |              |              |

# Geometric parameters (Å, °)

| S1—C1  | 1.676 (2) | S1A—C1A  | 1.681 (3) |  |
|--------|-----------|----------|-----------|--|
| 01—H1  | 0.8400    | O1A—H1A  | 0.8400    |  |
| O1—C4  | 1.359 (2) | O1A—C4A  | 1.363 (3) |  |
| O2—C7  | 1.380 (3) | O2A—C7A  | 1.379 (3) |  |
| O2—C9  | 1.419 (3) | O2A—C9A  | 1.419 (3) |  |
| N1-C1  | 1.342 (3) | N1A—C1A  | 1.337 (4) |  |
| N1-C11 | 1.461 (3) | N1A—C11A | 1.463 (4) |  |
| N1-C12 | 1.452 (3) | N1A—C12A | 1.460 (3) |  |
| N2—H2  | 0.8800    | N2A—H2A  | 0.8800    |  |
| N2—N3  | 1.364 (2) | N2A—N3A  | 1.368 (3) |  |
|        |           |          |           |  |

# supporting information

| N2—C1                        | 1.372 (2)   | N2A—C1A                    | 1.367 (3)           |
|------------------------------|-------------|----------------------------|---------------------|
| N3—C2                        | 1.292 (3)   | N3A—C2A                    | 1.297 (3)           |
| C2—C3                        | 1.470 (3)   | C2A—C3A                    | 1.474 (3)           |
| C2—C10                       | 1.500 (3)   | C2A—C10A                   | 1.496 (3)           |
| C3—C4                        | 1.411 (3)   | C3A—C4A                    | 1.408 (3)           |
| C3—C8                        | 1.405 (3)   | C3A—C8A                    | 1.414 (3)           |
| C4—C5                        | 1.395 (3)   | C4A—C5A                    | 1.389 (4)           |
| С5—Н5                        | 0.9500      | C5A—H5A                    | 0.9500              |
| C5—C6                        | 1.369 (3)   | C5A—C6A                    | 1.371 (4)           |
| С6—Н6                        | 0.9500      | С6А—Н6А                    | 0.9500              |
| C6C7                         | 1.391 (3)   | C6A—C7A                    | 1.392 (3)           |
| C7—C8                        | 1.381 (3)   | C7A—C8A                    | 1.375 (3)           |
| C8—H8                        | 0.9500      | C8A—H8A                    | 0.9500              |
| С9—Н9А                       | 0.9800      | C9A—H9AA                   | 0.9800              |
| C9—H9B                       | 0.9800      | C9A—H9AB                   | 0.9800              |
| С9—Н9С                       | 0.9800      |                            | 0.9800              |
| C10H10A                      | 0.9800      | C10A—H10D                  | 0.9800              |
|                              | 0.9800      |                            | 0.9800              |
|                              | 0.9800      |                            | 0.9800              |
|                              | 0.9800      |                            | 0.9800              |
|                              | 0.9800      | CIIA—HIID<br>CIIA—HIIE     | 0.9800              |
|                              | 0.9800      | CIIA—HIIE                  | 0.9800              |
|                              | 0.9800      | CIIA—HIIF                  | 0.9800              |
| CI2—HI2A                     | 0.9800      | CI2A—HI2D                  | 0.9800              |
| CI2—HI2B                     | 0.9800      | CI2A—HI2E                  | 0.9800              |
| C12—H12C                     | 0.9800      | CI2A—HI2F                  | 0.9800              |
| C4—O1—H1                     | 109.5       | C4A—O1A—H1A                | 109.5               |
| С7—О2—С9                     | 116.72 (17) | C7A—O2A—C9A                | 116.31 (19)         |
| C1—N1—C11                    | 122.29 (17) | C1A—N1A—C11A               | 122.0 (2)           |
| C1—N1—C12                    | 121.38 (17) | C1A—N1A—C12A               | 121.0 (3)           |
| C12—N1—C11                   | 116.23 (17) | C12A—N1A—C11A              | 116.9 (3)           |
| N3—N2—H2                     | 120.6       | N3A—N2A—H2A                | 119.6               |
| N3—N2—C1                     | 118.84 (17) | C1A—N2A—H2A                | 119.6               |
| C1—N2—H2                     | 120.6       | C1A—N2A—N3A                | 120.7 (2)           |
| C2—N3—N2                     | 120.09 (17) | C2A—N3A—N2A                | 117.1 (2)           |
| N1—C1—S1                     | 124.37 (15) | N1A—C1A—S1A                | 125.40 (19)         |
| N1—C1—N2                     | 114.36 (17) | N1A—C1A—N2A                | 113.3 (2)           |
| N2-C1-S1                     | 121.27 (15) | N2A—C1A—S1A                | 121.3 (2)           |
| N3-C2-C3                     | 115.20 (17) | N3A—C2A—C3A                | 115.5 (2)           |
| $N_{3}$ — $C_{2}$ — $C_{10}$ | 125.01 (18) | N3A - C2A - C10A           | 123.5 (2)           |
| $C_{3}$ $C_{2}$ $C_{10}$     | 119 79 (17) | C3A - C2A - C10A           | 121.05(19)          |
| C4-C3-C2                     | 122.05 (18) | C4A - C3A - C2A            | 122.6(2)            |
| C8-C3-C2                     | 119.78 (17) | C4A - C3A - C8A            | 1180(2)             |
| C8-C3-C4                     | 118 16 (18) | C8A - C3A - C2A            | 119 43 (19)         |
| 01 - C4 - C3                 | 124 19 (18) | O1A - C4A - C3A            | 123 2 (2)           |
| 01 - C4 - C5                 | 116 38 (18) | 01A - C4A - C5A            | 125.2(2)<br>1169(2) |
| $C_{1} = C_{4} = C_{3}$      | 110.30 (10) | $C_{5A}$ $C_{4A}$ $C_{3A}$ | 110.9(2)            |
| C4                           | 119.3       | C4A = C5A = H5A            | 110 4               |
|                              | 117.J       |                            | 117.7               |

| C6—C5—C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.38 (19)  | C6A—C5A—C4A                       | 121.3 (2)   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------|-------------|
| С6—С5—Н5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.3        | C6A—C5A—H5A                       | 119.4       |
| С5—С6—Н6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.0        | С5А—С6А—Н6А                       | 120.1       |
| C5—C6—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.9 (2)    | C5A—C6A—C7A                       | 119.8 (2)   |
| С7—С6—Н6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.0        | С7А—С6А—Н6А                       | 120.1       |
| O2—C7—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 115.65 (18)  | O2A—C7A—C6A                       | 115.6 (2)   |
| O2—C7—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 124.61 (19)  | C8A—C7A—O2A                       | 124.3 (2)   |
| C8—C7—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.74 (19)  | C8A—C7A—C6A                       | 120.1 (2)   |
| С3—С8—Н8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.3        | C3A—C8A—H8A                       | 119.5       |
| C7—C8—C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.33 (19)  | C7A—C8A—C3A                       | 121.0 (2)   |
| С7—С8—Н8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.3        | С7А—С8А—Н8А                       | 119.5       |
| 02—C9—H9A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.5        | O2A—C9A—H9AA                      | 109.5       |
| 02—C9—H9B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.5        | 02A—C9A—H9AB                      | 109.5       |
| 02-C9-H9C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.5        | O2A - C9A - H9AC                  | 109.5       |
| H9A_C9_H9B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5        | H9AA—C9A—H9AB                     | 109.5       |
| H9A—C9—H9C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5        | H9AA - C9A - H9AC                 | 109.5       |
| H9B-C9-H9C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5        | H9AB—C9A—H9AC                     | 109.5       |
| $C_2 - C_{10} - H_{10A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 109.5        | $C_{2A}$ $C_{10A}$ $H_{10D}$      | 109.5       |
| $C_2$ $C_{10}$ $H_{10}$ $H_{1$ | 109.5        | $C_{2A}$ $C_{10A}$ $H_{10E}$      | 109.5       |
| $C_2$ $C_10$ $H_10C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5        | $C_{2A}$ $C_{10A}$ $H_{10E}$      | 109.5       |
| $H_{10A}$ $-C_{10}$ $H_{10B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5        | $H_{10}D_{}C_{10}A_{}H_{10}F$     | 109.5       |
| H10A - C10 - H10C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.5        | H10D $C10A$ $H10E$                | 109.5       |
| H10B-C10-H10C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5        | H10E - C10A - H10F                | 109.5       |
| N1  C11  H11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5        | N1A C11A H11D                     | 109.5       |
| NI CII HIIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5        | NIA CIIA HIIE                     | 109.5       |
| N1 - C11 - H11C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.5        | NIA CIIA HIIF                     | 109.5       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.5        |                                   | 109.5       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.5        | HID—CIIA—HIE                      | 109.5       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.5        |                                   | 109.5       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.5        | $\Pi \Pi E = C \Pi A = \Pi \Pi F$ | 109.5       |
| NI = C12 = H12P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.5        | NIA-CI2A-HI2E                     | 109.5       |
| NI-CI2-HI2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5        | NIA—CI2A—HI2E                     | 109.5       |
| NI-CI2-HI2C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5        | NIA—CI2A—HI2F                     | 109.5       |
| H12A—C12—H12B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5        | HI2D—CI2A—HI2E                    | 109.5       |
| H12A—C12—H12C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5        | HI2D—CI2A—HI2F                    | 109.5       |
| H12B-C12-H12C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5        | H12E—C12A—H12F                    | 109.5       |
| 01 64 65 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 179.0(2)     |                                   | 170.2 (2)   |
| 01 - 04 - 05 - 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1/8.0(2)    | OIA - C4A - C5A - C6A             | -1/9.3(2)   |
| 02-07-08-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1/9.22(18)  | 02A - C/A - C8A - C3A             | -1/8.6(2)   |
| $N_2 = N_3 = C_2 = C_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/8.91 (16)  | N2A - N3A - C2A - C3A             | -1/7.70(18) |
| $N_2 = N_3 = C_2 = C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1.7(3)      | N2A - N3A - C2A - C10A            | 1.3 (3)     |
| N3—N2—C1—S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.4(2)      | N3A—N2A—CIA—SIA                   | -0.3(3)     |
| N3—N2—C1—N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/8.56 (17)  | N3A—N2A—CIA—NIA                   | 179.2 (2)   |
| N3-C2-C3-C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.8 (3)      | N3A—C2A—C3A—C4A                   | -2.1(3)     |
| N3-C2-C3-C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -174.23 (17) | NJA-C2A-CJA-C8A                   | 1/6.3 (2)   |
| C1—N2—N3—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 173.41 (17)  | CIA—N2A—N3A—C2A                   | -171.6 (2)  |
| C2-C3-C4-O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.5 (3)     | C2A—C3A—C4A—OlA                   | -2.7 (3)    |
| C2—C3—C4—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 179.65 (18)  | C2A—C3A—C4A—C5A                   | 177.1 (2)   |
| C2-C3-C8-C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 178.66 (18)  | C2A—C3A—C8A—C7A                   | -177.7(2)   |

| 63 64 65 66               | 1.0.(2)      |                  | 0.0 (4)    |
|---------------------------|--------------|------------------|------------|
| $C_{3}-C_{4}-C_{5}-C_{6}$ | 1.9 (3)      | C3A—C4A—C5A—C6A  | 0.9 (4)    |
| C4—C3—C8—C7               | -0.4 (3)     | C4A—C3A—C8A—C7A  | 0.7 (3)    |
| C4—C5—C6—C7               | -0.7 (3)     | C4A—C5A—C6A—C7A  | 0.1 (4)    |
| C5—C6—C7—O2               | 179.7 (2)    | C5A—C6A—C7A—O2A  | 178.3 (2)  |
| C5—C6—C7—C8               | -1.0 (3)     | C5A—C6A—C7A—C8A  | -0.8 (4)   |
| C6—C7—C8—C3               | 1.6 (3)      | C6A—C7A—C8A—C3A  | 0.3 (3)    |
| C8—C3—C4—O1               | 178.59 (18)  | C8A—C3A—C4A—O1A  | 178.9 (2)  |
| C8—C3—C4—C5               | -1.3 (3)     | C8A—C3A—C4A—C5A  | -1.3 (3)   |
| С9—О2—С7—С6               | -176.3 (2)   | C9A—O2A—C7A—C6A  | -179.3 (2) |
| С9—О2—С7—С8               | 4.5 (3)      | C9A—O2A—C7A—C8A  | -0.3 (3)   |
| C10—C2—C3—C4              | -174.64 (18) | C10A—C2A—C3A—C4A | 178.9 (2)  |
| C10—C2—C3—C8              | 6.3 (3)      | C10A—C2A—C3A—C8A | -2.8 (3)   |
| C11—N1—C1—S1              | -177.10 (15) | C11A—N1A—C1A—S1A | 179.4 (2)  |
| C11—N1—C1—N2              | 1.9 (3)      | C11A—N1A—C1A—N2A | 0.0 (3)    |
| C12—N1—C1—S1              | -0.7 (3)     | C12A—N1A—C1A—S1A | 3.7 (4)    |
| C12—N1—C1—N2              | 178.29 (18)  | C12A—N1A—C1A—N2A | -175.7 (2) |
|                           |              |                  |            |

## Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C3…C8 and C3A…C8A rings, respectively.

| D—H···A                                                 | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|---------------------------------------------------------|-------------|--------------|--------------|------------|
| O1—H1…N3                                                | 0.84        | 1.84         | 2.563 (2)    | 143        |
| O1 <i>A</i> —H1 <i>A</i> ···N3 <i>A</i>                 | 0.84        | 1.86         | 2.565 (3)    | 141        |
| C11—H11A····O1 <sup>i</sup>                             | 0.98        | 2.51         | 3.315 (3)    | 139        |
| C11 <i>A</i> —H11 <i>E</i> …O1 <i>A</i> <sup>ii</sup>   | 0.98        | 2.68         | 3.305 (4)    | 122        |
| C11 <i>A</i> —H11 <i>E</i> … <i>Cg</i> 2 <sup>iii</sup> | 0.98        | 2.73         | 3.590 (3)    | 147        |
| C12—H12 $B$ ···· $Cg1^{i}$                              | 0.98        | 2.82         | 3.530 (3)    | 130        |

Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x+1, -y, -z+1; (iii) -x+3/2, y+1/2, -z+1.